Announcements

- **Project 0: Python Tutorial**
 - Due Jan 16th before midnight

- **Homework 1**
 - Due Jan 18th before midnight
 - Covers today’s lecture.
 - You can start today!
 - Look at the practice problems first!
CS 6300: Search

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley http://ai.berkeley.edu.]
Today

- Agents that Plan Ahead
- Search Problems
- Uninformed Search Methods
- Informed (heuristic) Search
Agents that Plan
Planning Agents

- Planning agents:
 - Ask “what if”
 - Decisions based on (hypothesized) consequences of actions
 - Must have a model of how the world evolves in response to actions
 - Must formulate a goal (test)
 - Consider how the world WOULD BE

- Optimal Planning
 - Returns a least cost solution.

- Complete Planning
 - If there exists a solution it will find it.

- Planning vs. replanning
Video of Demo Mastermind
Video of Demo Replanning
Search Problems
Search Problems

- **A search problem consists of:**
 - A state space
 - A successor function (with actions, costs)
 - A start state and a goal test

- **A solution** is a sequence of actions (a plan) which transforms the start state to a goal state
Search Problems Are Models
Example: Traveling in Romania

- **State space:**
 - Cities

- **Successor function:**
 - Roads: Go to adjacent city with cost = distance

- **Start state:**
 - Arad

- **Goal test:**
 - Is state == Bucharest?

- **Solution?**
What’s in a State Space?

The **world state** includes every last detail of the environment

![Pacman maze](image)

A **search state** keeps only the details needed for planning (abstraction)

- **Problem: Pathing (go from location A to B)**
 - States: \((x,y)\) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is \((x,y)\)=END

- **Problem: Eat-All-Dots**
 - States: \((x,y), \text{dot booleans}\}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false
State Space Sizes?

- **World state:**
 - Agent positions: 120
 - Food count: 30
 - Ghost positions: 12
 - Agent facing: NSEW

- **How many**
 - World states?
 \[120 \times (2^{30}) \times (12^2) \times 4 \approx 74 \text{ trillion} \]
 - States for pathing?
 120
 - States for eat-all-dots?
 \[120 \times (2^{30}) \]
Quiz: Safe Passage

- Problem: eat all dots while keeping the ghosts perma-scared
- What does the state space have to specify?
 - (agent position, dot booleans, power pellet booleans, remaining scared time)
State Space Graphs and Search Trees
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a state space graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea
State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)

- In a search graph, each state occurs only once!

- We can rarely build this full graph in memory (it’s too big), but it’s a useful idea

Tiny state space graph for a tiny search problem
A search tree:
- A “what if” tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree
We construct both on demand – and we construct as little as possible.

Each NODE in in the search tree is an entire PATH in the state space graph.
Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

\[\text{S} \to a \to \text{G} \]

\[b \to \text{S} \to a \to \text{G} \]

How big is its search tree (from S)?

What does the search tree look like?

Important: Lots of repeated structure in the search tree!
Tree Search
Search Example: Romania
Searching with a Search Tree

- **Search:**
 - Expand out potential plans (tree nodes)
 - Maintain a *fringe* of partial plans under consideration
 - Try to expand as few tree nodes as possible
General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy

- Main question: which fringe nodes to explore?
Example: Tree Search
Depth-First Search
Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack
Search Algorithm Properties
Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?

- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

- Number of nodes in entire tree?
 - $1 + b + b^2 + \ldots + b^m = O(b^m)$
Depth-First Search (DFS) Properties

- **What nodes DFS expand?**
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time $O(b^m)$

- **How much space does the fringe take?**
 - Only has siblings on path to root, so $O(bm)$

- **Is it complete?**
 - m could be infinite, so only if we prevent cycles (more later)

- **Is it optimal?**
 - No, it finds the “leftmost” solution, regardless of depth or cost
Breadth-First Search
Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue
Breadth-First Search (BFS) Properties

- **What nodes does BFS expand?**
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time $O(b^s)$

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^s)$

- **Is it complete?**
 - s must be finite if a solution exists, so yes!

- **Is it optimal?**
 - Only if costs are all 1 (more on costs later)
BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.
Uniform Cost Search
Uniform Cost Search

Strategy: expand the cheapest node first:

Fringe is a priority queue (priority: cumulative cost)
Uniform Cost Search (UCS) Properties

- **What nodes does UCS expand?**
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε, then the “effective depth” is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)

- **How much space does the fringe take?**
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$

- **Is it complete?**
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!

- **Is it optimal?**
 - Yes! (Proof via A*)
Uniform Cost Issues

- The bad:
 - Explores options in every “direction”
 - No information about goal location

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]
Video of Demo Empty UCS
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
Graph Search
Failure to detect repeated states can cause exponentially more work.
In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
Graph Search

- **Idea:** never expand a state twice

- **How to implement:**
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set

- **Important:** store the closed set as a set, not a list

- **Can graph search wreck completeness?** Why/why not?

