Feb 2018

Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning

Daniel Brown and Scott Niekum The University of Texas at Austin

Learning from Demonstration (LfD)

Bounding Performance for LfD

- Correctness
- Generalizability
- Safety

Bounding Policy Loss

• Value of policy

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \right]$$

• Policy Loss

$$V_R^{\pi^*} - V_R^{\pi}$$

General Problem: Policy evaluation w/out R

- Given:
 - Domain, MDP\R
 - \circ Demonstrations, D
 - $\circ~$ Evaluation policy, $\pi_{
 m eval}$
- Find ϵ

such that with high confidence

$$V_R^{\pi^*} - V_R^{\pi_{\text{eval}}} \le \epsilon$$

I'm 95% confident my performance is ε-close to optimal.

How to bound Policy Loss?

$$V_R^{\pi^*} - V_R^{\pi_{\text{eval}}} \le \epsilon$$

- We don't know the reward function (or the optimal policy)
 - Bayesian Inverse Reinforcement Learning

Bayesian IRL (Ramachandran 2007)

• Uses MCMC to sample from posterior

$P(R|D) \propto P(D|R)P(R)$

 Assumes demonstrations follow softmax policy with temperature c.

How to bound Policy Loss?

$$V_R^{\pi^*} - V_R^{\pi_{\text{eval}}} \le \epsilon$$

- We don't know the reward function (or the optimal policy)
 - Bayesian Inverse Reinforcement Learning

How to bound Policy Loss?

$$V_R^{\pi^*} - V_R^{\pi_{\text{eval}}} \le \epsilon$$

- We don't know the reward function (or the optimal policy)
 - Bayesian Inverse Reinforcement Learning
 - **Risk-sensitive performance bound**
 - α -Value at Risk (α -quantile worst-case outcome)

High-level Approach

Experiments

• Grid world

• Driving

Assumptions on Reward Functions

• Linear combination of features

$$R(s) = w^T \phi(s) \qquad \|w\|_1 \le 1$$

• We can rewrite the expected return of a policy in terms of expected feature counts

$$V_R^{\pi} = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t w^T \phi(s_t) | \pi\right] = w^T \mu(\pi)$$

Baseline

- Worst-case feature count bound (WFCB)
 - Penalize the largest difference in state-visitation counts between demonstrations and evaluation policy

$$WFCB(\pi_{eval}, D) = \|\hat{\mu}^* - \mu(\pi_{eval})\|_{\infty}$$

$$\underset{\text{counts of demonstrations}}{\text{Empirical}} \quad \underset{\text{counts of evaluation policy}}{\text{Expected feature counts of evaluation policy}}$$

Grid World Results

• 200 random grid worlds.

• Evaluation policy is optimal policy for MAP reward given demonstrations

Theoretical IRL performance bounds

- Based on Hoeffding-style concentration inequalities
 - (Abbeel & Ng 2004, Syed & Schapire 2008)
- Extremely loose in practice

Policy Selection

 Rank a set of evaluation policies based on high-confidence performance bounds

Driving Experiment

- Actions = left, right, straight
- State Features: distances to other cars, lane #
- Reward features: lane #, in collision

Demonstration that avoids collisions

On-road: Stays on road, but ignores other cars

Right-safe: avoids cars but prefers right lane

Nasty: seeks collisions

Policy Ranking

		Ranking		
π_{eval}	Collisions	True	WFCB	0.95-VaR
right-safe	0	1	3	1
on-road	13.65	2	1	2
nasty	42.75	3	2	3

- Feature count bound is misled by state-occupancies
- Our method reasons over reward likelihoods

Future Work

• Scalability:

• Estimating the amount of noise in human demonstrations

• Active Learning: query demonstrator to reduce VaR

Conclusion

- First practical method for policy evaluation when reward function is unknown.
- Based on probabilistic worst-case performance over likely reward functions.
- Applications:
 - Policy selection
 - Policy improvement
 - Demonstration sufficiency

Future Work

• Scalability:

 Estimating the noise in human demonstrations

• Active Learning: query demonstrator to reduce VaR

