A soccer robot A is on a fast break toward the goal, starting in position 1. From positions 1 through 3, it can either shoot (S) or dribble the ball forward (D). From 4 it can only shoot. If it shoots, it either scores a goal (state G) or misses (state M). If it dribbles, it either advances a square or loses the ball, ending up in M . When shooting, the robot is more likely to score a goal from states closer to the goal; when dribbling, the likelihood of missing is independent of the current state.

In this MDP, the states k are $1,2,3,4, \mathrm{G}$ and M , where G and M are terminal states. The transition model depends on the parameter y, which is the probability of dribbling success. Assume a discount of $\gamma=1$.

$$
\begin{aligned}
T(k, S, G) & =\frac{k}{6} \\
T(k, S, M) & =1-\frac{k}{6} \\
T(k, D, k+1) & =y \text { for } k \in\{1,2,3\} \\
T(k, D, M) & =1-y \text { for } k \in\{1,2,3\} \\
R(k, S, G) & =1
\end{aligned}
$$

Rewards are 0 for all other transitions.

1. Using $y=3 / 4$, compute the first two iterations of value iteration.

i	$Q_{i}(1, S)$	$Q_{i}(2, S)$	$Q_{i}(3, S)$	$Q_{i}(4, S)$
0	0	0	0	0
1	$1 / 6$	$1 / 3$	$1 / 2$	$2 / 3$
2	$1 / 6$	$1 / 3$	$1 / 2$	$2 / 3$

i	$Q_{i}(1, D)$	$Q_{i}(2, D)$	$Q_{i}(3, D)$
0	0	0	0
1	0	0	0
2	$1 / 4$	$3 / 8$	$1 / 2$

i	$V_{i}(1)$	$V_{i}(2)$	$V_{i}(3)$	$V_{i}(4)$
0	0	0	0	0
1	$1 / 6$	$1 / 3$	$1 / 2$	$2 / 3$
2	$1 / 4$	$3 / 8$	$1 / 2$	$2 / 3$

The equations for value iteration with $\gamma=1$ are:

$$
\begin{aligned}
Q_{i+1}^{*}(s, a) & =\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+V_{i}^{*}\left(s^{\prime}\right)\right] \\
V_{i+1}^{*}(s) & =\max _{a_{i}} Q_{i+1}^{*}(s, a)
\end{aligned}
$$

Initially, all values are zero. For iteration 1, please note that the end states G, M have no values. For action S, the Q-states are:

$$
\begin{aligned}
Q_{1}(1, S) & =T(1, S, G)\left[\left(R(1, S, G)+V_{0}^{*}(G)\right]+T(1, S, M)\left[\left(R(1, S, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{1}{6}[1+0]+\frac{5}{6}[0+0]=\frac{1}{6} \\
Q_{1}(2, S) & =T(2, S, G)\left[\left(R(2, S, G)+V_{0}^{*}(G)\right]+T(2, S, M)\left[\left(R(2, S, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{1}{3}[1+0]+\frac{2}{3}[0+0]=\frac{1}{3} \\
Q_{1}(3, S) & =T(3, S, G)\left[\left(R(3, S, G)+V_{0}^{*}(G)\right]+T(3, S, M)\left[\left(R(3, S, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{1}{2}[1+0]+\frac{1}{2}[0+0]=\frac{1}{2} \\
Q_{1}(4, S) & =T(4, S, G)\left[\left(R(4, S, G)+V_{0}^{*}(G)\right]+T(4, S, M)\left[\left(R(4, S, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{2}{3}[1+0]+\frac{1}{3}[0+0]=\frac{2}{3}
\end{aligned}
$$

For action D, the Q-states are:

$$
\begin{aligned}
Q_{1}(1, D) & =T(1, D, 2)\left[\left(R(1, D, 2)+V_{0}^{*}(2)\right]+T(1, D, M)\left[\left(R(1, D, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}[0+0]+\frac{1}{4}[0+0]=0 \\
Q_{1}(2, D) & =T(2, D, 3)\left[\left(R(2, D, 3)+V_{0}^{*}(3)\right]+T(2, D, M)\left[\left(R(2, D, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}[0+0]+\frac{1}{4}[0+0]=0 \\
Q_{1}(3, D) & =T(3, D, 4)\left[\left(R(3, D, 4)+V_{0}^{*}(4)\right]+T(3, D, M)\left[\left(R(3, D, M)+V_{0}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}[0+0]+\frac{1}{4}[0+0]=0
\end{aligned}
$$

The values are now updated.