- **How about optimality?**
function \textsc{Tree-Search}(\textit{problem}, \textit{fringe}) \textbf{return} a solution, or failure

\textit{fringe} \leftarrow \textsc{Insert}(\textsc{make-node}([\text{initial-state}[\textit{problem}]]), \textit{fringe})

\textbf{loop do}

\hspace{1em} \textbf{if} \textit{fringe} is empty \textbf{then} \textbf{return} failure

\hspace{1em} \textit{node} \leftarrow \textsc{Remove-Front}(\textit{fringe})

\hspace{1em} \textbf{if} \textsc{Goal-Test}(\textit{problem}, \textsc{state}[\textit{node}]) \textbf{then} \textbf{return} \textit{node}

\hspace{1em} \textbf{for} \textit{child-node} \textbf{in} \textsc{Expand}([\text{state}[\textit{node}], \textit{problem}]) \textbf{do}

\hspace{2em} \textit{fringe} \leftarrow \textsc{Insert}(\textit{child-node}, \textit{fringe})

\hspace{1em} \textbf{end}

\textbf{end}

\textbf{end}
Graph Search Pseudo-Code

function Graph-Search(problem, fringe) return a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 for child-node in EXPAND(STATE[node], problem) do
 if STATE[child-node] is not in closed then fringe ← INSERT(child-node, fringe)
 end
 end
 end

Use this version for the homeworks, projects, and exams!
Some Hints for P1

- Implement your closed list (explored set) as a set!
- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node.
- Pseudo code from Russell and Norvig book. Good example of how a child node is created from a parent node.

```plaintext
function CHILD-NODE(problem, parent, action) returns a node
return a node with
    STATE = problem.RESULT(parent.STATE, action),
    PARENT = parent, ACTION = action,
    PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)
```
The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object
Informed Search
Search Heuristics

A heuristic is:
- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing
Example: Heuristic Function
Greedy Search
Example: Heuristic Function

$h(x)$
Greedy Search

- Expand the node that seems closest...

- What can go wrong?
Greedy Search

- **Strategy:** expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- **A common case:**
 - Best-first takes you straight to the (wrong) goal

- **Worst-case:** like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]
Video of Demo Contours Greedy (Pacman Small Maze)
A* Search
A* Search
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Greedy** orders by goal proximity, or *forward cost* $h(n)$

- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager
When should A* terminate?

- Should we stop when we enqueue a goal?
 - No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!
Admissible Heuristics
A heuristic h is **admissible** (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal.

Examples:

Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, *that is* along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$

\[
f(n) = g(n) + h(n)\]

Definition of f-cost

\[
f(n) \leq g(n) + h^*(n) = g(A) = f(A)\]

Admissibility of h

$h = 0$ at a goal
Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor \(n \), that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)

\[
g(A) < g(B) \quad \text{B is suboptimal} \\
f(A) < f(B) \quad \text{h = 0 at a goal}
\]
Optimality of A* Tree Search: Blocking

Proof:
- Imagine B is on the fringe
- Some ancestor n, *that is* along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$
 3. n expands before B
- All ancestors along optimal path to A expand before B
- A expands before B
- A* search is optimal
Properties of A*
UCS vs A* Contours

- Uniform-cost expands equally in all “directions”

- A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]
Video of Demo Contours (Empty) -- UCS
Video of Demo Contours (Empty) -- Greedy
Video of Demo Contours (Empty) – A*
Video of Demo Contours (Pacman Small Maze) – A*
Comparison

- Greedy
- Uniform Cost
- A*
A* Applications
A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]
Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics.

- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available.

- Inadmissible heuristics are often useful too.
Example: 8 Puzzle

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

Start State

Goal State
8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- $h(\text{start}) = 8$
- This is a relaxed-problem heuristic

Start State

Goal State

<table>
<thead>
<tr>
<th>Average nodes expanded when the optimal path has...</th>
<th>...4 steps</th>
<th>...8 steps</th>
<th>...12 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS</td>
<td>112</td>
<td>6,300</td>
<td>3.6×10^6</td>
</tr>
<tr>
<td>TILES</td>
<td>13</td>
<td>39</td>
<td>227</td>
</tr>
</tbody>
</table>

Statistics from Andrew Moore
What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?

- Total *Manhattan* distance

- Why is it admissible?

- \(h(\text{start}) = 3 + 1 + 2 + \ldots = 18 \)
Heuristics

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
function GRAPH-SEARCH(problem, fringe) return a solution, or failure
 closed ← an empty set
 fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
 loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem, STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 for child-node in EXPAND(STATE[node], problem) do
 if STATE[child-node] is not in closed then
 fringe ← INSERT(child-node, fringe)
 end
 end
 end

Use this version for the homeworks, projects, and exams!
A* Graph Search Gone Wrong?

State space graph

Search tree

C is already in closed set
so not expanded again
Consistency of Heuristics

- **Main idea:** estimated heuristic costs ≤ actual costs
 - **Admissibility:** heuristic cost ≤ actual cost to goal
 \[h(A) \leq \text{actual cost from A to G} \]
 - **Consistency:** heuristic “arc” cost ≤ actual cost for each arc
 \[h(A) - h(C) \leq \text{cost}(A \text{ to } C) \]

- **Consequences of consistency:**
 - The f value along a path never decreases
 \[h(A) \leq \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal
Semi-Lattice of Heuristics
Trivial Heuristics, Dominance

- Dominance: \(h_a \geq h_c \) if
 \[\forall n : h_a(n) \geq h_c(n) \]

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic
Optimality of A* Graph Search
Optimality of A* Graph Search

- **Sketch:** consider what A* does with a consistent heuristic:
 - **Fact 1:** A* expands nodes in increasing total f value (f-contours)
 - **Fact 2:** For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - **Result:** A* graph search is optimal
Optimality

- **Tree search:**
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems
A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems