Announcements

= Project 0: Python Tutorial
= Due Jan 16th before midnight

= Homework 1
= Due Jan 18™ before midnight
= Covers today’s lecture.
" You can start today!
= Look at the practice problems first!

CS 6300: Search

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley http://ai.berkeley.edu.]

Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods

" Informed (heuristic) Search

Agents that Plan

Planning Agents

" Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal Planning
= Returns a least cost solution.

= Complete Planning
= |f there exists a solution it will find it.

= Planning vs. replanning

Video of Demo Mastermind

|

Pydey - Edipse

SCORE:

Video of Demo Replanning

SCORE: 0

Search Problems

Search Problems

= A search problem consists of:

s |0 0 0 I O

= A successor function N 1.0 n

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:

= |s state == Bucharest?

= Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

"= Problem: Pathing (go from location A to B) " Problem: Eat-All-Dots
= States: (x,y) location = States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
= Successor: update location only = Successor: update location
= Goal test: is (x,y)=END and possibly a dot boolean

m Goal test: dots all false

State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4 (~74 trillion)
= States for pathing?
120
= States for eat-all-dots?
120x(239)

Quiz: Safe Passage

" Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

" |n astate space graph, each state occurs only !
once!

" The goal test is a set of goal nodes (maybe only one) /'

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

In a search graph, each state occurs only once!

We can rarely build this full graph in memory

., _ . _ Tiny state space graph for a tiny
(it’s too big), but it’s a useful idea search problem

Search Trees

’ _ This is now / start
"N"‘,l.()/ “E”, 1.0
u H _ Possible futures

@

= A “what if” tree of plans and their outcomes

= Asearch tree:

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

S
—

d € P
T — — '
b C e h r q
I I - N 1
a a r p q f

AN I . /\
p f q C G
' -~ .
q C G a

; /

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How bigi;fltsgsia/rch tree (from S)?
a
b
2NN

N
)\
o 0 00X

What does the search tree look like?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

M Vaslui

Hirsova

86

Eforie

Searching with a Search Tree

Arad

CArad > CFagaras> COradea> @iricu Vieh)

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

General Tree Search

function T'REE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Example: Tree Search

(b = (&) 2
A\
S
o e

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: [1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bis the branching factor m tiers <

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
= 1+b+b?+...bM"=0(bM)

Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" [sitcomplete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

" [sitoptimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
-
®
Search
< © © ©® © @
Tiers | N PN |
a h r p q f
N | | RN
_ q f q (ll G
PN .

Breadth-First Search (BFS) Properties

= What nodes does BFS expand?
= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

_ . s tiers < ,
= Search takes time O(b?®) b2 nodes

* How much space does the fringe take? - / o \ bs nodes
= Has roughly the last tier, so O(b®)

" |sit complete? o b™ nodes
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Uniform Cost Search

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least g, then the
“effective depth” is roughly C*/¢

C*le “tiers” <
= Takes time O(b®"¢) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®"¢)

)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sitoptimal?
= Yes! (Proof via A*)

Uniform Cost Issues

= The bad:

= Explores options in every “direction”
= No information about goal location

Goal

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Graph Search

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-

Search Tree

A @

~

Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

d e p

N |

b/m h r q
| /ECD |

r f

- ®O L

f q c G
N |
G a

C
I
a

Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?

Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE|[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT(child-node, fringe)

end
end

Use this version for the homeworks, projects, and exams!

Some Hints for P1

Implement your closed list (explored set) as a set!

Nodes are conceptually paths, but better to represent with a state,
cost, last action, and reference to the parent node.

Pseudo code from Russell and Norvig book. Good example of how
a child node is created from a parent node.

function CHILD-NODE(problem, parent, action) returns a node
return a node with
STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)

The One Queue

= All these search algorithms are the
same except for fringe strategies L@z\?—\ D\L}J \@,\L@,\ . \@A
= Conceptually, all fringes are priority |

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

Informed Search

Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

=]

S —
. Heuristi—Tron

-
Heurlsti - Tron 4\

Example: Heuristic Function

] Vaslui

Timisoara

142
11

Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

L Craiova Eforie

[] Giurgiu

Gtra ight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

h(X)

Greedy Search

Example: Heuristic Function

] Vaslui

Timisoara

142
11

Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

L Craiova Eforie

[] Giurgiu

Gtra ight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

h(X)

Greedy Search

= Expand the node that seems closest...

Arad

Sibiu

329

380 193

366
253 0

= What can go wrong?

