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Abstract

Learning from demonstration is a popular method for teach-
ing robots new skills. However, little work has looked at how
to measure safety in the context of learning from demonstra-
tions. We discuss three different types of safety problems that
are important for robot learning from human demonstrations:
(1) using demonstrations to evaluate the safety of a robot’s
current policy, (2) using demonstrations to enable risk-aware
policy improvement, and (3) determining when the demon-
strations received by the robot are sufficient to ensure a de-
sired safety level. We propose a risk-aware Bayesian sam-
pling approach based on inverse reinforcement learning that
provides a first step towards addressing these problems. We
demonstrate the validity of our approach on a simulated nav-
igation task and discuss promising areas for future work.

Introduction
There is a growing interest in safety and risk-sensitive met-
rics for machine learning and artificial intelligence systems
(Amodei et al. 2016), especially for systems that interact
with their environment. While a growing body of work
has examined safety in the context of reinforcment learn-
ing (Garcıa and Fernández 2015), little work has looked at
how to measure safety for inverse reinforcement learning or
learning from demonstration.

Learning from demonstration (LfD) is a popular method
for teaching a robot or software agent a skill or policy by
simply observing demonstrations from a human expert (Ar-
gall et al. 2009). One popular variant of LfD is Inverse Re-
inforcement Learning (IRL) (Ng, Russell, and others 2000)
where the goal is to infer the reward function that resulted in
the demonstrations. LfD techniques based on IRL have po-
tential applications in many settings such as manufacturing,
home and hospital care, and autonomous driving. In these
types of real-world settings it is important, and perhaps crit-
ical, to provide safety bounds on a learned policy.

For the purposes of evaluating policies learned from
demonstrations, we assume that the demonstrator is trying
to optimize a unknown reward function. Thus, we define the
safety of a policy as a risk-sensitive confidence bound on the
difference in performance between the optimal policy for the
demonstrator’s reward and the performance of the robot’s
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policy, when both policies are evaluated on the demonstra-
tor’s true reward. There are many possible methods for ob-
taining risk-sensitive bounds. In this work we examine both
a worst-case bound based on feature-counts and a prob-
abilistic bound based on α-Value-at-Risk (α-VaR) (Jorion
1997)—the α-quantile worst outcome. We make these defi-
nitions precise later in the paper.

In this work we propose three different types of safety
problems that we believe are important for robot learning
from human demonstrations:
• Policy evaluation through demonstrations: using

demonstrations to evaluate the safety of a robot’s current
policy.

• Policy improvement through demonstrations: using
demonstrations to improve the safety of a policy.

• Demonstration sufficiency: determining when enough
demonstrations have been given to ensure a desired level
of safety.

We give formal definitions of these problems later; however,
we first provide motivation for each problem using the ex-
ample of a hospital assistant robot that is designed to lift
patients out of bed.

Policy evaluation through demonstrations: As an exam-
ple of the policy evaluation safety problem, consider the
case where the robot comes from the factory with a pre-
programmed policy designed to work well for an average
patient. However, before allowing this robot to lift a pa-
tient with a particular kind of back injury, we would want
to determine if the default policy is safe to use. One way to
test the safety of the robot’s default policy is to have an ex-
perienced human give demonstrations of lifting the patient
and then have the robot evaluate the performance of its pre-
programmed policy compared to the inferred policy of the
demonstrator. Ideally, the robot would then be able to guar-
antee with high-confidence that its current lifting policy per-
forms within some allowable error of the optimal policy un-
der the expert’s unknown reward.

Policy improvement through demonstrations: What if
the robot determines that its default policy is not within an
acceptable safety level for this particular patient? Ideally, we
could addresses this problem by using the demonstrations
provided by the expert to compute a new policy that has a



higher safety margin than the original policy, as evaluated
using the solution to the policy evaluation problem.

Demonstration sufficiency: If the policy that results from
policy improvement still fails the desired safety criterion,
then the expert can continue to give demonstrations until the
robot’s confidence about its policy’s performance is above
a desired safety level. This motivates an iterative procedure
where the robot repeatedly improves its policy by request-
ing more demonstrations until its policy evaluation reaches
a specified level of safety.

Risk-aware approaches have been proposed and applied
to physical search problems (Brown et al. 2016), planning
in Markov Decision Processes (Chow et al. 2015), and re-
inforcement learning (Tamar, Glassner, and Mannor 2015;
Garcıa and Fernández 2015). Recently, there has been inter-
est in also applying risk-sensitive metrics to imitation learn-
ing (Santara et al. 2017); however, to the best of our knowl-
edge, no one has investigated how to obtain sample-efficient,
risk-aware safety bounds on the performance of a policy un-
der an unknown reward function, as is the case when learn-
ing from demonstrations (Argall et al. 2009). Because the
demonstrator’s reward function is unknown, it may seem
intractable to try and determine safety bounds that require
knowing the expert’s reward. Indeed, the problem of Inverse
Reinforcement Learning is ill-posed—there are an infinite
number of reward functions that produce in the same opti-
mal behavior.

