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Abstract. In many multi-agent applications, such as patrol, shopping,
or mining, a group of agents must use limited resources to successfully
accomplish a task possibly available at several distinct sites. We investi-
gate problems where agents must expend resources (e.g. battery power)
to both travel between sites and to accomplish the task at a site, and
where agents only have probabilistic knowledge about the availability
and cost of accomplishing the task at any location. Previous research
on Multiagent Stochastic Physical Search (mSPS) has only explored the
case when sites are located along a path, and has not investigated the
minimal number of agents required for an optimal solution. We extend
previous work by exploring physical search problems on both paths and
in 2-dimensional Euclidean space. Additionally, we allow the number of
agents to be part of the optimization. Often, research into multiagent
systems ignores the question of how many agents should actually be
used to solve a problem. To investigate this question, we introduce the
condition of k-agent sufficiency for a multiagent optimization problem,
which means that an optimal solution exists that requires only k agents.
We show that mSPS along a path with a single starting location is at
most 2-agent sufficient, and quite often 1-agent sufficient. Using an opti-
mal branch-and-bound algorithm, we also show that even in Euclidean
space, optimal solutions are often only 2- or 3-agent sufficient on average.

Keywords: Stochastic physical search - Planning under uncertainty -
Multiagent optimization - k-Agent sufficiency

1 Introduction

We investigate the problem of multiple agents seeking for a single item that may
possibly be obtained at one of several locations. We assume that the availability
and actual cost to acquire the item at any site is not fully known beforehand, but
that a priori probabilistic cost distributions are known. In particular we exam-
ine problems where there is a finite resource that must be expended to both
travel and obtain the item of interest. We refer to this class of problems as Mul-
tiagent Stochastic Physical Search (mSPS). Examples of this type of problem
include battery-powered mining or space exploration robots seeking a precious
metal deposit or specific mineral sample, hikers seeking a suitable location to
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Fig. 1. (a) Example of a two-agent strategy where agent 1 is allocated a starting budget
of b1 = 32 and the path = (us,usa,us) and agent 2 is allocated a starting budget
of 14 and the path m2 = <us,u1,uz>. Probability distributions over cost are shown
next to each site. The joint probability of success of the shown multiagent search
strategy is 1 — Pr(failure of agent 1) - Pr(failure of agent 2) = 1 — Pr(failure at u4) -
Pr(failure at us) - Pr(failure at u1) - Pr(failure at u2) =1—-0.5-0.7-0.7-0.5 = 0.8775.
(b) Using a single agent, the same probability of success can be achieved with a strategy
that requires less budget.

set up a base camp, or tourists using public transportation to explore several
different shopping areas for a desired souvenir. What makes the above problems
challenging, is that while actual distance costs may be reliably and accurately
estimated using satellite imagery, maps, or taxi fares, the actual cost to accom-
plish the task (or purchase the item of interest) at a specific location may be
unknown until an agent actually visits the site. One of the major challenges is
that we assume each agent must use a single budget (e.g. battery power, fuel,
or currency) to both travel and obtain the item. This adds extra complexity to
the problem because it means that taking a different path to a site can change
the probability of success—a longer path will consume more budget, reducing
the budget available to obtain the item. Figure 1(a) shows an example problem
along with a possible two-agent solution that allocates a total budget of 46 and
achieves a joint probability of success of 0.8775. However, Fig. 1(b) shows that
an equivalent probability of success can be achieved using only a single agent
with a lower total budget of 35.

In many multiagent search problems it is often assumed that the number of
agents is fixed and that having multiple searchers is better than a single searcher.
However, this may not be the case when searchers start from the same location,
when both search and acquisition are costly, and when there is a limit to the total
allocatable budget. For example, in many vehicle routing problems, the number
of vehicles is part of the problem definition and solutions often assume that all
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the vehicles will be used [14]. Some vehicle routing problems try to minimize the
number of required agents, but these problems do not consider probabilities of
success or costs to purchase or acquire an item along a vehicle’s route [15]. Work
on the multiple traveling salesman (a special case of the mSPS) and its extensions
sometimes allows the number of salesman to be variable, but we know of no
proven bounds on the maximum number of agents required for different problems
[2,11]. In many other multiagent scenarios such as multiagent task allocation,
the number of agents is also often assumed to be fixed [5,12]. Previous work
on stochastic physical search has either focused on single agent solutions or has
assumed that the number of agents is not part of the optimization [1,3,7,9,10].

