Rough Taxonomy of RL Algorithms

\[\pi(s) = \operatorname{arg\,max}_a Q^*(s,a) \]

Policy Optimization
- Policy Gradient
 - A2C / A3C
 - PPO
 - TRPO
- DDPG
- TD3
- SAC

Q-Learning
- DQN
- C51
- QR-DQN
- HER

Learn the Model
- World Models
 - I2A
 - MBMF
 - MBVE

Given the Model
- AlphaZero

Model-Free RL

Model-Based RL

T, R
What is the goal of RL?

- Find a policy that maximizes expected utility (discounted cumulative rewards)

\[\pi^* = \arg \max_{\pi} E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s, \pi(s), s') \right] \]
Two approaches to model-free RL

- **Learn Q-values**
 - Trains Q-values to be consistent. Not directly optimizing for performance.
 - Use an objective based on the Bellman Equation

\[
Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
\]

- **Learn Policy Directly**
 - Have a parameterized policy \(\pi_\theta \)
 - Update the parameters \(\theta \) to optimize performance of policy.
Policy Search
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them

- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

\[\pi(s) = \arg\max_a Q(s,a) = \arg\max_a \sum_{i=1}^K w_i f_i(s,a) \]
Policy Search

- **Simplest policy search:**
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- **Problems:**
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
Policy Search
Preliminaries

- Trajectory (rollout, episode) $\tau = (s_0, a_0, s_1, a_1, ...)$
 - $s_0 \sim \rho_0(\cdot), \ s_{t+1} \sim P(\cdot | s_t, a_t)$

- Rewards $r_t = R(s_t, a_t, s_{t+1})$

- Finite-horizon undiscounted return of a trajectory
 $$R(\tau) = \sum_{t=0}^{T} r_t$$

- Actions are sampled from a parameterized policy π_θ
 $$a_t \sim \pi_\theta(\cdot | s_t)$$
Preliminaries

- **Probability of a trajectory (rollout, episode)**
 \[
 \tau = (s_0, a_0, s_1, a_1, \ldots)
 \]

 \[
 P(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t)\pi_\theta(a_t|s_t)
 \]

- **Expected Return of a policy**
 \[
 J(\pi) = \sum_{\tau} P(\tau|\pi) R(\tau) = E_{\tau \sim \pi}[R(\tau)]
 \]

- **Goal of RL: Solve the following optimization problem**
 \[
 \pi^* = \arg\max_\pi J(\pi)
 \]
How should we parameterize our policy?

- We need to be able to do two things:
 - Sample actions $a_t \sim \pi_\theta(\cdot | s_t)$
 - Compute log probabilities $\log \pi_\theta(a_t | s_t)$

- Categorical (classifier over discrete actions)
 - Typically, you output a value x_i for each action (class) and then the probability is given by a softmax equation:
 \[
 \pi_\theta(a_i | s) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}
 \]
How should we parameterize our policy?

- Diagonal Gaussian (distribution over continuous actions)

\[
a \sim N(\mu, \Sigma)
\]

where \(\Sigma \) has non-zero elements only on the diagonal.

Thus, an action can be sampled as

\[
a = \mu_\theta(s) + \sigma_\phi(s) \odot z, \quad z \sim N(0, I)
\]
Goal: Update Policy via Gradient Ascent

- We have a parameterized policy and we want to update it so that it maximizes the expected return.
- We want to find the gradient of the return with respect to the policy parameters and step in that direction.

\[
\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_\theta) \bigg|_{\theta_k}
\]

Policy gradient
Fact #1

- **Probability of a trajectory:**
 - The probability of a trajectory $\tau = (s_0, a_0, ... s_{T+1})$ given that actions come from π_θ is
 $$P(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t)$$
Fact #2

- **Log-probability of a trajectory:**
 - The log-probability of a trajectory \(\tau = (s_0, a_0, \ldots s_{T+1}) \) given that actions come from \(\pi_\theta \) is

 \[
 \log P(\tau|\pi) = \log \left(\prod_{t=0}^{T} P(s_{t+1}|s_t, a_t)\pi_\theta(a_t|s_t) \rho_0(s_0) \right) \\
 = \log \rho_0(s_0) \\
 + \sum_{t=0}^{T} \left(\log P(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t) \right)
 \]
Fact #3

- Grad-Log-Prob of a Trajectory
 - Note that gradients of everything that doesn’t depend on θ is 0.