Thus, rather than trying to find a single reward function
that explains the demonstrations, our key insight is to find
a risk-sensitive bound on performance that takes into ac-
count the entire posterior distribution over reward func-
tions, conditioned on the demonstrations. To obtain this
bound we use the α-Value-at-Risk (α-VaR) (Jorion 1997)—
the α-quantile worst outcome—of the difference in expected
return between the robot’s policy and the optimal policy un-
der the expert’s true reward, when both policies are eval-
uated on the demonstrator’s unknown reward function. We
use VaR because it is much more conservative than using the
expected performance of a policy, while not being as hyper-
sensitive as an absolute worst-case bound which will focus
on extreme rewards that may not match the demonstrations.

In the following sections we provide background infor-
mation, make precise our definition of safety, and use this
definition to formally define the three safe learning from
demonstration problems described above. We then describe
a Bayesian sampling approach that uses the Value at Risk
cost metric from finance (Jorion 1997) that we recently pro-
posed as a solution to the policy evaluation problem (Brown
and Niekum 2017). We then build upon our previous work
by providing examples of how the solution to the policy
evaluation problem can be used for policy improvement and
determining how many demonstrations are sufficient to learn
a safe policy through demonstration.

Preliminaries
Markov decision processes
A Markov decision process (MDP) is defined as a tuple
〈S,A, T,R, γ, p0〉 where S is the set of states, A is the set

of actions, T : S×A×S → [0, 1] is the transition function,
R : S → R is the reward function, γ ∈ [0, 1) is the discount
factor, and p0 is the initial state distribution.

A policy π is a mapping from states to a proba-
bility distribution over actions. The value of a policy
π under reward function R is denoted as V π(R) =
Es0∼p0 [

∑∞
t=0 γ

tR(st)|π]. The value of executing policy
π starting at state s ∈ S is recursively defined as
V π(s,R) = R(s)+γ

∑
a∼π(s)

∑
s′∈S T (s, a, s

′)V π(s′, R)

and the value of policy π can be written as V π(R) =∑
s∈S p0(s)V

π(s,R). Given a reward function R, the Q-
value of a state-action pair (s, a) is defined asQπ(s, a,R) =
R(s) + γ

∑
s′∈S T (s, a, s

′)V π(s′, R). We denote the opti-
mal value and Q-value functions as V ∗(R) = maxπ V

π(R)
and Q∗(s, a,R) = maxπ Q

π(s, a,R), respectively.
As is common in the literature (Abbeel and Ng 2004;

Ziebart et al. 2008), we assume that the reward function
can be expressed as a linear combination of features, so
that R(s) = wTφ(s) where w ∈ Rk is the k-dimensional
feature weights. Thus, we can write the value of a policy
as V π(R) = E[

∑∞
t=0 γ

twTφ(st)|π] = wTµ(π), where
µ(π) = E[

∑∞
t=0 γ

tφ(st)|π] are the expected feature counts.
Note that this does not affect the expressiveness of the re-
ward function since φ can be a non-linear function. Given φ,
the reward function is fully specified by the feature weights
w. Thus, we refer to the feature weights w and the reward
function R interchangeably.

Bayesian inverse reinforcement learning
In IRL we are given an MDP without a reward function,
denoted MDP\R. Given a set of demonstrations, D =
{(s1, a1), . . . , (sm, am)}, consisting of state-action pairs,
the IRL problem is to recover the reward function R∗ of the
demonstrator. Because this problem is ill-posed, IRL algo-
rithms use a variety of heuristics and simplifying assump-
tions to find an estimate of R∗ (Gao et al. 2012).

Bayesian IRL (BIRL) (Ramachandran and Amir 2007)
seeks to estimate the posterior over reward functions given
demonstrations, P (R|D) ∝ P (D|R)P (R). BIRL makes
the assumption that the demonstrator is following a softmax
policy, resulting in the likelihood function

P (D|R) =
∏
i

P ((si, ai)|R) =
∏

(s,a)∈D

ecQ
∗(s,a,R)∑

b∈A e
cQ∗(s,b,R)

(1)
where Q∗(s, a,R) is the optimal Q-value function for re-
ward R and c is a parameter representing the confidence in
the demonstrator’s optimality. Equation 1 gives greater like-
lihood to rewards for which the action taken by the expert,
a, has a higher Q-value than the other alternative actions.

Samples from the posterior P (R|D) are obtained through
Markov Chain Monte Carlo (MCMC) sampling. Feature
weights are sampled according to a proposal distribution
and for each sample the MDP is solved to obtain the sam-
ple’s likelihood and determine the transition probabilities
within the Markov chain. An estimate of the expert’s reward
function can be found by averaging the feature weights in



the resulting chain to obtain the mean reward function (Ra-
machandran and Amir 2007) or by using the maximum a
posteriori (MAP) estimate (Choi and Kim 2011). Some of
the advantages of BIRL, compared to many other IRL algo-
rithms are (1) it finds a distribution over likely rewards, (2)
the state-action pairs in D can be partial demonstrations or
even non-contiguous state action pairs, and (3) it allows the
sub-optimality of the demonstrator to be modelled using the
confidence parameter, c.

The choice of the prior allows domain knowledge to be
inserted into the IRL algorithm. Ramachandran et al. (2007)
give several possibilities such as a uniform, Gaussian, or
Beta prior. For the remainder of this paper we assume the
prior is uniform. Evaluating the effects of alternative priors
is left to future work.