Our research assumes that there is a given upper bound on the number of
agents available to search for the item; however, we do not restrict our solu-
tions to a fixed number of agents. Instead, we algorithmically decide which of
the available agents should participate in the search in order to maximize the
probability of successfully obtaining the item as well as minimizing the required
total budget allocated to the agents. Because our problem is bi-objective we
use the standard epsilon constraint method to split the problem into two dual
objectives. The Min-Budget objective is to minimize the total budget allocated
to the agents while guaranteeing a specified minimum probability of success.
The Maz-Probability objective is to maximize the probability of success given
an upper bound on the budget that can be allocated. In both of these problems,
the agents all start at the same starting location and a solution is an allocation
of resources to each agent, along with a search path for each agent.

While stochastic physical search problems capture many real world plan-
ning and algorithmic decision problems, very little is known about the solution
properties of these problems. Work by Aumann et al. and Hazon et al. has
proposed optimal algorithms for the case when sites are located along a path;
however, their work never actually computes or analyzes optimal solutions and
does not investigate the frequency of optimal solutions that required more than
one agent [1,6,7]. Work by Brown et al. and Hudack et al. has examined the
Min-Budget and Max-Probability problems on general graphs and 2-dimensional
euclidean spaces; however, they only consider the single agent case [3,9]. This
paper provides, to the best of our knowledge, the first theoretical and empir-
ical investigation of the solution properties of the multiagent Min-Budget and
Max-Probability problems.

We start by examining problems where the item may possibly be obtained
from a set of locations on a path. We examine two cases: (1) single-cost and (2)
multi-cost. We prove that in both cases, problems are at most 2-agent sufficient,
and empirically investigate the frequency of 1-agent sufficient problems. We next
investigate solutions to the Min-Budget and Max-Probability problems when
locations are in 2-dimensional Euclidean space. We provide a theoretical analysis
of when multiple agents are unnecessary and use an exact branch-and-bound
algorithm to provide empirical insights into k-agent sufficiency for 2-dimensional
problems. We show that in many cases, even when searching in two dimensions,
the optimal strategy is to use a very small number of searchers, rarely requiring
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more than 3 searchers. We conclude by discussing the factors that contribute
to a search problem being k-agent sufficient for different values of £ along with
areas for future research.

2 Problem Definition

A stochastic physical search problem is defined by a graph G(S™, E) with a set
of locations ST = SU{us} where S = {uy,...,u,} is the set of m sites offering
an item of interest, u, is the starting location, and £ C ST x St is the set of
edges. Each (4, j) € F has a non-negative cost of travel ¢;;. For each site i € S we
are given a cost probability mass function p;(c), which gives the probability that
the item will cost ¢ at site u;. We assume that the actual cost is not revealed until
the agent visits the site and that the cost remains fixed thereafter. We further
assume that there is a finite number of possible costs in the support of p;(c),
Vi € S. Finally, we define a set A of n™2* = |N/| agents that are available, but
not required, to be used in the search. Each agent n starts at us with a starting
budget by,¥n € N. We let b* = {b} : n € N} and let B* = 3" _\ b, the total
budget allocated to all agents. We assume that once budgets are allocated they
are non-transferable, that two or more agents cannot combine their budgets to
obtain the item, and that agents cannot share information about sites they have
visited with other agents. Following previous work on stochastic physical search
problems [7], we assume that success is achieved if any agent is able to purchase
the item. We also assume that the item cannot be found at the start site, us.

