In the mini grid world shown below, there are two terminal states: state $(2,1)$ with a negative reward of -1 , and $(3,1)$ with a positive reward of +1 . The transition model is the same as the grid world in the course slides: an action succeeds with probability 0.8 , and goes to the left or right of the intended direction with probability 0.1 , respectively. However, moves into the wall are not allowed. The optimal policy π is in the left figure, and the correct utility function the optimal policy is in the right figure.

0.554	0.639	0.735
0.497	0.581	0.849
0.294	-1.0	1.0

Below is a series of three trials (1,2, and 3 left to right) in this environment. Starting in state $(1,3)$, actions were taken according to the fixed policy π above, and ended once a terminal state is reached. The trials are as follows:

S	A	R	S	A	R	S	A	R
$(1,3)$	E	0	$(1,3)$	E	0	$(1,3)$	E	0
$(2,3)$	E	0	$(2,3)$	E	0	$(1,2)$	N	0
$(3,3)$	S	0	$(2,2)$	N	0	$(1,3)$	E	0
$(3,2)$	S	1	$(2,3)$	E	0	$(2,3)$	E	0
$(3,1)$			$(3,3)$	S	0	$(3,3)$	S	0
			$(3,2)$	S	1	$(3,2)$	S	1
			$(3,1)$			$(3,1)$		

1. Estimate the transition function $T\left(s, a, s^{\prime}\right)$ as much as possible given these limited trials. Zeros have been put in for non-neighboring states.

	$(1,1)$	$(1,2)$	$(1,3)$	$(2,1)$	$(2,2)$	$(2,3)$	$(3,1)$	$(3,2)$	$(3,3)$
$(1,2), \mathrm{N}$	0	0	1	0	0	0	0	0	0
$(1,3), \mathrm{E}$	0	0.25	0	0	0	0.75	0	0	0
$(2,2), \mathrm{N}$	0	0	0	0	0	1	0	0	0
$(2,3), \mathrm{E}$	0	0	0	0	0.25	0	0	0	0.75
$(3,2), \mathrm{S}$	0	0	0	0	0	0	1	0	0
$(3,3), \mathrm{S}$	0	0	0	0	0	0	0	1	0

2. Perform policy evaluation with your estimated MDP to find the state values. Assume $\gamma=$ 0.9. Set up the linear equations to solve exactly without iteration.

The equation to use is:

$$
\begin{aligned}
& V^{\pi}(s)=\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left(R\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right) \\
V^{\pi}(3,1) & =0 \\
V^{\pi}(3,2) & =1 *\left(1+0.9 * V^{\pi}(3,1)\right) \\
& =1 \\
V^{\pi}(3,3) & =1 *\left(0+0.9 * V^{\pi}(3,2)\right) \\
& =0.9 \\
V^{\pi}(2,2) & =1 *\left(0+0.9 * V^{\pi}(2,3)\right) \\
V^{\pi}(2,3) & =0.75 *\left(0+0.9 * V^{\pi}(3,3)\right)+0.25 *\left(0+0.9 * V^{\pi}(2,2)\right) \\
& =0.75 *(0.9 * 0.9)+0.25 *\left(0+0.9 * 0.9 * V^{\pi}(2,3)\right) \\
& =0.6075 /(1-0.25 * 0.81) \\
& =0.762 \\
V^{\pi}(2,2) & =1 *(0+0.9 * 0.762) \\
& =0.6858 \\
V^{\pi}(1,2) & =1 *\left(0+0.9 * V^{\pi}(1,3)\right) \\
V^{\pi}(1,3) & =0.75 *\left(0+0.9 * V^{\pi}(2,3)\right)+0.25 *\left(0+0.9 * V^{\pi}(1,2)\right) \\
& =0.75 *(0.9 * 0.762)+0.25 *(0+0.9 * 0.9 * V(1,1)) \\
& =0.5143 /(1-0.25 * 0.81) \\
& =0.645 \\
V^{\pi}(1,2) & =1 *(0+0.9 * 0.645) \\
& =0.581
\end{aligned}
$$

3. Perform TD learning for the three trials left to right. Use $\alpha(n)=1 / n$, where n is the trial number. Only write the non-trivial updates.

All values are initialized to 0 . The update equation to use is:

$$
V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+\alpha\left(R\left(s, a, s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right)
$$

Trial 1:

$$
\begin{aligned}
V^{\pi}(3,2) & \leftarrow(1-1) * V^{\pi}(3,2)+1 *\left(1+0.9 * V^{\pi}(3,1)\right) \\
& \leftarrow 0+(1+0.9 * 0)=1
\end{aligned}
$$

Trial 2:

$$
\begin{aligned}
V^{\pi}(3,3) & \leftarrow \frac{1}{2} * V^{\pi}(3,3)+\frac{1}{2} *\left(0+0.9 * V^{\pi}(3,2)\right. \\
& \leftarrow 0+\frac{1}{2}(0+0.9 * 1)=0.45
\end{aligned}
$$

Trial 3:

$$
\begin{aligned}
V^{\pi}(2,3) & \leftarrow \frac{2}{3} * V^{\pi}(2,3)+\frac{1}{3} *\left(0+0.9 * V^{\pi}(3,3)\right) \\
& \leftarrow 0+\frac{1}{3} *(0+0.9 * 0.45)=0.135 \\
V^{\pi}(3,3) & \leftarrow \frac{2}{3} * V^{\pi}(3,3)+\frac{1}{3} *\left(0+0.9 * V^{\pi}(3,2)\right) \\
& \leftarrow \frac{2}{3} * 0.45+\frac{1}{3} *(0+0.9 * 1)=0.6
\end{aligned}
$$