Problem definitions
We assume that we are given an MDP\R and samples D =
{(s1, a1), . . . , (sm, am)|(si, ai) ∼ πdemo} of state-action
pairs from a demonstrator’s policy πdemo. We make the com-
mon assumption (Abbeel and Ng 2004; Ramachandran and
Amir 2007) that the demonstrator attempts to maximize to-
tal return under the reward R∗ by executing a possibly sub-
optimal, stationary policy πdemo.

Given any evaluation policy πeval, we would like to find
an upper-bound on the Expected Value Difference (EVD)
(Choi and Kim 2011) of πeval under the unknown reward
R∗, defined as

EVD(πeval, R
∗) = V ∗(R∗)− V πeval(R∗) (2)

where V π(R) = Es0∼p0 [
∑∞
t=0 γ

tR(st)|π] and V ∗(R) =
maxπ Es0∼p0 [

∑∞
t=0 γ

tR(st)|π]. The EVD measures the
difference in expected return between the evaluation policy
πeval and π∗, the policy that is optimal with respect to the
demonstrator’s unknown reward R∗.

However, because IRL is ill-posed there is an infinite fam-
ily of rewards that can induce the optimal policy π∗. Because
an optimal policy is invariant to any non-negative scaling of
the reward function, bounding EVD is also ill-posed, as we
can multiply the feature weights w by any c > 0 to scale
EVD to be anywhere in the range [0,∞). To avoid this scal-
ing issue we assume that ‖w‖1 = 1. Note, that this assump-
tion only eliminates the trivial all-zero reward function as a
potential solution—all other reward functions can be appro-
priately normalized. While setting ‖w‖1 = 1 eliminates the
scaling problem, there can still be infinitely many rewards
that induce any optimal policy.

When learning from demonstration, the main source of
uncertainty is the unknown reward, and corresponding pol-
icy, of the demonstrator. Thus, to obtain a safety bound on
EVD we need to address this uncertainty. As we show in the
following section, one way to bound EVD is to compute a
worst-case bound based on feature counts. However, as we
show in the evaluation section, this type of bound is typically
very loose because it is sensitive to highly unlikely adver-
sarial reward functions. Thus, rather than focusing on abso-
lute worst-case, we focus on computing probabilistic upper
bounds on the α-worst-case EVD.

The α-worst-case value of a random variable is often re-
ferred to as the α-Value at Risk. We use the notation of
Tamar et al. (Tamar, Glassner, and Mannor 2015) and for-
mally define the α-Value-at-Risk of a random variable Z as

να(Z) = F−1Z (α) = inf{z : FZ(z) ≥ α} (3)

where α ∈ (0, 1) is the quantile level and FZ(z) = Pr(Z ≤
z) is the cumulative distribution function of random variable
Z.

We can now formally state the three safety problems pre-
sented in the introduction:

High-confidence policy evaluation for LfD Given an
MDP\R, an evaluation policy πeval, and a set of demon-
strations D, find a (1 − δ) confidence bound on
να(EVD(πeval, R

∗)), where R∗ is the demonstrator’s unob-
served reward function.

High-confidence policy improvement for LfD Given an
MDP\R, a baseline policy π, and a set of demonstrations
D, find a new policy π′ such that with (1 − δ) confidence
να(EVD(π′, R∗)) ≤ να(EVD(π,R∗)), where R∗ is the
demonstrator’s unobserved reward function.

High-confidence demonstration sufficiency for LfD
Given an MDP\R, a learned policy π, a set of demonstra-
tions D, and a safety margin ε, solve the decision problem:
Is Pr

(
να
(
EVD(π,R∗)

)
< ε

)
≥ (1 − δ), where R∗ is the

demonstrator’s unobserved reward function?

Note that α defines the sensitivity to worst-case outliers,
while (1 − δ) represents our confidence in our estimate of
the α-VaR. Thus, while (1 − δ) is typically always high,
e.g. 0.95, α can take on a range of values depending on the
desired risk-sensitivity.

High Confidence Policy Evaluation
The remainder of the paper is concerned with finding and
evaluating solutions to the three LfD safety problems de-
scribed above. We first focus on the high-confidence pol-
icy evaluation problem. In this section we derive a simple
worst-case bound based on feature counts that we use as a
baseline. We then present a solution to the high-confidence
policy evaluation problem based on Bayesian sampling to
estimate the α-VaR.

Worst-case feature count bound
This baseline is a direct extension of the the idea of using
expected feature counts (Abbeel and Ng 2004) to bound the
expected value difference of any evaluation policy. As a re-
minder, we use the notation µ(π) = E[

∑∞
t=0 γ

tφ(st)|π] to
represent the expected feature counts of policy π.

Given any evaluation policy πeval, Abbeel and Ng
(Abbeel and Ng 2004) showed that if we assume φ(s) : S →
[0, 1]k, ‖w‖1 ≤ 1, and know the demonstrator’s expected
feature counts µ∗ = µ(πdemo), then ‖µ∗ − µ(πeval)‖2 ≤ ε
implies that V πdemo(R)−V πeval(R) = wT (µ∗−µ(πeval)) ≤
ε for any reward function R(s) = wTφ(s). If πdemo is op-
timal, then wT (µ∗ − µ(πeval)) = EVD(πeval, R

∗) ≤ ε so



‖µ∗−µ(πeval)‖2 gives an upper bound on EVD(πeval, R
∗).