$$\nabla_{\theta} \log P(\tau|\theta) = \nabla_{\theta} \log \rho_0(s_0) + \sum_{t=0}^{T} (\nabla_{\theta} \log P(s_{t+1}|s_t, a_t) + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t))$$

$$= \sum_{t=0}^{T} (\nabla_{\theta} \log \pi_{\theta}(a_t|s_t))$$
Fact #4

- **Log-Derivative Trick:**
 - This is based on the rule from calculus that the derivative of $\log x$ is $1/x$

\[
\frac{d}{dx} \log x = \frac{1}{x}
\]

\[
\nabla_\theta P(\tau|\pi) = P(\tau|\pi)\nabla_\theta \log P(\tau|\theta)
\]

\[
\frac{d}{dx} \log g(x) = \frac{1}{g(x)} \frac{d}{dx} g(x) \Rightarrow g(x) \frac{d}{dx} \log g(x) = \frac{d}{dx} g(x)
\]
Derivation of Policy Gradient

\[\nabla_{\theta} J(\pi_\theta) = \nabla_{\theta} E_{\tau \sim \pi_\theta} [R(\tau)] \]

\[= \nabla_{\theta} \sum_{\tau} P(\tau | \theta) R(\tau) \]

\[= \sum_{\tau} \nabla_{\theta} P(\tau | \theta) R(\tau) \]

\[= \sum_{\tau} P(\tau | \theta) \nabla_{\theta} \log P(\tau | \theta) R(\tau) \]

\[= E_{\tau \sim \pi_\theta} [\nabla_{\theta} \log P(\tau | \theta) R(\tau)] \]

\[= E_{\tau \sim \pi_\theta} [\sum_{t=0}^{T} \nabla_{\theta} \log \pi_\theta (a_t | s_t) R(\tau)] \]
The Policy Gradient

- We can now perform gradient ascent to improve our policy!

\[\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_\theta J(\pi_\theta) \bigg|_{\theta_k} \]

\[\nabla_\theta J(\pi_\theta) = E_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_\theta \log \pi_\theta(a_t|s_t) R(\tau) \right] \]

Estimate with a sample mean over a set \(D \) of policy rollouts given current parameters:

\[\approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_\theta \log \pi_\theta(a_t|s_t) R(\tau) \]
1. Start with random policy parameters θ_0

2. Run the policy in the environment to collect N rollouts (episodes) of length T and save returns of each trajectory.

 \[a_t \sim \pi_\theta (\cdot | s_t) \Rightarrow (s_0, a_0, r_0, s_1, a_1, r_1, …, r_T, s_{T+1}) \]

 \[D = \{\tau_1, … \tau_N\}, \quad R = \{R(\tau_1), … R(\tau_N)\} \]

3. Compute policy gradient

 \[\nabla_{\theta} J(\pi_\theta) = E_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_\theta (a_t | s_t) \, R(\tau) \right] \]

4. Update policy parameters

 \[\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_\theta) \bigg|_{\theta_k} \]

5. Repeat (Go to 2)
Some more intuition (thanks to Andrej Karpathy)

- Blue Dots: samples from Gaussian
- Blue arrows: gradients of the log probability with respect to the gaussian's mean parameter
- We score each sample
 - Red have score -1
 - Green have scores +1
- To update the Gaussian mean parameter, we average up all the green arrows, and the negative of the red arrows.

\[
\nabla_\theta J(\pi_\theta) = E_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_\theta \log \pi_\theta(a_t | s_t) \ R(\tau) \right]
\]

https://karpathy.github.io/2016/05/31/rl/
Policy Gradient RL Algorithms

- We can directly update the policy to achieve high reward.

- Pros:
 - Directly optimize what we care about: Utility!
 - Naturally handles continuous action spaces!
 - Can learn specific probabilities for taking actions.
 - Often more stable than value-based methods (e.g. DQN).

- Cons:
 - On-Policy -> Sample-inefficient we need to collect a large set of new trajectories every time the policy parameters change.
 - Q-Learning methods are usually more data efficient since they can reuse data from any policy (Off-Policy) and can update per sample.
Many forms of policy gradients

\[\nabla_{\theta} J(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_\theta(a_t|s_t) \Phi_t \right] \]

What we derived: \(\Phi_t = R(\tau) \),

Follows a similar derivation: \(\Phi_t = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) \),

- What is better about the second approach?
 - Focuses on rewards in the future!
 - Less variance \(\rightarrow \) less noisy gradients.
Many forms of policy gradients

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_\theta \log \pi_\theta(a_t|s_t) \Phi_t \right]$$

$$\Phi_t = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1})$$

Looks familiar….

