CS 6300: Artificial Intelligence

Reinforcement Learning Ill: Policy Gradients

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Rough Taxonomy of RL Algorithms

R W Q\%[g ’Q> RL Algorithms

f TR
: T,
Model-Free RL Model-Based RL
J = L
\ & (S(N 1
1 { 3

Policy Optimization Q-Learning Learn the Model Given the Model

N ﬂw\ C-D

Policy Gradient — —> (DQNT World Models \—P{ AlphaZero |
—> DDPG b)) -)
—> C51

A2C [/ A3C <— [2A

h 4

h 4

> TD3 R—

¥

PPO «— ———> QR-DQN
— SAC —

MBMF

TRPO Rl — HER > MBVE

What is the goal of RL?

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0

Two approarycj\es to god;el-free RL
T)

. /S
7 Learn Q-values A Se) &+ TET =

" Trains Q-values to be consistent. Not directly optimizing for
performance.

= Use an objective based on the Bellman Equation

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

= Learn Policy Directly
" Have a parameterized policy mg

» Update the parameters 6 to optimize performance of policy.
6

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best

= E.g.your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= We'll see this distinction between modeling and prediction again later in the course

<
e S 0 0

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing

on feature weights N
I pek ot & = T fse)

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

"= Nudge each feature weight up and down and see if your policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Preliminaries
> [E 233

L

" Trajectory (rollout, episode) T = (SO, aO,Sl,al,)
"So ~ po()y Sey1 ~ PClspar) (9. ao 5)
" Rewards 13 = R(S¢, Ag, Sg+1)

" Finite-horizon undiscounted return of a trajectory
T — pes S

R(T) = Zrt

t=0
= Actions are sampled from a parameterized policy g
ar ~ g (- |St)

Preliminaries "/~ f<> UQLED)

" Probability of a trajectory (roIIout episode) T = (Sg, Ay, S1, A4, :-7)
6
nyY
P(z|m) = po(sp) ‘ ‘ P(S¢y1lse, ag)mg(ag|se)

Z@(x> X
= Expected Return of a pollcy](n) P%

J@) =) P RE) = EeenlRD) = e

(Cse,5")et
" Goal of RL: Solve the following optimization problem
m* = argmax J ()
T

How should we parameterize our policy?

= We need to be able to do two things:
» Sample actions a; ~ g (- |S¢)
= Compute log probabilities log g (a;|s;)
= Categorical (classifier over discrete actions)

» Typically, you output a value x; for each action (class) and then the

probability is given by a softmax equation - It e
A= er

o ()
N N
A AN
N0 et S\ AN
i o SR\ AN o NS
N e Syt e MKIINNE o

exp(x;)
jexp(x;)

- mg(a;|s) = 5

7NN

O
IR 7
RNIHINOZL

How should we parameterize our policy?

" Diagonal Gaussian (distribution over continuous actions)
a~N(uZx)
where 2 has non-zero elements only on the diagonal.

Thus, an action can be sampled as AN
a = p(s) + 04(s)Oz, z ~N(0,I)

T
7 7

(//A\Q,A\\‘ 4//A\¢,A\\‘

%A}v/

“\\ 1// .« ,., ll/ K »«/
RO 4'4' ‘ ‘ / N 4'/'
‘t“\ /l ‘1 "’5"‘\\\’ lb / \:‘{ ‘\ bl,’

X /:Q'A.

A 0'//
«' "%"\ y:»:’:.

w '“ \ >
’ . ‘ \ ‘: \“‘,."4)‘&
\\‘" "‘,,‘e:t“‘O " '»\ JAXL

‘ .',,i' \&'w(‘x ' /[f"‘\\‘ ."‘\& -

He S

00 '. X
NATAVA /"‘.'?’v” %, M / RN
”“““' .‘.2";‘: v /ﬂ’/ X \‘\\\ H‘ ."A.K"&
\\'/ut\o ‘,,e:\.ﬂn //0"0

v.w T
‘\\'-'\\\v/"“‘w/)'/"

0 v
//" “' 'I," (“

Goal: Update Policy via Gradient Ascent

= We have a parameterized policy and we want to update it so that
it maximizes the expected return.

" We want to find the gradient of the return with respect to the
policy parameters and step in that direction.