We examine two dual problems (1) Min-Budget: Given a required probabil-
ity of success pj,.. find the initial budget allocation b* that satisfies p},,.. and
that minimizes B*. (2) Max-Probability: Given an upper bound on the budget
available for allocation of B* determine the optimal budget allocation b* so as
to maximize the probability of success. A solution to either problem is an allo-
cation of starting budgets bx along with a set of paths IT* where each individual
path 7" € IT* is a sequence of sites in S*, where 7 is the it" site visited along
path 7", and where each path starts at the start site, i.e., 7 = us,Vn € N. We
assume that success is achieved if any agent arrives at a site where the actual
cost is less than or equal to that agent’s remaining budget.

2.1 k-Agent Sufficiency

Before we investigate solutions to the Min-Budget and Max-Probability mSPS
problems we define the term k-agent sufficiency as it relates to multiagent opti-
mization problems of the kind investigated in this paper.

Definition 1. A mSPS problem is k-agent sufficient if an optimal solution exists
such that |B*| =k where Bt = {b}, € b* | b} > 0,Vn € N'}.

The following result is true for all mSPS problems.

Proposition 1. If an SPS problem has zero travel costs between all sites, then
it is 1-agent sufficient.
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Proof. Assume you have two agents ¢ and j with starting budgets b;,b; > 0.
Since the agents can travel between sites without incurring costs, an equivalent
probability of success can be achieved with a single agent, given less starting
budget b’ = max(b;,b;) < b; + b;. O

Thus, for the remainder of the paper we assume that all travel costs are non-zero.

3 mSPS Along a Path

We first investigate the Min-Budget and Max-Probability problems where the
set of locations in ST are restricted to be along a path. We note that the follow-
ing discussion on paths is not purely academic, as many multi-agent coverage
algorithms convert their complex environment into a path and many perimeter
monitoring and border control tasks could also be represented by sites along a
path [4,7,8,13].

To simplify our analysis, we follow the methodology used by Hazon et al. 7],
and assume WLOG (without loss of generality) that all locations are along a
line such that the travel cost between any two sites u; and w; is t;; = |u; — u;l.
We also assume WLOG that the sites are ordered from left to right such that
uy < us < -+ < uyy,. We first examine the case when there is only one possible
cost to obtain the item. Despite the simplicity of this problem, we show that the
results for k-sufficiency are non-trivial. We then examine the case where there
are multiple possible item costs.

Before examining the single and multi-price cases, we note the following.

Proposition 2. When u is the leftmost (rightmost) location, then the problem
is 1-agent sufficient and the optimal strategy only moves to the right (left).

Proof. Any other strategy to cover the same locations would use at least as much
budget and achieve no greater probability of success. a

Thus, the most interesting cases, in terms of k-agent sufficiency, are those where
the start site us is towards the middle of the path.

3.1 Single Price

We first assume that all sites either offer the item for a cost of ¢y or do not offer
the item at all (this can simply be modeled as a cost of o). All we are given are
the a priori probabilities p; that the item is available for cost ¢y at site .

We first note the following useful lemma and definition proposed by Aumann
et al. [1].

Lemma 1. Consider a price ¢y and suppose that an agent’s optimal strategy
starting at point us covers the interval [ug, u,] while the remaining budget is at
least cy. Then WLOG we may assume that the agent’s optimal strategy is either
(us > wp — ug) or (us — ug — uy).
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Definition 2. Agents i and j are said to be separated by a strategy if each site
in S that is reached by i is not reached by j.

We now prove the following lemma and theorem which give us our first k-
agent sufficiency condition.

Lemma 2. With a single price, there exists an optimal multiagent strategy
where every agent is separated.

Proof. Assume by contradiction that two agents 7 and j are not separated in
every optimal strategy. Consider the intervals covered by these two agents, [I;, ;]
and [l;,7;], respectively. Let [L, R] = [I;,7;] U[l;,7;] be the full combined coverage
area of the two agents. In the case that [l;,7;] C [l;,7;] we can safely remove
agent i from the strategy, resulting in a strategy with the same probability of
success but lower budget. Otherwise, WLOG we can assume based on Lemma 1
that only i reaches L and only j reaches R. However, now the separated strategy
of us — L for agent i and us — R for j guarantees at least the same probability
of success with no more budget. This contradicts our assumption. a

Theorem 1. For a path with a single possible price, there is always an optimal
strateqy with fewer than 3 agents. If using two agents is optimal, then only one
agent mowves left and only one agent moves right in the optimal strategy.