Furthermore, the worst-case feature count bound is the ob-
jective value of the following maximization problem

maxw wT (µ∗ − µ(πeval)) (4)
subject to ‖w‖1 = 1. (5)

This is simply an optimal resource allocation problem and
the solution is to put all of our budget for w on the feature
with maximal feature count difference, giving the solution
‖µ∗ − µ(πeval)‖∞.

Note that in practice we do not know µ∗, but we can use
demonstrated trajectories to estimate of the demonstrator’s
expected feature counts as

µ̂∗ =
1

|D|

|D|∑
i=1

∞∑
t=0

γtφ(s
(i)
t ), (6)

where i indexes over the trajectories and t over the state se-
quence contained in each demonstrated trajectory. Thus, the
empirical worst-case feature count bound can be stated as

WFCB(πeval, D) = ‖µ̂∗ − µ(πeval)‖∞. (7)

Note that for this bound to be a guaranteed upper bound
on EVD(πeval, R

∗), πdemo must be optimal and the empiri-
cal estimate of the expert’s feature counts µ̂∗ needs to con-
verge to µ∗, which theoretically requires a large number of
demonstrations (Abbeel and Ng 2004). Other important lim-
itations of this bound are that it requires complete trajecto-
ries to accurately calculate expected feature counts and it
does not explicitly use information about the transition dy-
namics of the problem or what actions were taken by the
expert in which states. Finally, we note that this bound does
not take into account the actual likelihood of the worst-case
reward function.

Value at Risk Bound
The worst-case feature count bound described in the previ-
ous section only requires sampled trajectories from the ex-
pert, but completely ignores both the structure of the prob-
lem and the likelihood of the worst-case reward function.
This results in a worst-case bound that may be too loose
to use in practice. Our proposed approach is to obtain a
high-confidence probabilistic worst-case bound that uses the
structure of the problem and the information in the demon-
strations.

We propose a probabilistic confidence bound on the α-
Value at Risk for EVD(πeval, R

∗). Given an MDP\R and a
set of state-action pairs D = {(s1, a1), . . . , (sm, am)}, we
wish to estimate the Value at Risk of an evaluation policy
πeval where the α-VaR, denote by να is defined as in Equa-
tion (3).

To bound the α-quantile worst-case EVD(πeval, R
∗) we

use samples from the posterior P (R|D). Thus, we seek
to calculate να(Z) where Z = EVD(πeval, R) for R ∼
P (R|D). We note that using the EVD rather than a stan-
dard feature count bound, as discussed in the previous sec-
tion, is desirable for two main reasons. The first reason is
that it works well with partial, noisy demonstrations. This

is because EVD compares the evaluation policy against the
optimal policy for reward R, not the actual states visited by
the potentially sub-optimal demonstrator. Second, the EVD
explicitly takes into account the full initial state distribu-
tion. Thus, EVD measures the generalizability error of an
evaluation policy by evaluating the expected return over all
states with support under p0, even if demonstrations have
only been sampled from a small number of possible initial
states.

Thus, computing the α-VaR of EVD(πeval, R) for R ∼
P (R|D) gives us an α-worst-case difference in expected re-
turn between an evaluation policy and the optimal policy
for the demonstrators unknown reward function. This gives
us a risk-sensitive bound that takes into account uncertainty
over reward functions, while also using the structure of the
MDP\R to focus on reward functions that are likely given
the demonstration.

As motivated previously, we assume ‖w‖1 = 1 to alle-
viate some of the ill-posedness of the IRL problem and so
we can reason over a fixed domain of weights. Thus, to find
P (R|D) we use a modified version of the BIRL Policy Walk
Algorithm (Ramachandran and Amir 2007) that ensures that
our proposal samples of w during MCMC stay on the L1-
norm unit ball. Details of this algorithm can be found in
(Brown and Niekum 2017). Using MCMC, we generate a
sequence of sampled rewards R = {R : R ∼ P (R|D)}
from the posterior distribution over true reward functions
given the demonstrations. For each sample Ri ∈ R we then
calculate

Zi = EVD(πeval, Ri) = V ∗(Ri)− V πeval(Ri) (8)

giving us a sample from the posterior distribution over ex-
pected value differences.

To obtain a point estimate of α-VaR we can sort the re-
sulting samples of Z in ascending order to obtain the or-
der statistics Y , and then take the α-quantile. However,
this does not take into account the number of samples or
our confidence in this point estimate. Instead of using a
point estimate, we compute a single-sided (1 − δ) confi-
dence bound on the α-VaR. Given a sample Zi, we have
that P (Zi < να(Z)) = α. Thus, given N samples and any
order statistic Yj , we can use the normal approximation of
the binomial distribution to obtain

P (να(Z) ≤ Yj) =

j∑
i=1

(
N

i

)
αi(1− α)N−i (9)

≈ FN

(
j +

1

2
| Nα,Nα(1− α)

)
.

where FZ is the CDF of the normal distribution with µ =
Nα and σ2 = Nα(1 − α) and 1/2 is added to the index
j as a continuity correction (Hollander and Wolfe 1999). To
obtain the index k of the order statistic such that P (να(Z) ≤
Yk) ≥ (1− δ) we invert the second line of Equation 9 using
the inverse of the standard normal CDF, F−1N to get k =

dNα + F−1N (1 − δ)
√
Nα(1− α) − 1

2e. Our full approach
is summarized in Algorithm 1. We again note that α defines
the sensitivity to worst-case outliers, while (1−δ) represents
our confidence in our estimate of the α-VaR.