] Mehadia
75

Dobreta [J

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

P=741-3
= No: only stop when we dequeue a goal

Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuri !' ~Tron

Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

= Aisan optimal goal node

" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

-——

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
» -

f(n) =g(n) 4+ h(n) Definition of f-cost

f(n) < gn) +h(n Admissibility of h
= g(4) h =0 at a goal

. = f(4) y

Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A)is less than f(B) ~
g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

J

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe

Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands beforeB ———

All ancestors along optimal path to
A expand before B

A expands before B
A* search is optimal

Lf(?’L)Sf(A)<f(B)

|

Properties of A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

rEML

A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 4 7)1
s 6 E
8 3 1 s8N 6

Start State Actions

3
2

1@“

-7,

I ——

————

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State

8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x10°
TILES 13 39 227

Statistics from Andrew Moore

8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

Heuristics

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What’s wrong with it? ij /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT(child-node, fringe)

end
end

Use this version for the homeworks, projects, and exams!

A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

—

A (1+4) B(1+1)

| |

2+ C (3+1)
o

(5+0) G (6+0)

Cis already in closed set
so not expanded again

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

\
= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)

Optimality of A* Graph Search

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: A* expands nodes in increasing
total f value (f-contours)

" Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems

	Slide 1: Announcements
	Slide 2: CS 6300: Search
	Slide 3: Today
	Slide 4: Agents that Plan
	Slide 5: Planning Agents
	Slide 6: Video of Demo Mastermind
	Slide 7: Video of Demo Replanning
	Slide 8: Search Problems
	Slide 9: Search Problems
	Slide 10: Search Problems Are Models
	Slide 11: Example: Traveling in Romania
	Slide 12: What’s in a State Space?
	Slide 13: State Space Sizes?
	Slide 14: Quiz: Safe Passage
	Slide 15: State Space Graphs and Search Trees
	Slide 16: State Space Graphs
	Slide 17: State Space Graphs
	Slide 18: Search Trees
	Slide 19: State Space Graphs vs. Search Trees
	Slide 20: Quiz: State Space Graphs vs. Search Trees
	Slide 21: Tree Search
	Slide 22: Search Example: Romania
	Slide 23: Searching with a Search Tree
	Slide 24: General Tree Search
	Slide 25: Example: Tree Search
	Slide 26: Depth-First Search
	Slide 27: Depth-First Search
	Slide 28: Search Algorithm Properties
	Slide 29: Search Algorithm Properties
	Slide 30: Depth-First Search (DFS) Properties
	Slide 31: Breadth-First Search
	Slide 32: Breadth-First Search
	Slide 33: Breadth-First Search (BFS) Properties
	Slide 34: Cost-Sensitive Search
	Slide 35: Uniform Cost Search
	Slide 36: Uniform Cost Search
	Slide 37: Uniform Cost Search (UCS) Properties
	Slide 38: Uniform Cost Issues
	Slide 39: Video of Demo Empty UCS
	Slide 40: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 41: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 42: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 43: Graph Search
	Slide 44: Tree Search: Extra Work!
	Slide 45: Graph Search
	Slide 46: Graph Search
	Slide 47: Tree Search Pseudo-Code
	Slide 49: Graph Search Pseudo-Code
	Slide 50: Some Hints for P1
	Slide 51: The One Queue
	Slide 52: Informed Search
	Slide 53: Search Heuristics
	Slide 54: Example: Heuristic Function
	Slide 55: Greedy Search
	Slide 56: Example: Heuristic Function
	Slide 57: Greedy Search
	Slide 58: Greedy Search
	Slide 60: Video of Demo Contours Greedy (Pacman Small Maze)
	Slide 61: A* Search
	Slide 62: A* Search
	Slide 63: Combining UCS and Greedy
	Slide 64: When should A* terminate?
	Slide 65: Is A* Optimal?
	Slide 66: Admissible Heuristics
	Slide 68: Admissible Heuristics
	Slide 69: Optimality of A* Tree Search
	Slide 70: Optimality of A* Tree Search
	Slide 72: Optimality of A* Tree Search: Blocking
	Slide 73: Optimality of A* Tree Search: Blocking
	Slide 74: Optimality of A* Tree Search: Blocking
	Slide 75: Properties of A*
	Slide 77: UCS vs A* Contours
	Slide 78: Video of Demo Contours (Empty) -- UCS
	Slide 79: Video of Demo Contours (Empty) -- Greedy
	Slide 80: Video of Demo Contours (Empty) – A*
	Slide 81: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 82: Comparison
	Slide 83: A* Applications
	Slide 84: A* Applications
	Slide 88: Creating Admissible Heuristics
	Slide 89: Example: 8 Puzzle
	Slide 90: 8 Puzzle I
	Slide 91: 8 Puzzle II
	Slide 92: Heuristics
	Slide 93: Graph Search Pseudo-Code
	Slide 94: A* Graph Search Gone Wrong?
	Slide 95: Consistency of Heuristics
	Slide 96: Semi-Lattice of Heuristics
	Slide 97: Trivial Heuristics, Dominance
	Slide 98: Optimality of A* Graph Search
	Slide 99: Optimality of A* Graph Search
	Slide 100: Optimality
	Slide 101: A*: Summary
	Slide 102: A*: Summary