Proof. This follows as a direct result of Lemmas 1 and 2. O

The work of Aumann et al. [1] provides an O(m) algorithm for the single
agent single price problem. Based on the result of Theorem 1 we can easily
adapt the algorithm given by Aumann et al. to obtain an O(m) algorithm for
the multiagent single item cost Min-Budget and Max-Probability cases by simply
checking each possible single agent coverage region to see if dividing the region
between two agents results in lower budget or higher probability of success. Each
of these checks can be done in constant time.

3.2 Single Price k-Agent Sufficiency

We now examine when the single price problem is 1-agent sufficient. When there
are multiple agents, each one has to carry at least ¢y of budget to enable pur-
chasing when the item is available. Thus the question of 1-agent sufficiency is
directly related to the ratio of travel distances and ¢y. We note that for increas-
ing values of ¢g, there exists a point at which c¢g is so high that it dominates the
total travel cost.

Theorem 2. Suppose that the optimal strategy covers the interval [ug, u,] while
the remaining budget is at least co. If co > max(|us — ug|, |u, — us|) then the
problem is 1-agent sufficient.
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Proof. Assume by contradiction that the optimal solution requires two agents, 4
and j. Let b; and b; be the starting budgets of 7 and j, where t; = b; — co and
t; = bj — co are the portions of the budgets allocated for travel. By assumption
and by Theorem 1 we have

co > max(|us — ue|, |ur — us]) = max(t;, t;). (1)

For a single searcher to cover both search paths it must have as a minimum
travel budget
t" = 2min(t;, t;) + max(t;,t;) (2)

to enable an out and back trip on the shorter leg, followed by an out trip on the
longer leg. Thus the budget b’ for a single agent is given by

b =1t +co (3)

= 2min(t;, ;) + max(t;,t;) + co (4)

<t; +t; + max(t;,t;) + co (5)

<t 4+t + 2¢0 (6)

=b; +b; (7)

Which contradicts our assumption that two agents were required. O

Figure 2 shows an example of how the number of agents allocated changes
for both Min-Budget and Max-Probability as ¢y is increased. To obtain these
results we uniform randomly generated 25 sites along a 100 unit long interval
and let us; be the median site. Probabilities of success p; are randomly chosen
between 0 and 0.5 for each site. For the Min-Budget problem, we examined
several different values for the required probability of success. We know that the
best success probability is achieved by visiting all the sites, giving

ph =1-1]1-m- (8)
i€S

To vary the solutions we set the required probability of success equal to
p-pmaz for different values of p. The results for Min-Budget are shown in Fig. 2(a).
The x-axis shows the cost of the item and the y-axis shows the percentage of
1000 random instances that were 1-agent sufficient. When p = 1 all the sites
must be visited. We see that as expected, when p = 1, most problems are not
1-agent sufficient, until the cost gets close to max(|us — w1, |um — us|) =~ 50,
when 1-agent sufficiency is guaranteed by Theorem 2. However, as soon as all
of the sites are not required (i.e. p < 1), the probability of an instance being
1-agent sufficient dramatically increases.

Figure 2(b) shows the results for Max-Probability. Because there is only a
single purchase cost we can think of this cost as a fixed start-up cost that is
incurred for each agent used. Thus, for low values of ¢y and low starting budget,
it is more beneficial to divide and conquer and send one agent left and one agent
right. On the other hand, for large values of ¢y the start-up cost to use a second
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Fig. 2. Percentage of 1000 random 25-site, single-price problems that are 1-agent suf-
ficient. Sites are randomly placed in the interval [0,100]. (a) Min-Budget results for
different required probabilities of success psuce = p - (1 — [[;cg 1 — pi) where p; is the
probability the item is available for the single cost. (b) Max-Probability results for
different total budget allotments B.