Algorithm 1 (1 − δ) Confidence Bound on the α-Value-at-
Risk

1: input: MDP\R, πeval, D, α, δ
2: R ← BIRL(MDP\R, D) . sample from posterior

using L1-unit norm walk
3: for Ri ∈ R do
4: Zi = V ∗(Ri)− V πeval(Ri)) . compute sample

EVD
5: Y = sort(Z) . sort into ascending order statistics
6: k = dNα+ F−1N (1− δ)

√
Nα(1− α)− 1

2e . index of
(1− δ) confidence bound on α-VaR

7: return Yk

Algorithm 2 Generic hill climbing approach to policy im-
provement

1: input: MDP\R, πeval, D, α, δ, numSteps
2: while True do
3: foundImprovement← False
4: bestBound←∞
5: for i = 1:numSteps do
6: π̃ ← GenerateNewPolicy(π)
7: if Algorithm 1(π̃) < Algorithm 1(π) then
8: foundImprovement← True
9: if Algorithm 1(π̃) < bestBound then

10: bestBound← Algorithm 1(π̃)
11: πbest ← π̃

12: if not foundImprovement then
13: break
14: π ← πbest
15: return π

Our approach introduces error by using a normal approx-
imation; however, this error goes to zero as the number of
samples increases. By the Berry-Esseen theorem (van Beek
1972), the error in the normal approximation is bounded
above by 0.7655/

√
Nα(1− α). Our approximation also re-

lies on the assumption of independent samples. To amelio-
rate the auto-correlation in our samples obtained through
MCMC, we use a skip-interval so that our bound only uses
every jth sample.

The main advantages of our approach are as follows: (1)
our proposed bound takes full advantage of all of the infor-
mation contained in the transition dynamics and demonstra-
tions, (2) it does not require optimal demonstrations, (4) it
inherits from BIRL the ability to work with partial demon-
strations, even disjoint state-action pairs, and (5) it allows
for domain knowledge in the form of a prior.

High-confidence policy improvement
We now address the problem of how to improve an existing
policy. Algorithm 1 gives us a way to compare policies based
on their α worst-case expected value difference. Thus, one
straightforward algorithm is to perform hill-climbing on the
policy parameters π, using Algorithm 1 as a subroutine. This
approach is presented in Algorithm 2.

We note that the GenerateNewPolicy subroutine could be

Algorithm 3 Online high-confidence demonstration suffi-
ciency

1: input: MDP\R, πeval, α, δ, ε, maxDemos
2: D ← {d1} . start with initial demonstration
3: if Algorithm 1(π, D) < ε then
4: return True
5: numDemos← 1
6: while numDemos < maxDemos do
7: D ← D ∪ dnew . get new demonstration
8: numDemos = numDemos + 1
9: if Algorithm 1(π,D)< ε then

10: return True
11: return False

as simple as randomly perturbing the policy. More complex
policy adaptation schemes such as finite difference meth-
ods or black-box optimization techniques (e.g. CMA-ES
(Hansen 2006)) could also be used to approximate the gra-
dient of the α-VaR with respect to the policy π.

High-confidence demonstration sufficiency
Given a working algorithm that can solve the Policy Evalua-
tion problem, a robot can now iterative request for additional
demonstrations until it’s worst-case estimate of its expected
value difference is within some allowable safety tolerance
level. Algorithm 3 contains pseudo-code that uses Algo-
rithm 1 as a subroutine to solve the high-confidence demon-
stration sufficiency problem in an online manner, where
demonstrations come one-at-a-time and the job of the robot
is to signal when it has received enough demonstrations to
satisfy the safety margin ε, provided by the human, or to re-
port failure to reach the desired safety threshold after some
maximum number of demonstrations.

Empirical results
High confidence policy evaluation
For an upper bound on the expected value difference to be
useful, it needs to meet several criteria: (1) the upper bound
should be accurate with high-confidence (rarely underesti-
mating the true expected value difference), (2) the bound
should be tight with respect to the true expected value dif-
ference, and (3) the previous two criteria should be true even
when given a small number of demonstrations. We use a
standard grid world navigation benchmark (Abbeel and Ng
2004; Ramachandran and Amir 2007; Choi and Kim 2011)
to validate that our proposed VaR Bound satisfies these crite-
ria. We compare our high-confidence α-VaR bound with the
worst-case feature count bound (WFCB) defined in Equa-
tion 7. All results for α-VaR bounds are reported as 95%
confidence bounds (δ = 0.05). We examine the affects of
both optimal and sub-optimal demonstrations, as well as the
sensitivity of our approach to the confidence parameter c and
choice of evaluation policy, πeval.

