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Abstract

We consider the problem of inferring constraints from demonstrations from a
Bayesian perspective. We propose Bayesian Inverse Constraint Reinforcement
Learning (BICRL), a novel approach that infers a probability distribution over con-
straints from demonstrated trajectories. The main advantages of BICRL, compared
to prior constraint inference algorithms, are (1) the freedom to infer constraints
from partial trajectories and even from disjoint state-action pairs, (2) the ability
to learn constraints from suboptimal demonstrations and to learn constraints in
stochastic environments, and (3) the opportunity to estimate a posterior distribution
over constraints that enables active learning and robust policy optimization.

1 Introduction

Manually specifying the reward function in an environment to encourage an agent to perform a
specific task is a nontrivial process. To alleviate this issue Inverse Reinforcement Learning (IRL)
aims at inferring a reward function by observing the actions of an expert agent performing a specified
task [14]. A number of different IRL approaches infer non-degenerate reward functions from a finite
set of expert trajectories [1, 10, 13, 19]. However, in many cases it may not be necessary to infer the
entire reward function. For example, in safety critical applications such as robotic surgery [9] and
autonomous driving [17], the basic goal of a task may be known (e.g. move the robot end-effector to
a particular position or minimize energy usage), but there may be user specific constraints that are
unknown (e.g. proximity to people or other objects). In these cases, we desire algorithms that can
infer unknown constraints by observing demonstrations in an environment with a known nominal
reward function.

Most prior work has considered constraint learning from demonstrations in a maximum likelihood
setting, without considering or utilizing a representation of uncertainty with respect to constraint
location. In [6] the authors reason that trajectories that result in higher reward than the demonstrated
ones must be associated with constraints. Based on the same notion [15] propose a greedy method
to add constraints in a MDP so that the resulting trajectories are more likely under that choice of
constraint allocation. Finally, [2] extend the aforementioned method to continuous state-action spaces
with unknown transition models. By contrast, we infer a fulll Bayesian posterior distribution over con-
straints. Maintaining a belief distribution over the location and likelihood of constraints is important
for many downstream tasks such as active query synthesis [16], Bayesian robust optimization [3, 8],
and safe exploration [7]. Park et al. [11] use Bayesian non-parametrics to estimate a sequence of
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subgoals and corresponding constraints from demonstrations; however, they only obtain the MAP
solution and assume the demonstrator never violates constraints. By contrast, we seek to leverage
the posterior distribution for active learning and consider demonstrators that are imperfect and may
sometimes accidentally violate constraints.

In this work we argue that a Bayesian perspective on the constraint inference problem has a number
of advantages over approaches that are solely based on maximum likelihood estimation. Bayesian
methods usually do not require full expert trajectory demonstrations, as opposed to the maximum
likelihood counterparts [15], which can reduce the data complexity of the problem. This fact can
also be utilized in active learning settings in which the agent can query the expert for specific expert
actions or partial demonstrations, without requiring full trajectories. Furthermore, the posterior
distribution of the constraint configuration can be used to design policies that satisfy certain safety
criteria, as agents can now utilize this information to keep for instance a distance from areas where
the existence of constraints is highly uncertain. Finally, our Bayesian method is not restricted to work
only with optimal expert demonstrations as it allows for suboptimal demonstrations and occasional
constraint violations by the expert.

2 Bayesian Constraint Inference

2.1 Preliminaries

Constrained Reinforcement Learning (CRL) is generally studied in the context of Constrained Markov
Decision Processes (CMDP). A CMDP Mc is a tuple (S,A, P,R,C, γ), where S denotes the discrete
state space of size n and A the action space. We will denote the transition probability P : S×A→ S
from a state s following action a with P (s′|s, a). We denote withR : S×A→ R the reward function,
with C the set of constraints and with γ ∈ (0, 1) the discount factor. The constraint set C ∈ {0, 1}n
is modeled as an n-ary binary product where C[i] = 1 means that the state i, i ∈ {1, . . . , n} is a
constraint state, with n being the number of states. Further, we use the indicator function Ic to denote
membership over the constraint set.