$$Q(s, a) = \mathbb{E} \left[\frac{1}{T} \sum_{t=t}^{T} R(s_t, a_t, s_{t+1}) \mid s_0 = s, a_0 = a \right]$$

$$\Phi_t = Q^{\pi_\theta}(s_t, a_t)$$

- Now we have an approach that combines a parameterized policy and a parameterized value function!
Actor: I rotate the piece

Critic: Really bad action

Value Function
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Q-learning with linear Q-functions:
 - transition = \((s, a, r, s')\)
 - difference = \[r + \gamma \max_{a'} Q(s', a') \] - \(Q(s, a) \)
 - \(Q(s, a) \leftarrow Q(s, a) + \alpha \text{[difference]} \)
 - \(w_i \leftarrow w_i + \alpha \text{[difference]} f_i(s, a) \)

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- Formal justification: online least squares
Minimizing Error

Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2
\]

Approximate q update explained:

\[
w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)
\]

“target” \quad “prediction”

\[
\theta \leftarrow \theta + \alpha \left(r + \gamma \max_{a'} Q_T(s', a'; \theta^-) - Q(s, a; \theta) \right) \nabla_\theta Q(s, a; \theta)
\]
Actor Critic Algorithms

- Combining value learning with direct policy learning
 - One example is policy gradient using the advantage function

\[
\nabla_\theta J(\pi_\theta) = \mathbb{E}_{t \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_\theta \log \pi_\theta (a_t | s_t) Q_{w_{\pi_\theta}} (s_t, a_t) \right]
\]

\[
\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_\theta J(\pi_\theta) \bigg|_{\theta_k}
\]

\[
\delta = (r_t + \gamma Q_{w_{\pi_\theta}} (s_{t+1}, a_{t+1}) - Q_{w_{\pi_\theta}} (s_t, a_t))
\]

\[
w_{k+1} \leftarrow w_k + \alpha \delta_t \nabla_\theta Q_{w_{\pi_\theta}}
\]
Algorithm 1 Q Actor Critic

Initialize parameters s, θ, w and learning rates $\alpha_{\theta}, \alpha_{w}$; sample $a \sim \pi_{\theta}(a|s)$.

for $t = 1 \ldots T$: do

Sample reward $r_t \sim R(s, a)$ and next state $s' \sim P(s'|s, a)$

Then sample the next action $a' \sim \pi_{\theta}(a'|s')$

Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta}Q_{w}(s, a)\nabla_{\theta} \log \pi_{\theta}(a|s)$; Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q_{w}(s', a') - Q_{w}(s, a)$$

and use it to update the parameters of Q function:

$$w \leftarrow w + \alpha_{w}\delta_t \nabla_{w} Q_{w}(s, a)$$

Move to $a \leftarrow a'$ and $s \leftarrow s'$

end for

Adapted from Lilian Weng's post “Policy Gradient algorithms”
Many forms of policy gradients

$$\nabla_\theta J(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=1}^{T} \nabla_\theta \log \pi_\theta(a_t | s_t) \Phi_t \right]$$

$$\Phi_t = R(\tau), \quad \Phi_t = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}), \quad \Phi_t = Q^{\pi_\theta}(s_t, a_t)$$

$$\Phi_t = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) - b(s_t)$$

$$\Phi_t = A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t)$$

Advantage Function
Advantage Actor Critic (A2C)

- Combining value learning with direct policy learning
 - One example is policy gradient using the advantage function

\[
\nabla_\theta J(\pi_\theta) = \mathbb{E}_{\tau \sim \pi_\theta} \left[\sum_{t=0}^{T} \nabla_\theta \log \pi_\theta(a_t | s_t) \Phi_t \right]
\]

\[
\Phi_t = A^\pi(s_t, a_t) = Q^\pi(s_t, a_t) - V^\pi(s_t)
\]

TD error \(\delta_t = r(s_t, a_t) + \gamma V^\pi(s_{t+1}) - V^\pi(s_t) \)

Policy gradient update

\[
\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_\theta J(\pi_\theta) \bigg|_{\theta_k}
\]

TD-Learning update

\[
w_{k+1} \leftarrow w_k + \alpha \delta_t \nabla_w V(s, a; w)
\]
Rough Taxonomy of RL Algorithms

RL Algorithms

Model-Free RL

Policy Optimization
- Policy Gradient
 - A2C / A3C
 - PPO
 - TRPO
- DDPG
- TD3
- SAC

Q-Learning
- DQN
- C51
- QR-DQN
- HER

Learn the Model
- World Models
 - I2A
 - MBMF
 - MBVE

Given the Model
- AlphaZero
Model-Based RL via Model-Predictive Control

- Use model to plan good looking sequence of actions.
- Take a step
- Update model of transitions
- Repeat
Next time: Alpha Go