Grid world navigation task We empirically evaluate our
approach on a standard navigation task on an N × N grid
world. The actions are up, down, left and right. Transitions



are noisy with an 70% chance of moving in the desired di-
rection and 30% chance of going in one of the directions per-
pendicular to the chosen direction. Each state s has a feature
vector φ(s) of length F associated with it that determines
the terrain type. The cost of traveling on different terrains is
unknown and must be inferred from demonstrations.

To show that our results are not an artifact of a specific
reward function or specific feature structure, we evaluate the
performance bounds over many random grid worlds each
with a randomly chosen ground truth reward. We use a 9x9
grid world navigation task with 8 one-hot binary features.
We assume an initial state distribution p0 that is uniform
over 9 different states spread across the grid. When gener-
ating M demonstrations we select M states in the support
of p0, without replacement, and give a rollout from each
selected initial state. When measuring accuracy and bound
errors, we compare with the true expected value difference
over the full initial state distribution. We used γ = 0.9 and
used MCMC to generate 10,000 samples, after which we ap-
plied a burn-in of 100 and skip-interval of 20.

Infinite horizon grid navigation Our first task is an in-
finite horizon grid world navigation task with no terminal
states (results for grid worlds with terminals states were very
similar). To evaluate different bounding methods we gener-
ated 200 random 9x9 worlds with random features each grid
cell. For each world we generated a random feature weight
vector w such that ‖w‖1 = 1. To generate the demonstra-
tions we solve the MDP using the generated ground truth
reward to find the optimal policy. We give trajectories of
length 100 for each demonstrations. We set the evaluation
policy to be the optimal policy under the MAP reward func-
tion found using BIRL. Because the demonstrations are per-
fect, we set the BIRL confidence parameter to a large value
(c = 100). While not the focus of our current work, in the
future we believe c could also be automatically set from the
demonstrations (Zheng, Liu, and Ni 2014).

Figure 1(a) shows the accuracy of each bound where
WFCB is the worst-case feature count bound, and VaR X is
the X/100 quantile Value at Risk bound. The accuracy is cal-
culated by counting the number of times the proposed upper
bound is above the ground truth expected value difference
divided by the total number of feasible rewards that were
tested. Over 200 trials, the WFCB always gives an upper
bound on the true performance difference between the opti-
mal policy and the evaluation policy. The bounds on α-VaR
are also highly accurate.

Because always predicting a high upper bound will re-
sult in high accuracy, we also measured the tightness of the
the upper bounds. Figure 1(b) shows the average bound er-
ror over the 200 random navigation tasks. We measure the
bound error as the difference between the upper bound and
the ground truth EVD so the error for a bound b is given as

error(b) = b− EVD(πeval, R
∗) (10)

where R∗ is the generated ground truth reward. We see that
the bounds on the α-VaR are much tighter than the worst-
case feature count bound, converging after only a small num-
ber of demonstrations.

(a) Accuracy

(b) Average Bound Error

Figure 1: Results for noisy grid navigation task with no ter-
minal states. Accuracy and average error for bounds based
on feature counts (WFCB) compared with 99, 95, and 90
percentiles for the VaR bound. Accuracy and averages are
computed over 200 replicates

Noisy demonstrations In real-world learning from
demonstration tasks, it can be assumed that demonstrations
given by a human will be noisy. As mentioned in Section ,
BIRL uses a confidence parameter, c, that represents the
optimality of the demonstrations. When c = 0, the demon-
strations are assumed to come from a completely random
policy, and c = ∞ means that the demonstrations come
from a perfectly optimal policy. Prior work used values of
c between 25 and 500 when demonstrations are generated
from an expert policy (Lopes, Melo, and Montesano 2009;
Michini and How 2012). To investigate the effect of c on
our results we generated demonstrations where at each
demonstrated state there is an 80% chance of taking an
optimal action and a 20% chance of taking a random action.
The resulting accuracy and bound error for several choices
of c are shown in Figure 2.

Adjusting c for noisy demonstrations has a clear affect
on the accuracy and bound error. The bound error (Equa-
tion 10) decreases as c increases, meaning the bounds be-
come tighter; however, when c = 50 the VaR bounds often
underestimate the true expected value difference between
the experts policy and the evaluation policy, resulting in
negative value of Equation 10 and lower accuracy. We see
that values of c in the range (1, 10] result in highly accu-



(a) Accuracy

(b) Average Bound Error

Figure 2: Sensitivity to the confidence c for noisy demon-
strations in the grid navigation task. Accuracy and average
error for bounds based on feature counts (WFCB) compared
with 0.95-VaR bound. Accuracy and averages are computed
over 200 replicates

racy bounds that are tighter than the worst-case feature count
bound. However, for c = 50, we see that BIRL overfits to the
noise in the demonstrations by assuming that the demonstra-
tions are optimal.

High-confidence Policy Improvement

To highlight the potential of safe policy improvement, we
consider the simple navigation task shown in Figure 3. The
task has a single terminal in the center and two reward fea-
tures (white and red). The robot is given a single demonstra-
tion from one starting state and must generalize this demon-
stration to a second starting state (both marked with circles).