The CRL objective can be written as follows, where we assume that the environment makes transitions
between states according to P .

max
π

Ea∼π

[
T∑
t=1

γtR(s, a)

]
s.t. Ea∼π

[
T∑
t=1

Ic(s, a)

]
= 0. (1)

One way to solve Eq. (1) is by formulating the Lagrangian of the optimization problem:

L(π, rp) = Ea∼π

[
T∑
t=1

γtR(s, a)

]
+ rp

(
Ea∼π

[
T∑
t=1

Ic(s, a)

])
, (2)

where rp ∈ (−∞, 0] denotes the Lagrange multiplier. Intuitively, rp denotes the penalty an agent has
to incur in terms of reward in order to violate a constraint. Prior work [12] shows that the problem
has zero duality gap and hence the solutions of the aforementioned two problems are equivalent.

2.2 Problem Statement

Bayesian Constraint Inference (BCI) denotes the problem of inferring a distribution over possible
constraint sets given Mc \ C and a set of demonstrations. We will denote the expert demonstrations
with D, where D = {(s1, a1), . . .} and each individual trajectory with ξ. Further, as opposed to prior
works [2, 15], we leverage the fact that problems (1) and (2) are equivalent and hence we solve for
the inverse problem using (2). This novel perspective has multiple benefits: (1) it does not require
making any modifications to the model of the environment (as done in [15]), (2) it allows for learning
the expert’s risk tolerance level through learning of rp and (3) this in turn allows use of standard, and
more stable, RL algorithms to solve for the CMDP in the place of CRL algorithms, which are often
difficult to tune [2].

In our formulation an agent can take an action that leads to a constraint state in which case the agent
incurs a reward penalty of rp < 0, which is incorporated in the reward function. With this modified
reward function we can use a MDP solver and obtain an optimal policy for any choice of constraint
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configuration and reward penalty. Borrowing from the classic Bayesian IRL (BIRL) framework
[13] we propose a modification of the Grid Walk algorithm [18] to jointly perform MCMC over the
constraint set C and the constraint penalty rp, as detailed in the next section.

2.3 Bayesian Constraint Inference Algorithm

The basic concept behind our Bayesian approach follows the approach proposed in [13] and can be
summarized in the following steps: (1) sample a candidate solution, in this case a candidate constraint
allocation and a constraint penalty, from the neighborhood of the current solution; (2) compare the
likelihood functions of the expert demonstrations under this proposal and the original solution; and
(3) probabilistically accept the candidate solution based on the likelihood of the proposal compared
to the likelihood of the current solution. In our paper we iteratively sample different constraint
configurations and penalty rewards at each step, allowing us to sample from the posterior distribution
over likely constraints given demonstrations. At each iteration we choose whether to sample a
candidate constraint or reward penalty. When sampling constraints we select a random index i from
{1, . . . , n} and only change the constraint status of state i: C ′[i] = ¬C[i], C ′[j] = C[j],∀j 6= i.
For the reward penalty, rp we sample using a Gaussian proposal distribution. The detailed process
can be seen in Algorithm 1.

We compute the likelihood of a sample by assuming a Boltzmann-type choice model [19]. Under this
model the likelihood of a trajectory ξ of length m is given by

L(C, rp) := P (ξ|C, rp) =
m∏
i=1

eβQ(si,ai)

Zi
, (3)

where Zi is the partition function and β ∈ [0,∞) is the inverse of the temperature parameter.
Assuming a prior distribution over constraints and penalty rewards P (C, rp) the posterior distribution
is given by

P (C, rp|ξ) =
P (ξ|C, rp)P (C, rp)

P (ξ)
. (4)

The normalizing constant can be neglected as it does not affect the comparison of the likelihoods
between alternative constraint allocations and reward choices. We choose an uninformative prior for
our experiments, but plan to incorporate informative priors into future work.