agent is so high that most optimal solutions only require a single agent. Note
that given a starting budget of 100 with ¢y = 0 the optimal solution is to always
use two agents with each agent coverage one half of the solution space. However,
as ¢ increases the two agent solution coverage region decreases because agents
cannot reach the farther endpoints and still have enough to purchase the item.
Eventually, ¢ is so high that giving two agents ¢y plus budget to travel requires
more budget than using a single agent. Given a starting budget of 150 and
co = 0 one agent has enough to traverse the entire interval. In this case we see
that as ¢o increases, eventually two agents can cover a larger region (resulting in
higher probability of success) than one agent on its own. However, past a certain
point the start-up cost of ¢q starts to dominate the travel costs and single agent
solutions become more common.

3.3 Multiple Prices on a Path

We now consider the case where there can be a large number of different realiz-
able costs at the sites. Note that Lemma 1 is not always true for multiple pur-
chase prices. Figure 3 shows a simple example where multiple direction changes
are optimal. However, we do have the following result:

Lemma 3. In the multi-price case, if agent i and agent j both only travel left
(right), then one of them is unnecessary.

Proof. WLOG assume agent i travels past the leftmost (rightmost) point visited
by j. Let b; and b; be the starting budgets of ¢ and j and let ¢; = |I; — us| and
t; = |lj — us| be the distances traveled by each agent, respectively. Consider the
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Fig. 3. When there are multiple realizable costs, optimal paths can often include several
changes of direction. Shown is the optimal strategy for a single agent solving Max-
Probability with starting budget of 51, or equivalently solving Min-Budget with a
required probability of success equal to 0.99.

new strategy where only one agent i’ travels with budget

by =t; + (b; —t; +b; —tj) (9)
=b; + bj — tj (10)
< b; +b;. (11)

This single-agent strategy guarantees no decrease in probability of success with
no increase in total budget. O

We also utilize the following lemma, adapted from Aumann et al. [1].

Lemma 4. Consider two agents i and j that start at us. Then, there is an
optimal strategy such that one of the following holds:

— j mowes only in one direction which is opposite to i’s final movement direction.
Furthermore, if i’s final movement direction is right (left) then j passes the
leftmost (rightmost) site that is reached by i.

— either ¢ or j is unnecessary.

Using Lemmas 3 and 4, we can now prove the following theorem, which is
the multi-cost analogue of Theorem 1.

Theorem 3. For the same-start mSPS problem on a path, there is always an
optimal strategy with fewer than 8 agents.

Proof. Assume by contradiction that 3 agents are necessary in every optimal
strategy. Denote these agents ¢, j, and k. Consider agents ¢ and j. WLOG by
Lemma 4 assume that ¢ only moves left in the optimal solution, ¢ passes the
leftmost site reached by j, and j’s final movement direction is right.

Now consider the results of Lemma 4 applied to agents j and k. There are
two cases: (1) Agent k only moves left and passes the leftmost site reached by
j. Then either [l;,r;] C [lk, %] or [lk, k] C [l;,7:]. In either case, by Lemma 3
one of the agents is unnecessary. (2) Agent j only moves right and passes the
rightmost site reached by agent k, and k’s final movement direction is left. If
k passes the leftmost point covered by i, then 7 is unnecessary by Lemma 3.
Otherwise, i passes the leftmost site visited by k. Consider two cases: (a) at I, i
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has remaining budget less than or equal to k. In this case ¢ is not needed and k
can travel to [;. (b) ¢ has more budget than k at l. In this case i also has more
budget available than k at all sites left of us so k only has to travel right. Thus,
by Lemma 3 either j or k are unnecessary. a

3.4 Multi-price k-Agent Sufficiency

We now investigate when the multi-price mSPS problem along a path is 1-agent
sufficient. Once again we have the obvious cases that if travel costs are all zero,
then the problem is 1-agent sufficient and all the sites are located to one side of
the start site. We also have the following multi-price analogue of Theorem 2.

