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Learning from Demonstration (LfD)
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Bounding Policy Loss

How close is my
performance to

e Value of policy optimal?

r =L, [ Z,C;io 'YtR(St)]

® Policy Loss
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General Problem: Policy evaluation w/out R

® Given:

o Domain, MDP\R
o Demonstrations, )
o Evaluation policy, TTavg]

e Find €
such that

VR

with high confidence

. Vgeval S €

I’'m 95% confident my
performance is e-close
to optimal.
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How to bound Policy Loss?
V;?T* . Vgeval S €

e We don’t know the reward function (or the optimal policy)

o Bayesian Inverse Reinforcement Learning
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Bayesian IRL (Ramachandran 2007)

e Uses MCMC to sample from posterior

P(R|D) x P(D|R)P(R)

* Assumes demonstrations follow softmax policy with
temperature c.

P(DIR) = ||

rjep Doea €T
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How to bound Policy Loss?
V;?T* . Vgeval S €

e We don’t know the reward function (or the optimal policy)
o Bayesian Inverse Reinforcement Learning

o Risk-sensitive performance bound

= ¢-Value at Risk (a-quantile worst-case outcome)
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High-level Approach

[Weval ] I
— P( R| D) Sorted Policy Losses
D q ) 4
7" Teval
C |o| /Iy >V - Vi)
! |
R; a-quantile
pry| g ! y,
Calculate policy loss Return high confidence
— Bayesian IRL assuming sampled bound on alpha-worst-case
1 reward is true reward policy loss over P(R|D).




Experiments

* Grid world * Driving

0 Driving Task Simulation
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Assumptions on Reward Functions
* Linear combination of features
R(s) = wl ¢(s) Jlw|l1 <1

 We can rewrite the expected return of a policy in terms of
expected feature counts

VE = B v'w¢(se)|r] = wpu(r)
t=0
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Baseline

 Worst-case feature count bound (WFCB)
— Penalize the largest difference in state-visitation counts
between demonstrations and evaluation policy

WFCB(Wevala D) — Hﬂ* — Nj(ﬂ-eval)Hoo
A N

Empirical
pirica Expected feature
expected feature )
counts of evaluation
counts of

policy

demonstrations
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Grid World Results

200 random grid worlds.

Evaluation policy is optimal
policy for MAP reward
given demonstrations
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Theoretical IRL performance bounds

 Based on Hoeffding-style concentration inequalities

— (Abbeel & Ng 2004, Syed & Schapire 2008)

 Extremely loose in practice

Number of demonstrations Average Accuracy

0.95-VaR Bound 0.9372 @ 0.1328 - 0.98
Syed and Schapire Bound  142.59 47.53 0.9372 1.0
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Policy Selection

Based on the
demonstrations
should | use policy
A or B?

 Rank a set of evaluation policies
based on high-confidence
performance bounds



Driving Experiment

e Actions = left, right, straight D Driving Task Simalaton

e State Features: distances to other
cars, lane #

e Reward features: lane #, in collision




OTEXAS

Demonstration that avoids collisions Right-safe: avoids cars but prefers right lane

& Driving Task Simulation ™ priving Task Simulation

On-road: Stays on road, but ignores other cars Nasty: seeks collisions

e Driving Task Simulation - - -
L% Driving Task Simulation
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Policy Ranking

Ranking
Teval Collisions True WFCB 0.95-VaR
right-safe 0 1 3 1
on-road 13.65 2 1 2
nasty 42.75 3 2 3

* Feature count bound is misled by state-occupancies
 Our method reasons over reward likelihoods



[ om |
TEXA.S WHAT STARTS HERE CHANGES THE WORLD
The University of Texas at Austin

Future Work . .
° Scalab|||ty %T\ E>[Vlgar:‘ . ngval]
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* Estimating the amount of noise in human
demonstrations

e Active Learning: query demonstrator to reduce VaR g'@
%
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Conclusion

e First practical method for policy evaluation MDP\R
when reward function is unknown.

* Based on probabilistic worst-case /\'PQﬂD)

performance over likely reward functions.

* Applications:
— Policy selection

— Policy improvement

— Demonstration sufficiency
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Future Work <
* Scalability: | ™ E>[V§: B ngval]
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e Estimating the noise in human
demonstrations

e Active Learning: query demonstrator to reduce VaR g'@
%




