Announcements

- Project 0: Python Tutorial
 - Due Jan 18th before midnight
AI in the News

▪ “What’s Next for AI?”
Recent article from MIT Technology Review Dec 23, 2022
(https://www.technologyreview.com/2022/12/23/1065852/whats-next-for-ai/)

▪ Get ready for multipurpose chatbots
▪ AI’s first red lines
▪ Big tech could lose its grip on fundamental AI research
▪ Big Pharma is never going to be the same again
CS 6300: Artificial Intelligence

Search

Instructor: Daniel Brown

University of Utah

[These slides were based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]
Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
 - Depth-First Search
 - Breadth-First Search
 - Uniform-Cost Search
Agents that Plan
Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - May have memory or a model of the world’s current state
 - Do not consider the future consequences of their actions
 - Consider how the world IS

- Can a reflex agent be rational?
Video of Demo Reflex Optimal
Video of Demo Reflex Odd
Planning Agents

- Planning agents:
 - Ask “what if”
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal (test)
 - Consider how the world WOULD BE

- Optimal vs. complete planning

- Planning vs. replanning

[Demo: replanning (L2D3)]
[Demo: mastermind (L2D4)]
Video of Demo Mastermind
Video of Demo Replanning
Search Problems
A search problem consists of:

- A state space
- A successor function (with actions, costs)
- A start state and a goal test

A solution is a sequence of actions (a plan) which transforms the start state to a goal state.
Search Problems Are Models
Example: Traveling in Romania

- **State space:**
 - Cities

- **Successor function:**
 - Roads: Go to adjacent city with cost = distance

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**
What’s in a State Space?

- Problem: Pathing
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

The world state includes every last detail of the environment.

A search state keeps only the details needed for planning (abstraction).
State Space Sizes?

- **World state:**
 - Agent positions: 120
 - Food count: 30
 - Ghost positions: 12
 - Agent facing: NSEW

- **How many**
 - World states?
 \[120 \times (2^{30}) \times (12^2) \times 4 \]
 - States for pathing?
 120
 - States for eat-all-dots?
 \[120 \times (2^{30}) \]
Problem: eat all dots while keeping the ghosts perma-scared
What does the state space have to specify?
- (agent position, dot booleans, power pellet booleans, remaining scared time)
State Space Graphs and Search Trees
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a state space graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a search graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
A search tree:

- A “what if” tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree
We construct both on demand — and we construct as little as possible.

Each NODE in in the search tree is an entire PATH in the state space graph.
Consider this 4-state graph:

How big is its search tree (from S)?

What does the search tree look like?

Important: Lots of repeated structure in the search tree!
5 min Break
Tree Search
Search Example: Romania
Searching with a Search Tree

Search:
- Expand out potential plans (tree nodes)
- Maintain a *fringe* of partial plans under consideration
- Try to expand as few tree nodes as possible
General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Important ideas:

- Fringe
- Expansion
- Exploration strategy

Main question: which fringe nodes to explore?
Example: Tree Search
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation:
Fringe is a LIFO stack
Search Algorithm Properties
Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity? $O(b^m)$
- Space complexity? $O(b \cdot m)$

Cartoon of search tree:
- b is the branching factor
- m is the maximum depth
- solutions at various depths

Number of nodes in entire tree?
- $1 + b + b^2 + \ldots + b^m = O(b^m)$
Depth-First Search (DFS) Properties

- **What nodes DFS expand?**
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If \(m \) is finite, takes time \(O(b^m) \)

- **How much space does the fringe take?**
 - Only has siblings on path to root, so \(O(bm) \)

- **Is it complete?**
 - \(m \) could be infinite, so only if we prevent cycles (more later)

- **Is it optimal?**
 - No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue
Breadth-First Search (BFS) Properties

- **What nodes does BFS expand?**
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^s)$

- **Is it complete?**
 - s must be finite if a solution exists, so yes!

- **Is it optimal?**
 - Only if costs are all 1 (more on costs later)
Quiz: DFS vs BFS
Quiz: DFS vs BFS

- When will BFS outperform DFS?
- When will DFS outperform BFS?
Video of Demo Maze Water DFS/BFS (part 2)
Iterative Deepening

- Idea: get DFS’s space advantage with BFS’s time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.

- Isn’t that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!
BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.
Uniform Cost Search
Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- **What nodes does UCS expand?**
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- **Is it complete?**
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- **Is it optimal?**
 - Yes! (Proof next lecture via A^*)
Uniform Cost Issues

- Remember: UCS explores increasing cost contours

- The good: UCS is complete and optimal!

- The bad:
 - Explores options in every “direction”
 - No information about goal location

- We’ll fix that soon!

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]
Video of Demo Empty UCS
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
Video of Demo Maze with Deep/Shallow Water — DFS, BFS, or UCS? (part 2)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Search and Models

- Search operates over models of the world
 - The agent doesn’t actually try all the plans out in the real world!
 - Planning is all “in simulation”
 - Your search is only as good as your models...

- It’s only a model... ssshh!
Search Gone Wrong?
Next Time

- Heuristic Search!
 - How can we guide search to promising areas by leveraging some human intuition and expertise?