$$
\begin{aligned}
& V_{1}(1)=\max _{a \in\{S, D\}} Q_{1}^{*}(1, a)=\frac{1}{6} \\
& V_{1}(2)=\max _{a \in\{S, D\}} Q_{1}^{*}(2, a)=\frac{1}{3} \\
& V_{1}(3)=\max _{a \in\{S, D\}} Q_{1}^{*}(3, a)=\frac{1}{2} \\
& V_{1}(4)=\max _{a \in\{S, D\}} Q_{1}^{*}(4, a)=\frac{2}{3}
\end{aligned}
$$

For iteration 2, the Q-states for action S don't change.

$$
\begin{aligned}
Q_{2}(1, S) & =T(1, S, G)\left[\left(R(1, S, G)+V_{1}^{*}(G)\right]+T(1, S, M)\left[\left(R(1, S, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{1}{6}[1+0]+\frac{5}{6}[0+0]=\frac{1}{6} \\
Q_{2}(2, S) & =T(2, S, G)\left[\left(R(2, S, G)+V_{1}^{*}(G)\right]+T(2, S, M)\left[\left(R(2, S, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{1}{3}[1+0]+\frac{2}{3}[0+0]=\frac{1}{3} \\
Q_{2}(3, S) & =T(3, S, G)\left[\left(R(3, S, G)+V_{1}^{*}(G)\right]+T(3, S, M)\left[\left(R(3, S, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{1}{2}[1+0]+\frac{1}{2}[0+0]=\frac{1}{2} \\
Q_{2}(4, S) & =T(4, S, G)\left[\left(R(4, S, G)+V_{1}^{*}(G)\right]+T(4, S, M)\left[\left(R(4, S, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{2}{3}[1+0]+\frac{1}{3}[0+0]=\frac{2}{3}
\end{aligned}
$$

At iteration 2, the Q-states for action D are updated:

$$
\begin{aligned}
Q_{2}(1, D) & =T(1, D, 2)\left[\left(R(1, D, 2)+V_{1}^{*}(2)\right]+T(1, D, M)\left[\left(R(1, D, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}\left[0+\frac{1}{3}\right]+\frac{1}{4}[0+0]=\frac{1}{4} \\
Q_{2}(2, D) & =T(2, D, 3)\left[\left(R(2, D, 3)+V_{1}^{*}(3)\right]+T(2, D, M)\left[\left(R(2, D, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}\left[0+\frac{1}{2}\right]+\frac{1}{4}[0+0]=\frac{3}{8} \\
Q_{2}(3, D) & =T(3, D, 4)\left[\left(R(3, D, 4)+V_{1}^{*}(4)\right]+T(3, D, M)\left[\left(R(3, D, M)+V_{1}^{*}(M)\right]\right.\right. \\
& =\frac{3}{4}\left[0+\frac{2}{3}\right]+\frac{1}{4}[0+0]=\frac{1}{2}
\end{aligned}
$$

The values are now updated.

$$
\begin{aligned}
& V_{2}(1)=\max _{a \in\{S, D\}} Q_{2}^{*}(1, a)=\frac{1}{4} \\
& V_{2}(2)=\max _{a \in\{S, D\}} Q_{2}^{*}(2, a)=\frac{3}{8} \\
& V_{2}(3)=\max _{a \in\{S, D\}} Q_{2}^{*}(3, a)=\frac{1}{2} \\
& V_{2}(4)=\max _{a \in\{S, D\}} Q_{2}^{*}(4, a)=\frac{2}{3}
\end{aligned}
$$

2. After two iterations, perform policy extraction.

The equation for policy extraction for $\gamma=1$ is:

$$
\pi_{i}^{*}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+V_{i}^{*}\left(s^{\prime}\right)\right]
$$