We denote a MDP with constraint setC and penalty reward rp withMC,rp for conciseness. Essentially
the algorithm alternates between sampling constraint sets and penalty rewards. When sampling
constraints the algorithm randomly selects a single state and switches that state from “no constraint"
to “constraint" or vice versa (if the state was already a constraint). We found that sampling each
time new constraints for all the states was too noisy and led to poor performance. On the other hand
the sampling of penalty rewards takes place by injecting random normal noise of variance σ2 to the
proposals. For each of these samples the log-likelihood of the new configuration is computed and
compared with the log-likelihood of the existing configuration. The Q-values used in the likelihood
functions are computed by running value iteration on the MDP. If the new choice of variables is more
likely then it is accepted by the algorithm. We further allow for randomly accepting proposals even if
they are not associated with higher log-likelihood to enhance exploration. The initialization of both
the constraint set and the penalty reward is done randomly.

2.4 Active Constraint Learning

One of the benefits of using a Bayesian approach to infer constraints is the quantification of the
uncertainty in that estimation. Safety critical applications require safety guarantees during the
deployment of an agent. We examine the utility of a simple active learning acquisition function which
is based on the variance of the constraint estimates. We propose an active learning method in which
the agent can query the expert MQ times for MD specific state demonstrations associated with high
uncertainty in the current estimation. The outline of this process is summarized in Algorithm 2.

At every iteration of the active learning algorithm the BIRLC Algorithm is called to provide a new
estimate of the constraint allocation. To expedite the process we initialize the constraint allocation in
BIRLC using a warm start. More specifically, after the first iteration, each of the subsequent calls
to BIRLC uses the MAP solution of the previous iteration as the constraint allocation and penalty
reward initialization.
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Algorithm 1 BICRL

1: Parameters: Number of iterations M , noise standard deviation σ
2: Randomly sample constraint vector C ∈ {0, 1}N
3: Randomly sample reward penalty rp ∈ R
4: Compute Qπ(s, a,R,C, rp) on MC,rp
5: for i = 1, . . . ,M do
6: if sample constraints then
7: Randomly sample state i from {1, . . . , N}
8: Set C′[i] = ¬C[i], r′p = rp
9: else

10: Set r′p = rp +N (0, σ), C′ = C

11: Compute Qπ(s, a,R,C′, r′p) on MC′,r′p

12: if logL(C′, r′p) ≥ logL(C, rp) then
13: Set C = C′, rp = r′p
14: else
15: Set C = C′, rp = r′p w.p. L(C′, r′p)/L(C, rp)
16: Return C, rp

Algorithm 2 Active Constraint Learning

1: Parameters: Number of iterations MQ and of expert demonstrations MD

2: for i = 1, . . . ,MQ do
3: Run BICRL and compute var(C[i]), ∀ i
4: Select state i∗ = argmaxi var(C[i])
5: Query expert for MD state i∗ demonstrations
6: Add demonstrations to D

3 Experiments

We carry out experiments mainly in a discrete state space environment and we present the bulk of
our results for that case. In subsection 3.2 we provide some preliminary results regarding a possible
extension of our method to continuous state space environments.

3.1 Discrete State Space

We first demonstrate the performance of our method in the discrete navigation environment shown
in Figure 1. The goal state sg (marked with a green X), at the top left, is associated with a known
reward of 2 while each other constraint-free state is associated with a known reward of −1. The
environment includes 6 constraint states that can be seen in Figure 1 colored with red. We further
assume that the dynamics are stochastic in that when the agent tries to move towards a direction there
is a 10% chance that the agent will move to a neighboring state instead. To model a noisy optimal
demonstrator that seeks to avoid the constraints, we associate each constraint with a reward of −10
and synthesize expert trajectories using a Boltzmann policy with β = 1. The Q-values needed for
the policy are obtained by running value iteration on the MDP. We provide to our learning algorithm
40 such trajectories from the demonstrator, each having as a starting state the bottom right corner.
Figure 1 shows the state visitation frequencies of those trajectories along with the original constraints
in the environment.