We implemented the hill climbing algorithm detailed
above. To generate a new policy for each step we examined
the impact on the VaR of changing one state action pair in
the policy and chose the change that resulted in the largest
decrease in VaR for each iteration. The resulting improved
policy minimizes the VaR by avoiding the red squares en-
tirely, whereas the maximum likelihood policy finds a less
conservative policy that is more likely given the demonstra-
tion, but results in a higher potential risk.

MDP\R Demo Min VaR policy MLE policy

Figure 3: Given one demonstration, optimizing the VaR
bound results in a safety policy that hedges against the red
cells being much worse than the white. The maximum likeli-
hood policy, simply learns that red is marginally worse than
white and may result in an unsafe policy, depending on the
true reward.

High-Confidence Demonstration Sufficiency
In this section we present an example that high-lights the
advantages of using our VaR confidence bounds compared
with the worst-case feature count bound. Figure 4 (a) shows
a simple MDP\R with three features (denoted by white,
blue, red, and green), one terminal state (green), and a uni-
form starting state distribution across the cells marked with
a circle. Three demonstrations are given in the order shown.
The goal of this experiment is to see when each method de-
termines that demonstration sufficiency has been reached.

For this experiment we used the optimal policy for the
MAP reward obtained by BIRL for our evaluation policy.
The ground truth reward (unknown to the algorithms) was
set to be a reward of +0.5 for reaching the green terminal
state and -0.5 for stepping in the red states, and 0 reward
everywhere else. The discount was γ = 0.95. Figure 4 (b)
shows the resulting upper bounds averaged over 20 repli-
cates of MCMC. We found that all VaR bounds were less
than 0.0074 after two demonstrations. The WFCB requires
three demonstrations to be confident that the learned pol-
icy is close to the optimal policy under the unknown reward
function. On the other hand, the VaR methods are able to uti-
lize knowledge of the MDP\R that the feature count bound
does not use. This allows these methods to recognize that
once the second demonstration is given, obtaining a third
demonstration adds no information about the reward.

Related work
Many different methods exist for performing learning from
demonstration through inverse reinforcement learning (Ar-
gall et al. 2009; Gao et al. 2012). However, few of them
give any kind of sample efficient guarantees on performance.
Abbeel and Ng (Abbeel and Ng 2004) give probabilistic
Hoeffding-style bounds on how many demonstrations will
be required to get within epsilon of the optimal policy. How-
ever, their bounds are too loose to be useful in practice and
are customized for their specific IRL algorithm—we ran a
brief comparison with our method and found that our bounds
were three orders of magnitude more efficient in the num-
ber of demonstrations required. To our knowledge, we pro-
vide the first high-confidence performance bounds designed
to work with any given evaluation policy.

Safety has been extensively studied within the reinforce-
ment learning community (see Garcia et al. for a survey
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(a)

(b)

Figure 4: (a) Shows an example MDP\R with green terminal
state and starting states marked with circles. Three demon-
strations are given in the order shown. (b) Shows the av-
erage EVD bound as number of demonstrations increases
from one to three. Demonstration sufficiency is recognized
after two demonstrations using the VaR bound over the re-
ward posterior. The worst-case feature count bound does not
converge until demonstrations are received from all initial
states. Averages are computed over 20 replicates

(Garcıa and Fernández 2015)). These approaches typically
either focus on safe explorationor optimize an objective
other than expected long-term reward. Recently, alterna-
tive objectives based on financial measures of risk such
as VaR and Conditional VaR have been shown to pro-
vide tractable and useful risk-sensitive measures of per-
formance for MDPs (Tamar, Glassner, and Mannor 2015;
Chow et al. 2015). Santara et al. (2017) propose an algo-
rithm to minimize conditional VaR for generative adversarial
imitation learning, but do not provide bounds on the safety
of the learned policy. Our work builds and extends previous
work by showing how VaR can be applied to inverse rein-
forcement learning to enable high-confidence performance
bounds.

Additional work on safety in reinforcement learning
has focused on obtaining high-confidence bounds on the
performance of a policy before that policy is deployed
(Thomas, Theocharous, and Ghavamzadeh 2015b) as well as
methods for high-confidence policy improvement (Thomas,
Theocharous, and Ghavamzadeh 2015a). Unlike previous
work on off-policy evaluation, we provide bounds on perfor-
mance loss that are applicable when learning from demon-
strations, i.e., when the rewards are not observed.

Conclusions and Future Work
In this work we have formalized and addressed the prob-
lem of high-confidence performance evaluation, when the
reward function is unknown. Using this definition of safety,
we then proposed three different safety problems for learn-
ing from demonstration. We then presented algorithms for
solving these three problems.

Our empirical results show that our proposed VaR bound
is a significant improvement over a baseline based on feature
counts, and that it provides accurate, tight bounds even for
small numbers of noisy demonstrations. Because our bound
is based on Bayesian IRL, our method is designed to work
with partial demonstrations and allows insertion of domain
knowledge as a prior over reward functions. We believe that
these attributes make our work an ideal starting point for
developing practical safety bounds for real LfD.