Solving,

$$
\begin{aligned}
\pi_{2}^{*}(1) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(1, S, G)\left[R(1, S, G)+V_{2}^{*}(G)\right]+T(1, S, M)\left[R(1, S, M)+V_{2}^{*}(M)\right] \\
T(1, D, 2)\left[R(1, D, 2)+V_{2}^{*}(2)\right]+T(1, D, M)\left[R(1, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{6}[1+0]+\frac{5}{6}[0+0]=\frac{1}{6} \\
\frac{3}{4}\left[0+\frac{3}{8}\right]+\frac{1}{4}[0+0]=\frac{9}{32}
\end{array}\right. \\
& =D
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2}^{*}(2) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(2, S, G)\left[R(2, S, G)+V_{2}^{*}(G)\right]+T(2, S, M)\left[R(2, S, M)+V_{2}^{*}(M)\right] \\
T(2, D, 3)\left[R(2, D, 3)+V_{2}^{*}(3)\right]+T(2, D, M)\left[R(2, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{3}[1+0]+\frac{2}{3}[0+0]=\frac{1}{3} \\
\frac{3}{4}\left[0+\frac{1}{2}\right]+\frac{1}{4}[0+0]=\frac{3}{8}
\end{array}\right. \\
& =D
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2}^{*}(3) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(3, S, G)\left[R(3, S, G)+V_{2}^{*}(G)\right]+T(3, S, M)\left[R(3, S, M)+V_{2}^{*}(M)\right] \\
T(3, D, 4)\left[R(3, D, 4)+V_{2}^{*}(4)\right]+T(3, D, M)\left[R(3, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{2}[1+0]+\frac{1}{2}[0+0]=\frac{1}{2} \\
\frac{3}{4}\left[0+\frac{2}{3}\right]+\frac{1}{4}[0+0]=\frac{1}{2}
\end{array}\right. \\
& =D \text { or } S
\end{aligned}
$$

Policy $\pi_{i}^{*}(4)=S$ by definition.
3. Do two iterations of policy iteration for the initial policy $\pi_{0}^{*}(s)=S$.

The equations for policy evaluation and policy extraction for iteration $i+1$ are:

$$
\begin{aligned}
& V_{i+1}^{\pi_{k}}(s)=\sum_{s^{\prime}} T\left(s, \pi_{k}(s), s^{\prime}\right)\left[R\left(s, \pi_{k}(s), s^{\prime}\right)+V_{i}^{\pi_{k}}\left(s^{\prime}\right)\right] \\
& \pi_{k+1}(s)=\arg \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+V^{\pi_{k}}\left(s^{\prime}\right)\right]
\end{aligned}
$$

The policy evaluation results are exactly the same as for $Q_{i}^{*}(s, S)$ in value iteration.

$$
\begin{aligned}
V_{2}^{\pi_{0}}(1) & =\frac{1}{6} \\
V_{2}^{\pi_{0}}(2) & =\frac{1}{3} \\
V_{2}^{\pi_{0}}(3) & =\frac{1}{2} \\
V_{2}^{\pi_{0}}(4) & =\frac{2}{3}
\end{aligned}
$$

Policy extraction yields:

$$
\begin{aligned}
\pi_{2}(1) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(1, S, G)\left[R(1, S, G)+V_{2}^{*}(G)\right]+T(1, S, M)\left[R(1, S, M)+V_{2}^{*}(M)\right] \\
T(1, D, 2)\left[R(1, D, 2)+V_{2}^{\pi_{0}}(2)\right]+T(1, D, M)\left[R(1, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{6}[1+0]+\frac{5}{6}[0+0]=\frac{1}{6} \\
\frac{3}{4}\left[0+\frac{1}{3}\right]+\frac{1}{4}[0+0]=\frac{1}{4}
\end{array}\right. \\
& =D
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2}(2) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(2, S, G)\left[R(2, S, G)+V_{2}^{*}(G)\right]+T(2, S, M)\left[R(2, S, M)+V_{2}^{*}(M)\right] \\
T(2, D, 3)\left[R(2, D, 3)+V_{2}^{\pi_{0}}(3)\right]+T(2, D, M)\left[R(2, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{3}[1+0]+\frac{2}{3}[0+0]=\frac{1}{3} \\
\frac{3}{4}\left[0+\frac{1}{2}\right]+\frac{1}{4}[0+0]=\frac{3}{8}
\end{array}\right. \\
& =D
\end{aligned}
$$

$$
\begin{aligned}
\pi_{2}(3) & =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
T(3, S, G)\left[R(3, S, G)+V_{2}^{*}(G)\right]+T(3, S, M)\left[R(3, S, M)+V_{2}^{*}(M)\right] \\
T(3, D, 4)\left[R(3, D, 4)+V_{2}^{\pi_{0}}(4)\right]+T(3, D, M)\left[R(3, D, M)+V_{2}^{*}(M)\right]
\end{array}\right. \\
& =\arg \max _{a \in\{S, D\}}\left\{\begin{array}{l}
\frac{1}{2}[1+0]+\frac{1}{2}[0+0]=\frac{1}{2} \\
\frac{3}{4}\left[0+\frac{2}{3}\right]+\frac{1}{4}[0+0]=\frac{1}{2}
\end{array}\right. \\
& =D \text { or } S
\end{aligned}
$$

The policy is the same as for part 2.