Theorem 4. Consider a strategy that has two agents with paths ©° and © and
budgets b; and b;, respectively. WLOG let b; = t; + ¢;"" and bj = t; + "
where t; is the budget needed to travel along m; and " is the remainder that
is allocated to purchase. If max(t;,t;) < min(c]"",c5""), then the problem is
1-agent sufficient.

The proof is almost identical to the proof of Theorem 2.

Figure 4 shows an example of how the number of agents allocated changes for
Min-Budget and Max-Probability over different cost profiles for multiple costs
along a 100 unit path with 10 sites. Unlike the single-price case, the multi-price
problem appears to be NP-Hard. Aumann et al. examine the case where all
agents have access to a shared budget and show that even this case is NP-Hard
[1]. In this paper, we assume that a distinct, non-sharable, initial budget must be
allocated to each agent for both the Max-Probability and Min-Budget problems,
adding another dimension of complexity to the problem. However, we were able
to use a simplified version of the branch-and-bound algorithm described in Sect. 4
to obtain exact results for smaller sized problems.

Similar to the previous empirical results, we see that as the item costs
increase, 1-agent sufficient solutions become more common for the Min-Budget
case, but as p is increased (i.e. more sites are required to be visited) solutions tend
towards two agents unless item costs dominate travel costs. For Max-Probability
we see that very small or very large starting budgets lead to solutions with fewer
agents, but there is always a dip between the low and high budgets where it
becomes more beneficial to use two agents. The scaling and location of this
dip is determined by the distribution over item costs, with higher item costs
penalizing multiagent solutions.

4 mSPS in 2-D Euclidean Space

The results above have all assumed that the sites are located along a simple
path. We now assume that sites are located in 2-dimensional Euclidean space,
where the cost to travel between sites is the euclidean distance between sites,
ie. t;j = ||u; — uj|l2. When solving both the Min-Budget and Max-Probability
problems in Euclidean space, we have the following result:
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Fig. 4. Percentage of 200 random 10-site, single-price problems that are 1-agent suf-
ficient where the item costs are either all zero or uniform randomly chosen from
some interval. (a) Min-Budget results over different required probabilities of success
Pauce = p- (1 —T[i~; 1 — ps) where p; is the probability the item is available for the
single cost at site i. (b) Max-Probability results over total starting budgets.

Proposition 3. The optimal solution for both the Min-Budget and Max-
Probability Fuclidean mSPS problems consists of distinct non-overlapping paths.

Proof. We prove this by contradiction. Assume in the optimal solution that there
is a site ug € S that is visited by at least two agents a; and ay. Because agents
cannot share budget to purchase an item, the probability of success obtained at
that site will remain unchanged if the agent with lower budget does not travel
to ux. WLOG assume agent a; is thus chosen not to visit the site and instead
goes straight to its next site on its path. By the triangle inequality this path
length is less than or equal to the original path length resulting in a strategy
with no more budget and at least equivalent probability of success, resulting in
the desired contradiction. |

Thus, for the Euclidean problem, we can safely exclude overlapping paths
from our search space. This separation principle allows us to find optimal solu-
tions to the mSPS problem using an extension of the branch-and-bound formu-
lation proposed by Brown et al. for solving the single-agent SPS problem on
general graphs [3]. Any graph more complex than a simple path has been shown
to be NP-complete [7]; however, we were able to find optimal solutions for small
problems up to about 20 sites in 2-d Euclidean space. This allows us to examine
the characteristics of optimal solutions to the mSPS problem in a more general
and applicable setting.

We note that for each site ¢ € S we can use the possible costs at i to form a
partition over all possible budgets that may be brought to site . For example,
the cost profile shown in Fig.5 partitions the budget space into three intervals
with the corresponding probabilities of failure if an agent arrives at that site
with any budget in that interval. There are three possibilities when the agent
arrives at the site: (1) the agent’s budget is in the interval [0,3) and it cannot
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Fig.5. A cost profile (a) partitions the interval [0,00) into several possible budget
intervals (b), each with an associated probability of failure.

obtain the item, (2) the agent’s budget is in the interval [3,10) and it has enough
left to obtain the item at the lower cost but not the higher cost, and so will fail
to obtain the item with probability 0.3, and (3) the agent has sufficient budget
to obtain the item for any of the possible costs.