Our key insight is to find a risk-sensitive bound on perfor-
mance that takes into account the entire posterior distribu-
tion over reward functions, conditioned on the demonstra-
tions. While our proposed methodology was implemented
using the Value-at-Risk and the expected value difference,
we believe it can easily be extended to other risk metrics.

One of the main drawbacks of our proposed VaR bound
is that it requires solving an MDP at every step. Future
work should investigate whether IRL methods based on pol-
icy gradients (Pirotta and Restelli 2016; Ho, Gupta, and Er-
mon 2016) or other IRL algorithms that do not require re-
peatedly solving an MDP can be used to sample from the
reward posterior. Investigating how model-free and model-
based reinforcement learning algorithms can be inserted into
our framework is another area of future work. Finally, our
method relies on an appropriate confidence parameter c,
which determines how much we trust the demonstrations.
Recent work has used EM to learn this parameter from a
large number of demonstrations from policies with vary-
ing amounts of noise (Zheng, Liu, and Ni 2014). Future
work should investigate whether this parameter can be tuned
through simple human-robot interactions.

Other related questions pertain to the choice of prior and
likelihood. We used a uniform prior for our experiments.
This prior was chosen to be the least biased towards any
one particular reward as we hope to explore as many fea-
sible rewards as possible to find a valid bound. Note that if
you know anything a priori about the reward structure of
the task, the prior provides and opportunity to inject that
knowledge and would result in a better bound than using
uniform. Determining which priors are best suited for the
types of safety bounds we propose is an open question. Simi-
larly, our results rely on the BIRL likelihood which is formu-
lated as a softmax distribution over actions. We have noticed
that this likelihood typically favors shaped rewards. Find-
ing a likelihood that gives near equal weight to all rewards
that give the same optimal policy would allow MCMC to
sample a wider range of candidate reward functions could
improve our results for problems where the true reward is
sparse. Finally, running actual human subject experiments to
determine what likelihood functions actually match human
demonstrations is another interesting area for future work.
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man, J.; and Mané, D. 2016. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469–483.
Brown, D. S., and Niekum, S. 2017. Efficient Probabilistic
Performance Bounds for Inverse Reinforcement Learning.
ArXiv e-prints.
Brown, D. S.; Hudack, J.; Gemelli, N.; and Banerjee, B.
2016. Exact and heuristic algorithms for risk-aware stochas-
tic physical search. Computational Intelligence.
Choi, J., and Kim, K.-E. 2011. Map inference for bayesian
inverse reinforcement learning. In Advances in Neural In-
formation Processing Systems, 1989–1997.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015.
Risk-sensitive and robust decision-making: a cvar optimiza-
tion approach. In Advances in Neural Information Process-
ing Systems, 1522–1530.
Gao, Y.; Peters, J.; Tsourdos, A.; Zhifei, S.; and Meng Joo,
E. 2012. A survey of inverse reinforcement learning tech-
niques. International Journal of Intelligent Computing and
Cybernetics 5(3):293–311.
Garcıa, J., and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. Journal of Machine Learn-
ing Research 16(1):1437–1480.
Hansen, N. 2006. The cma evolution strategy: a comparing
review. Towards a new evolutionary computation 75–102.
Ho, J.; Gupta, J.; and Ermon, S. 2016. Model-free imitation
learning with policy optimization. In International Confer-
ence on Machine Learning, 2760–2769.
Hollander, M., and Wolfe, D. A. 1999. Nonparametric Sta-
tistical Methods: By Myles Hollander, Douglas A. Wolfe. J.
Wiley.
Jorion, P. 1997. Value at risk. McGraw-Hill, New York.
Lopes, M.; Melo, F.; and Montesano, L. 2009. Active learn-
ing for reward estimation in inverse reinforcement learning.
In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 31–46. Springer.
Michini, B., and How, J. P. 2012. Improving the efficiency
of bayesian inverse reinforcement learning. In Robotics and
Automation (ICRA), 2012 IEEE International Conference
on, 3651–3656. IEEE.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, 663–670.
Pirotta, M., and Restelli, M. 2016. Inverse reinforcement
learning through policy gradient minimization. In AAAI,
1993–1999.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. Urbana 51(61801):1–4.

Santara, A.; Naik, A.; Ravindran, B.; Das, D.; Mudigere, D.;
Avancha, S.; and Kaul, B. 2017. Rail: Risk-averse imitation
learning. arXiv preprint arXiv:1707.06658.
Tamar, A.; Glassner, Y.; and Mannor, S. 2015. Optimiz-
ing the cvar via sampling. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2993–
2999. AAAI Press.
Thomas, P.; Theocharous, G.; and Ghavamzadeh, M. 2015a.
High confidence policy improvement. In Proceedings of
the 32nd International Conference on Machine Learning
(ICML-15), 2380–2388.
Thomas, P. S.; Theocharous, G.; and Ghavamzadeh, M.
2015b. High-confidence off-policy evaluation. In AAAI,
3000–3006.
van Beek, P. 1972. An application of fourier methods
to the problem of sharpening the berry-esseen inequality.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte
Gebiete 23(3):187–196.
Zheng, J.; Liu, S.; and Ni, L. M. 2014. Robust bayesian
inverse reinforcement learning with sparse behavior noise.
In AAAI, 2198–2205.
Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433–1438.