Or+1 < Ok + aVy/(my) .
k

Policy gradient

15

Fact #1

" Probability of a trajectory:

* The probability of a trajectory T = (g, ag, ... ST+1) given that actions
come from 1y is

T—1
P(z|m) = po(sg) 1_[P(S¢i1lse ap)mg(ag|se)
t=0

16

Fact #2

" | og-probability of a trajectory:

* The log-probability of a trajectory T = (s, ag, ... S7+1) given that
actions come from 1y is

T
log P(z|m) = log | po(so) I_IP(St+1|Str a.)mg(az|se)
t=0

= log po(Sop)
T

+ z(log P(s¢+1lse ae) + log mg(ae|se))
t=0

Fact #3

" Grad-Log-Prob of a Trajectory
=" Note that gradients of everything that doesn’t depend on 8 is O.

- [>

T
7y log P(r10) = vM ; E(VW) + Vg log o (acls)
t=0

T
= Z(vg log g (a|st))
t=0

Fact #4

= Log-Derivative Trick: T Q YT X
= This is based on the rule from calculus that the derivative of log x is 1/x

(@
VoP(t|m) :\P(T‘@Vglogp(ﬂ@)

d 4, 1 d d 1 d
. 0ogg(x) = g(x)dxg(x) = g(X) ogg(x) = dxg(x)

Derivation of Policy Gradient

(e (= 2P
Vol (1g) = VL7 rm, [R(7)] ﬁ:(!

— VH ZTP(Tlg)R(T)

E
=Y. VoP(Tl)R(D) Ik
= Y. P(z10)Vg log P(z]6) R(7) Fact #4
= Erong[VglogP(|0) R(D)] 0o

— Er~ng[Z=O Volog g (ac|s:) R(T)] Fact#s

The Policy Gradient ¢/ jjurorcc=

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘9
k

Vo) (6) = Ern, Zve log 7(acs) R(2)

od
- by T

Estimate with a

sample mean over a sz Lo ma(als.) R
set D of policy rollouts |D| o logme(ar|se) R(7)
given current TED t=

parameters

How would you implement this?

1. Start with random policy parameters 6,

. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.
a; ~1mg (- |s:) = (Sg, a9, 1, S1, A1, 71y oo V7> ST 1) % N/o(“)
D ={tq,..Tn}, R = {R(11),...R(ty)}

. Compute policy gradient

(T
Vo] (tg) = Erop, 2 Vg log mg(at|s:) R(7)
. Update policy parameters =0

O1 < Ok +aVy) (1) ‘9
k
. Repeat (Go to 2)

Some more intuition (thanks to Andrej Karpathy)

« Blue Dots: samples from Gaussian

- Blue arrows: gradients of the log * We score each sample * To update the Gaussian mean
probability with respect to the * Red have score -1 parameter, we average up all the
« Green have scores +1 green arrows, and the negative of

aussian's mean parameter
9 P the red arrows.

after a parameter update

Samples from this distribution will have a
higher expected score, as desired.

samples x and
Vg log p(x)
for the mea

T
- Vo) (6) = Erny |) Vo log mo(arlse) R(7)
https://karpathy.github.io/2016/05/31/rl/ o

Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.

" Pros:
" Directly optimize what we care about: Utility!
= Naturally handles continuous action spaces!
" Can learn specific probabilities for taking actions.
» Often more stable than value-based methods (e.g. DQN).

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

4
oo, 0SS & TS, St 1L Ve
T

T
VQJ(’JTQ) — T’]??T.q Z V@ log ﬂ_ﬂ(at|5t)(1)t
| t=0 i L/
T Za
- . Follows a similar
What we derived: (I)t — R(T):, derivaies b, = Z R(Sf, at , 8t’+1)p
t'=t

https://medium.com/@thechrisyoon/deriving-policy-
gradients-and-implementing-reinforce-f887949bd63

" What is better about the second approach?
" Focuses on rewards in the future!
" Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

VQJ(’JTQ) = E Z V@ log ﬂ_&'(at|5t)(1)f

T~
| t=0

T

O, = Z R(St’: agr, 8t*+1): Q?T St, CLt

t—t T s
@U/“}// B//{Z);%Q(é bg} SecS A = &

= Now we have an approach that combines a parameterized policy
and a parameterized value function!

Looks familiar..

