Announcements

= Project 0: Python Tutorial
= Due Jan 16th before midnight

= Homework 1
= Due Jan 18™ before midnight
= Covers today’s lecture.
" You can start today!
= Look at the practice problems first!



CS 6300: Search

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley http://ai.berkeley.edu.]



Today

= Agents that Plan Ahead

= Search Problems

= Uninformed Search Methods

" Informed (heuristic) Search




Agents that Plan




Planning Agents

" Planning agents:
= Ask “what if”

= Decisions based on (hypothesized)
consequences of actions

= Must have a model of how the world evolves in
response to actions

= Must formulate a goal (test)
= Consider how the world WOULD BE

= Optimal Planning
= Returns a least cost solution.

= Complete Planning
= |f there exists a solution it will find it.

= Planning vs. replanning




Video of Demo Mastermind
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Video of Demo Replanning

SCORE: 0




Search Problems




Search Problems

= A search problem consists of:

s |0 0 0 I O

= A successor function N 1.0 n

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state



Search Problems Are Models




Example: Traveling in Romania

= State space:
= Cities
= Successor function:

= Roads: Go to adjacent city with
cost = distance

= Start state:
= Arad

= Goal test:

= |s state == Bucharest?

= Solution?



What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

"= Problem: Pathing (go from location A to B) " Problem: Eat-All-Dots
= States: (x,y) location = States: {(x,y), dot booleans}
= Actions: NSEW = Actions: NSEW
= Successor: update location only = Successor: update location
= Goal test: is (x,y)=END and possibly a dot boolean

m  Goal test: dots all false



State Space Sizes?

= World state:
= Agent positions: 120
= Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4 (~74 trillion)
= States for pathing?
120
= States for eat-all-dots?
120x(239)




Quiz: Safe Passage

" Problem: eat all dots while keeping the ghosts perma-scared
= What does the state space have to specify?

= (agent position, dot booleans, power pellet booleans, remaining scared time)



State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)

" |n astate space graph, each state occurs only !
once!

" The goal test is a set of goal nodes (maybe only one) /'

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea




State Space Graphs

State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
" The goal test is a set of goal nodes (maybe only one)

In a search graph, each state occurs only once!

We can rarely build this full graph in memory

., _ . _ Tiny state space graph for a tiny
(it’s too big), but it’s a useful idea search problem



Search Trees

’ _ This is now / start
"N"‘,l.()/ “E”, 1.0
u H _ Possible futures

@

= A “what if” tree of plans and their outcomes

= Asearch tree:

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How bigi;fltsgsia/rch tree (from S)?
a
b
2NN

N
)\
o 0 00X

What does the search tree look like?

Important: Lots of repeated structure in the search tree!



Tree Search



Search Example: Romania

M Vaslui

Hirsova

86

Eforie




Searching with a Search Tree

Arad

CArad > CFagaras> COradea>  @iricu Vieh)

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible



General Tree Search

function T'REE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

" |[mportant ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?




Example: Tree Search
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Depth-First Search




Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack




Search Algorithm Properties




Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

: [ 1 node
Space complexity?
b nodes
2

Cartoon of search tree: | b* nodes

= bis the branching factor m tiers <

" mis the maximum depth

= solutions at various depths

\ b™ nodes

Number of nodes in entire tree?
= 1+b+b?+...bM"=0(bM)



Depth-First Search (DFS) Properties

= What nodes DFS expand?

= Some left prefix of the tree. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
= How much space does the fringe take?
= Only has siblings on path to root, so O(bm)
" [sitcomplete? b™ nodes

= m could be infinite, so only if we prevent
cycles (more later)

" [sitoptimal?

= No, it finds the “leftmost” solution,
regardless of depth or cost



Breadth-First Search




Strategy: expand a
shallowest node first

Implementation: Fringe

Breadth-First Search

is a FIFO queue
-
®
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Breadth-First Search (BFS) Properties

= What nodes does BFS expand?
= Processes all nodes above shallowest solution b 1 node
= Let depth of shallowest solution be s b nodes

_ . s tiers < ,
= Search takes time O(b?®) b2 nodes

* How much space does the fringe take? - / o \ bs nodes
= Has roughly the last tier, so O(b®)

" |sit complete? o b™ nodes
= s must be finite if a solution exists, so yes!

" |sit optimal?
= Only if costs are all 1 (more on costs later)



Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.



Uniform Cost Search




Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost
contours




Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least g, then the
“effective depth” is roughly C*/¢

C*le “tiers” <
= Takes time O(b®"¢) (exponential in effective depth)

= How much space does the fringe take?
= Has roughly the last tier, so O(b®"¢)

)
O/

" |sit complete?

= Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

" [sitoptimal?
= Yes! (Proof via A*)



Uniform Cost Issues

= The bad:

= Explores options in every “direction”
= No information about goal location

Goal

[Demo: empty grid UCS (L2D5)]
[Demo: maze with deep/shallow
water DFS/BFS/UCS (L2D7)]



Video of Demo Empty UCS




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)




Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)




Graph Search




Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \

-

Search Tree
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Graph Search

" |n BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search

ldea: never expand a state twice

How to implement:

= Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been
expanded before

= |f not new, skip it, if new add to closed set

Important: store the closed set as a set, not a list
Can graph search wreck completeness? Why/why not?