We run BICRL for M = 4000 iterations with a proposal mean and standard deviation of µ = 0
and σ = 1 respectively, for sampling rp. During BICRL we choose to sample constraints 20 times
more frequently than rewards. Our Bayesian method correctly identifies the majority of the actual
constraints. The right figure in Figure 1 shows the mean predictions for the constraints with values
approaching 1.0 corresponding to high chances of that state being constrained. The algorithm further
manages to infer the reward penalty rp returning an estimated mean value of −9.96. Expectedly, the
agent demonstrates high uncertainty in areas that are far away from the expert demonstrations, like
the bottom left section of the grid.
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Figure 1: (left) True constraints (red) along with optimal policy and expert state visitation frequencies.
(right) Mean constraint estimation using BICRL Algorithm 1.

3.1.1 Classification Performance

To quantify the performance of the constraint classification task we provide a plot in Figure 2 of the
True Positive Rate (TPR), the False Positive Rate (FPR) and the False Negative Rate (FNR) of the
MAP estimate at each BICRL iteration. We average the rates over 10 independent runs of BICRL
each using 40 expert demonstrations. The true constraints are the ones specified in Figure 1. The rates
are not necessarily monotonic as a number of constraint configurations can lead to high likelihood
function evaluations due to the noisy trajectories and the fact that they only partially cover the state
space. As the number of iterations increases the MAP estimates tend towards the true constraint
allocation.

Figure 2: True Positive, False Positive and False Negative classification rates of MAP constraint
estimates. Results averaged over 10 independent experiments.

3.1.2 Active Learning

Having access to the posterior distribution of the constraint allocation allows for an active learning
approach in which the agent queries the expert for specific state-action pair demonstrations that can
allow for faster and more accurate inference. To showcase this approach we reduce the number
of expert demonstrations to 4 and rerun BICRL. We report the mean prediction for the constraints
learned from 4 demonstrations in Figure 3. As expected, uncertainty is now significantly higher.
Applying Algorithm 2 from Section 2.4 with MQ = 20 and MD = 4 we obtain mean estimates that
are significantly more accurate as seen in Figure 3.

To obtain intuition about the significance of an active learning approach we further compare the active
learning method outlined in Algorithm 2 with a naive approach that each time randomly selects a state
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Figure 3: (left) Mean constraint estimation using only 4 expert trajectories. (right) Mean constraint
estimation improved by active learning.

to query the expert for demonstrations. We run 10 independent experiments on the same environment
as shown in Figure 1. In each experiment we have 10 initial expert demonstrations and we use the
active and the naive method to query the expert MQ = 10 times for MD = 10 state-action pair
demonstrations at a particular state each time. After each iteration i = 1, . . . ,MQ of the active and
naive learning methods we compute the TPR, FPR and FNR. Figure 4 contains those rates averaged
over the 10 experiments. The active learning method outperform the naive case after 3 queries.

Another motivation for our Bayesian method is outlined in the next subsection in which we compare it
to a recent RL constraint inference method [15] that is based on Maximum Likelihood Estimation. In
a number of environments with varying number of constraints and randomized constraint allocations
our method manages to infer the underlying constrained states more accurately.

Figure 4: True Positive, False Positive and False Negative classification rates of MAP constraint esti-
mates for active (A) and naive (random) (R) learning methods. Results averaged over 10 independent
experiments.