Both the Min-Budget and Max-Probability branch-and-bound algorithms
need to determine the optimal budget allocation over n™** agents. While the
number of all possible budget allocations is infinite, we can ignore most of these
intervals and only focus on each budget interval [c, ¢,,) induced by the possible
costs at each site. Thus rather than branching on individual budget values we
branch on possible budget intervals for each agent. This can still result in an
exponential number of branches, but does allow exact solutions. We refer the
reader to [3] for the full details of the successor function and bounding criteria
for the single agent case. To extend the work by Brown et al. to the multiagent
case, we simply added a budget interval for each available agent. The successors
for each state are found as follows: iterate over all unvisited sites and all available
agents; add the site to the agent’s path; and update the agent’s budget interval,
the total budget required for all agents, and the joint probability of failure.

5 k-Agent Sufficiency in 2-Dimensions

We introduce the following definition that allows us to characterize a certain
class of 1-agent sufficient mSPS problems for the 2-dimensional Euclidean case

Definition 3. A mSPS problem is purchase-dominated if

min{c: P;(c) >0,i€ S} > max t;;, 12

{c: Pi(c) b dnax  h (12)

i.e., the minimum purchase cost at any site is greater than the maximum travel
cost between any two sites.

Theorem 5. If a mSPS problem in Euclidean space is purchase-dominated, then
it is 1-agent sufficient.

Proof. WLOG, assume that we have an optimal solution that requires two agents
¢ and j with paths 7, 77 of corresponding travel costs ¢; and t;. Additionally,
each agent may need some additional budget to use for purchasing, " and
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cfw. We show that we can achieve the same probability of success using a single
agent. To do this assume that a single agent first visits all sites in 7" and then
visits all sites (except for the start site) in 7/ with a corresponding total path
cost equal to t; +t; — tumﬂ{- + tﬂ’:',ﬂr{’ where w is the index to the last element
of the path. Additionally, this agent may need some extra budget to allow for
purchasing. This agent will need /" to get the probability of failure p;ail on
) to get the probability of failure

pur

path 7i. The agent also needs min (0, A —c

pjcm-l on path 7. Thus the single agent case requires

b=t + t; — tus 'n'{ +t. P + cIiJUT + min(O, c;?ur . CfUT) (13)
Sttt + tﬂ'@ﬂr{ + maX(CfuT, Cgm’) (14)
<t + tj + min(cfw, Cfur) + max(cf"r, C-?ur) (15)
=ti+t;+ " (16)
o (17)

Resulting in single agent strategy with no more budget and at least equivalent
probability of success as the strategy with two agents. a

5.1 Results for Clustered Sites

When sites are located in 2-dimensional Euclidean space, there is the potential
for many widely separated clusters of sites, which may result in solutions that
require more than 2 agents. To examine the effect of clustered sites on the optimal
number of agents we ran two experiments, one for Min-Budget and one for
Max-Probability. For both experiments we generated data sets consisting of 5
well-separated cluster centers identified in a 100-by-100 region and generated
15 site locations according to varying cluster tendency (ct), or the probability
that a site will be near a cluster center. For ¢t = 0.0 all sites were uniformly
randomly generated in the region, and for increasing ct it becomes more likely
that sites are located in close proximity to the cluster centers until at ct = 1.0,
there are no uniform-randomly generated sites. The start site is always placed in
the center of the region. For the Min-Budget experiment we used p = 0.95 and
generated random item costs in the intervals [0], [10,30] and [30,50]. For the
Max-Probability experiment we used item costs of 0 and explored total budgets
of 100, 600, and 1000. We ran 100 replicates for each setting.