I rotate
the piece

Really bad
action

da h :
ﬂ[(/‘/ﬁ ?“AC$M

o Critic

Approximate Q-Learning

QGs,0) = wifa(s,) twnfa(s @)+ Funalsia) |

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) « Q(s,a) + «[difference] Exact Q’s

difference = [7" + v max Q(s',a")
a

w; «— w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = 5 (y - Zwkfk@c))
k

Approximate g update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”

0« O+a(r+ymaxQr(s’,a’;07)—Q(s,a;0))VeQ(s, a; 0)

Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

1‘J;sllu

Function

[T
Vo) () = Erony |) Vologmg(arls,) Qi (se, ar)

=0

state action

reward 0 = (ry + VQv7\TzH (5t+1,at+1) - Qv7\T/9 (St ar))

4[Environment }~ T 0
Wit1 < Wi + a0:VgQ,

Q Actor Critic Algorithm Pseudo Code

Algorithm 1) Actor Critic

Initialize parameters s, 0, w and learning rates ay, ay,; sample a ~ my(als).
fort=1...T: do

Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s, a)

Then sample the next action a’ ~ my(a’|s’)
[Update the policy parameters: 6 < 0+ apQ (s, a)Vglogmg(als); Compute
the correction (TD error) for action-value at time t:

—_—

o0t =1t +YQw(s',a") — Qu(s,a)
and use it to update the parameters of () function:
W — W + Q0 Vo Qo (S, a)
Move to a < a’ and s < s’
end for

Adapted from Lilian Weng’s post “Policy Gradient algorithms”

Many forms of policy gradients

-7 -
VQJ(’JTQ) — T’]??T.q Z V@ log ﬂ_ﬂ(at|5t)(1)t
Y a _
(I)t — R(T)j (ﬁt = Z R(Strj g, 8t’+1); X (I)t == Qﬂg (St, CLt)
X _
(Dt — Z R(Sf, ay, St’—H) — b(St) \ : b@/\/f:jjﬁmﬂ
t'=t [— .)
&58[//\X (D
0 77

(I)t — Aﬂ-(st}ai) — QW(St?&t) T V?T(St) AL

Advantage Function

Advantage Actor Critic (A2C)

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

Policy gradient update

T
Vod(mg) = E Y Veologm(as|se) @y Or+1 < Ok + aVg](mp) .
=0 k

TD-Learning update

Oy = A™(sp,) = Q" (51,) — V7 (s1) Wis1 < W + ab:V,V (s, a;w)
Erpesoi T .

TD error §; =mt) + YV (S¢rq) — VT(St)

Rough Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient —

Cﬁm A3C —

PPO o

RL Algorithms

!

Model-Free RL Model-Based RL
/)
— i
B\ }
Q-Learning Learn the Model
—> DQN \/ *» World Models
—* DDPG -] ' ’
—> C51 > I2A
—> TD3 b
— QR-DQN > MBMF
—* SAC -]
—> HER MBVE

TRPO -«

\

Given the Model

\—P{ AlphaZero

Model-Based RL via Model-Predictive Control

S& Q4+ Vy S{;%/

= Use model to plan good — i S S
. H1 H3 (£ —e— Ground Truth it
looking sequence of O O B e it

actions.
= Take a step

= Update model of sev1 = fo(se, ar) argmax > 7 (st, a)
transitions Dynamics Model Control and Planning

@

= Repeat
P Sty T't

<_ad

39

= Next time: Alpha Go

40

	Slide 1: CS 6300: Artificial Intelligence
	Slide 2: Rough Taxonomy of RL Algorithms
	Slide 3
	Slide 4
	Slide 5: What is the goal of RL?
	Slide 6: Two approaches to model-free RL
	Slide 7: Policy Search
	Slide 8: Policy Search
	Slide 9: Policy Search
	Slide 10: Policy Search
	Slide 11: Preliminaries
	Slide 12: Preliminaries
	Slide 13: How should we parameterize our policy?
	Slide 14: How should we parameterize our policy?
	Slide 15: Goal: Update Policy via Gradient Ascent
	Slide 16: Fact #1
	Slide 17: Fact #2
	Slide 18: Fact #3
	Slide 19: Fact #4
	Slide 20: Derivation of Policy Gradient
	Slide 21: The Policy Gradient
	Slide 22: How would you implement this?
	Slide 23: Some more intuition (thanks to Andrej Karpathy)
	Slide 24: Policy Gradient RL Algorithms
	Slide 25: Many forms of policy gradients
	Slide 26: Many forms of policy gradients
	Slide 27
	Slide 28: Approximate Q-Learning
	Slide 29: Minimizing Error
	Slide 30: Actor Critic Algorithms
	Slide 31: Q Actor Critic Algorithm Pseudo Code
	Slide 32: Many forms of policy gradients
	Slide 33: Advantage Actor Critic (A2C)
	Slide 38: Rough Taxonomy of RL Algorithms
	Slide 39: Model-Based RL via Model-Predictive Control
	Slide 40