How about optimality?



Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do

if fringe is empty then return failure

node <— REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE|[node|) then return node

for child-node in EXPAND(STATE|node|, problem) do

fringe < INSERT(child-node, fringe)

end

end




Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT( child-node, fringe)

end
end

Use this version for the homeworks, projects, and exams!



Some Hints for P1

Implement your closed list (explored set) as a set!

Nodes are conceptually paths, but better to represent with a state,
cost, last action, and reference to the parent node.

Pseudo code from Russell and Norvig book. Good example of how
a child node is created from a parent node.

function CHILD-NODE( problem, parent, action) returns a node
return a node with
STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)




The One Queue

= All these search algorithms are the
same except for fringe strategies L@z\?—\ D\L}J \@,\L@,\ . \@A
= Conceptually, all fringes are priority |

queues (i.e. collections of nodes with
attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object




Informed Search




Search Heuristics

= A heuristic is:

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

=]

S —
. Heuristi—Tron

-
Heurlsti - Tron 4\




Example: Heuristic Function

] Vaslui

Timisoara

142
11

Pitesti

98

] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

L Craiova Eforie

[ ] Giurgiu

Gtra ight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

h(X)



Greedy Search




Example: Heuristic Function
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L Craiova Eforie

[ ] Giurgiu

Gtra ight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

h(X)



Greedy Search

= Expand the node that seems closest...

Arad

Sibiu

329

380 193

366
253 0

= What can go wrong?

] Mehadia
75

Dobreta [J




Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]



Video of Demo Contours Greedy (Pacman Small Maze)




A* Search




A* Search



Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager



When should A* terminate?

= Should we stop when we enqueue a goal?

P=741-3
= No: only stop when we dequeue a goal



Is A* Optimal?

h=6

= What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!



Admissible Heuristics

Heuri !' ~Tron



Admissible Heuristics
= A heuristic h is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.




Optimality of A* Tree Search




Optimality of A* Tree Search

Assume:

= Aisan optimal goal node

" Bisasuboptimal goal node
" hisadmissible

Claim:

= A will exit the fringe before B



Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

-——

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)
» -

f(n) =g(n) 4+ h(n) Definition of f-cost

f(n) < gn) +h(n Admissibility of h
= g(4) h =0 at a goal

. = f(4) y




Optimality of A* Tree Search: Blocking

Proof:
" |magine B is on the fringe

= Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

= Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A)is less than f(B) ~
g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal

J




Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe

Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe Al)

Claim: n will be expanded before B
1. f(n) is less or equal to f(A)
2. f(A)is less than f(B)

3. nexpands beforeB ———

All ancestors along optimal path to
A expand before B

A expands before B
A* search is optimal

Lf(?’L)Sf(A)<f(B)

|




Properties of A*



UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]



Video of Demo Contours (Empty) -- UCS




Video of Demo Contours (Empty) -- Greedy




Video of Demo Contours (Empty) — A*




Video of Demo Contours (Pacman Small Maze) — A*




Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*



A* Applications

rEML




A* Applications

= Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]



Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too



Example: 8 Puzzle

7 2 4 7)1
s 6 E
8 3 1 s8N 6

Start State Actions

3
2

1@“

-7,

I ——

————

What are the states?

How many states?

What are the actions?

How many successors from the start state?
What should the costs be?

!

3
&

p)
|5
7 |®

Goal State




8 Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x10°
TILES 13 39 227

Statistics from Andrew Moore



8 Puzzle Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

Total Manhattan distance

Start State

Why is it admissible?

h(start)= 3+1+2+..=18

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73




Heuristics

= How about using the actual cost as a heuristic?
= Would it be admissible?

" Would we save on nodes expanded?
* What’s wrong with it? ij /t

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself



Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem]), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT( child-node, fringe)

end
end

Use this version for the homeworks, projects, and exams!



A* Graph Search Gone Wrong?

State space graph

Search tree

S (0+2)

—

A (1+4) B(1+1)

| |

2+ C (3+1)
o

(5+0) G (6+0)

Cis already in closed set
so not expanded again



Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G
= Consistency: heuristic “arc” cost < actual cost for each arc

\
= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal



Semi-Lattice of Heuristics



Trivial Heuristics, Dominance

= Dominance: h, > h_if

Vn : hg(n) > he(n)

= Heuristics form a semi-lattice:

= Max of admissible heuristics is admissible

h(n) = maz(ha(n), hp(n))

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)

= Top of lattice is the exact heuristic

exact
|

max(hg, hy)



Optimality of A* Graph Search




Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: A* expands nodes in increasing
total f value (f-contours)

" Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal



Optimality

Tree search:
= A* s optimal if heuristic is admissible
= UCS s a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems




A*: Summary




A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible / consistent heuristics

" Heuristic design is key: often use relaxed problems
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