3.1.3 Bayesian vs Maximum Likelihood Estimation

To further quantify the benefits of our method we also compare it with Greedy Iterative Constraint
Inference (GICI) [15] which is a Maximum Likelihood approach for constraint inference. We
simulate three types of environments with m = 6, 8 and 10 total constraints in each. For each of
those environments we randomly allocate the m constraints in the state space and we report the
classification metrics for both algorithms. For each value of m we perform 20 simulations each time
sampling a random constraint allocation and we report the averaged results in Table 1.
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BICRL GICI

m TPR FPR FNR TPR FPR FNR
6 0.96 0.01 0.03 0.24 0.04 0.75
8 0.96 0.01 0.04 0.24 0.07 0.75
10 0.92 0.02 0.08 0.26 0.06 0.74

Table 1: True Positive, False Positive and False Negative classification rates for BICRL and GICI
over a varying number of randomly chosen constraint allocations. Results averaged over 20 runs.

For these simulations we utilize 40 expert trajectories each time sampled using a Boltzmann policy
with β = 1. The number of iterations for BICRL is again M = 4000 and the results do not include
the active learning improvement. For GICI we infer for each number of true constraints m the m
most likely constraints after which we terminate the algorithm, while for BICRL we return the m
most likely constraints, as measured by the mean of the posterior of the constraints. BICRL manages
to infer significantly more accurately the constraints in most cases.

3.2 Continuous State Space

In this section we extent our results to the continuous state space in a two-dimensional navigation
task. The agent transitions using a simple point mass model with the control actions being the
direction ao ∈ [0, 2π] and velocity av = {0.02, 0.04, 0.08}. The direction action is also discrete
with ao = {0, π/4, . . .} taking 8 equally distanced values in [0, 2π] and the system transitions are
deterministic. Optimal and Boltzmann-like policies are obtained by using a thin discretization of the
state space into 30 × 30 grid points and solving the discrete MDP. The starting state ss is (0.5, 0)
and the goal state sg is (0.5, 1). The agent receives a reward of +2 upon arriving at a minimum
distance of 0.1 from the goal, goal set Sg, at which point the episode ends. The constraint set Sc is
a disc or radius 0.15 centered at (0.5, 0.5). All states inside that disc are associated with a penalty
reward of −10 while the living reward is −1. The environment along with a subsample of Boltzmann
trajectories are shown in Figure 5.

Figure 5: (left) True constraints set Sc (red), goal set Sg (green) and starting state ss (blue) along
with sampled expert trajectories. (right) Mean constraint estimation using BICRL Algorithm.

We run the BICRL Algorithm for M = 4000 iterations with the proposal mean being zero and
standard deviation being σ = 1 for sampling rp. We sample constraint allocations (line 6 in
Algorithm 1) 50 times more frequently than we sample penalty rewards. The 100 expert trajectories
were obtained using a Boltzmann policy with β = 2. The algorithm manages to recover most of the
true constraints while it maintains some uncertainty for the states located the furthest away from
the expert trajectories. Given that the expert trajectories terminate as soon as the mass moves inside
the set Sg and given the discretization method, the Algorithm predicts that part of the goal set is a
constraint set as in that part we essentially observe very few demonstrations. The predicted penalty

7



reward in this case has a mean value between −3 and −2 which is significantly different from the
actual value of −10.

4 Conclusion and Future Extensions

We proposed a Bayesian approach to infer the unknown constraints in a discrete and continuous
state MDP. Our method manages to infer with high accuracy most of the constraints while providing
confidence values on the estimation that can be valuable in safety critical applications. It is also
suitable for environments with stochastic transitions as well as for applications in which individual,
and potentially suboptimal, state-action demonstrations are provided. Finally, we proposed an active
learning scheme that reduces the posterior variance and improves the mean and MAP constraint
estimates. For ease of interpretability, our experiments used a simple 2-D environment. We are
currently working to extend our results to more complex environments and exploring whether we
can apply recently proposed preference learning [4] or variational inference [5] approaches to enable
scalable Bayesian inference in high-dimensional continuous state MDPs.
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