The results are shown in Fig.6. We see that for Min-Budget, the number
of agents used grows as the item costs decrease. Additionally, we see that as ct
increases, there is a slight increase in the average number of agents used. For
Max-Probability there are two trends that are largely insensitive to the clustering
tendency: the 100 budget case, and the 1000 budget case. With budget 100,
the optimal solutions tend to include two agents to visit sites that are widely
separated, but the limited budget tends not to be split any further. With 1000
budget, one agent can typically visit any useful sites. With budget 600 there is a
different trend: the number of agents is greatest at ¢t = 0.25 which corresponds
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Fig. 6. Average number of agents used in optimal plans for Min-Budget and Max-
Probability for 15 sites clustered into 5 clusters in a 100 unit by 100 unit region, with
variable clustering tendencies.

to forcing many well-separated sites, so a divide and conquer strategy is used.
At ct = 1.0, the tight clusters of points make it easier for a single agent to travel
within a cluster with very low travel cost.

Our empirical results for these and other settings revealed a tendency towards
very few agents in the optimal solution. To obtain a better intuition for this
phenomenon, we analyzed increasing numbers of equidistant sites located on a
circle centered on the start site.

Theorem 6. Given an mSPS problem in 2-dimensional Fuclidean space with
all sites S equidistant from the start site, the problem never requires more than
b agents.

Proof. We assume that all sites must be visited in the optimal solution, if all sites
are not required, then this can only result in fewer required agents. Additionally,
we assume that item costs are all zero, since having positive item costs can never
increase the number of agents required in the zero-cost case.

Consider |S| sites equally spaced around a circle of radius r. The case of
|S| = 1 trivially only requires one agent. Consider two sites as shown in Fig. 7(a).
In this case B* = 2r for two agents, but B* = 3r for one agent so two agents
are necessary. The three site case is shown in Fig. 7(b). In this case using three
agents is optimal since the removal of an agent from the solution causes another
agent to travel a distance of V2r + 7 > 2r. The cases for 4 and 5 sites are
similar—sending an agent along the radius of the circle is cheaper than sending
an agent along an edge of the inscribed regular polygon. Figure7(c) and (d)
show the case for |S| = 6. This is the break even point where traveling along an
edge of the hexagon requires the same budget as traveling along the radius, thus
the problem is 1-agent sufficient. For |S| > 6 the edges of the inscribed regular
|S]-gon will be strictly less than 7 so these cases are all 1-agent sufficient. Even
if we relax the assumption that sites are equally spaced, we still only need at
most 5 agents. g
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(a) (b) (c) (d)

Fig. 7. Geometric argument that if all sites are equidistant from the start site, then
an optimal solution will never require more than 5 agents.

6 Conclusions and Future Work

Often, research into multiagent systems ignores the question of how many agents
should actually be used to solve a problem. To investigate this question, we intro-
duced the condition of k-agent sufficiency, as it relates to Multiagent Stochastic
Physical Search. We provided the first theoretical and empirical analysis of k-
agent sufficiency for mSPS when sites are along a path and in 2-d Euclidean
space. We showed that mSPS along a path with a single starting location is
always 2-agent sufficient, and quite often 1-agent sufficient. We also showed that
even in 2-d Euclidean space with a single starting location, optimal solutions usu-
ally require at most 3 agents on average. Our results show strong evidence that
optimal solutions to the mSPS problem in 2-d Euclidean space never requires
more than 5 agents even if sites located in widely-separated clusters. Using a
geometric argument we show why this is true when sites are equidistant from
the start site. We conjecture that in general, optimal solutions to mSPS problems
in 2-d Euclidean space require at most 5 agents. We hope that these results will
inspire other researchers in multiagent planning and optimization to consider
cases where multiple agents are not always necessary or even desirable, rather
than simply showing that an algorithm or solution method scales to x agents.
We note that there are many assumptions not considered in this paper which
may cause the number of agents in an optimal solution to increase. Some of
these assumptions include no communication during search, starting all agents
from the same initial location, having a limit on the maximum budget per agent,
having needs for redundancy or collaboration, and problems where the objec-
tive is to minimize time. Future work should examine these extensions to see
if there are still k-agent sufficiency conditions. We also hope to leverage the k-
agent sufficiency results shown in this paper to develop efficient heuristics and
approximation algorithms for solving difficult mSPS problem instances.
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