
CS 6300: Artificial Intelligence
Reinforcement Learning III: Policy Gradients

Instructor: Daniel Brown --- University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel  http://ai.berkeley.edu.]



Rough Taxonomy of RL Algorithms

2



3



4



What is the goal of RL?

▪ Find a policy that maximizes expected utility (discounted 
cumulative rewards)

𝜋∗ = 𝑎𝑟𝑔max
𝜋

𝐸𝜋 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠, 𝜋 𝑠 , 𝑠′



Two approaches to model-free RL

▪ Learn Q-values

▪ Trains Q-values to be consistent. Not directly optimizing for 
performance.

▪ Use an objective based on the Bellman Equation

▪ Learn Policy Directly

▪ Have a parameterized policy  𝜋𝜃

▪ Update the parameters 𝜃 to optimize performance of policy. 
6



Policy Search



Policy Search

▪ Problem: often the feature-based policies that work well (win games, maximize 
utilities) aren’t the ones that approximate V / Q best
▪ E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they 

still produced good decisions

▪ Q-learning’s priority: get Q-values close (modeling)

▪ Action selection priority: get ordering of Q-values right (prediction)

▪ We’ll see this distinction between modeling and prediction again later in the course

▪ Solution: learn policies that maximize rewards, not the values that predict them

▪ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing 
on feature weights



Policy Search

▪ Simplest policy search:

▪ Start with an initial linear value function or Q-function

▪ Nudge each feature weight up and down and see if your policy is better than before

▪ Problems:

▪ How do we tell the policy got better?

▪ Need to run many sample episodes!

▪ If there are a lot of features, this can be impractical

▪ Better methods exploit lookahead structure, sample wisely, change 
multiple parameters…



Policy Search

[Andrew Ng] [Video: HELICOPTER]



Preliminaries

▪ Trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, … )

▪ 𝑠0 ∼ 𝜌0 ⋅ , 𝑠𝑡+1 ∼ 𝑃(⋅ |𝑠𝑡 , 𝑎𝑡)

▪ Rewards 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

▪ Finite-horizon undiscounted return of a trajectory

𝑅 𝜏 = ෍

𝑡=0

𝑇

𝑟𝑡

▪ Actions are sampled from a parameterized policy 𝜋𝜃

𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)



Preliminaries

▪ Probability of a trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, … )

𝑃 𝜏 𝜋 = 𝜌0 𝑠0 ෑ

𝑡=0

𝑇−1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

▪ Expected Return of a policy  J 𝜋

𝐽 𝜋 = ෍

𝜏

𝑃 𝜏 𝜋 𝑅 𝜏 = 𝐸𝜏∼𝜋[𝑅 𝜏 ]

▪ Goal of RL: Solve the following optimization problem
𝜋∗ = argmax

𝜋
𝐽(𝜋)



How should we parameterize our policy?

▪ We need to be able to do two things:

▪ Sample actions 𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)

▪ Compute log probabilities log 𝜋𝜃 𝑎𝑡 𝑠𝑡

▪ Categorical (classifier over discrete actions)

▪ Typically, you output a value 𝑥𝑖 for each action (class) and then the 
probability is given by a softmax equation

𝜋𝜃 𝑎𝑖 𝑠 =
exp(𝑥𝑖)

σ𝑗 exp(𝑥𝑗)
𝑥𝑛

𝑥0

𝑠

𝜃



How should we parameterize our policy?

▪ Diagonal Gaussian (distribution over continuous actions)

𝑎 ∼ 𝑁(𝜇, Σ)

where Σ has non-zero elements only on the diagonal. 

Thus, an action can be sampled as 
𝑎 = 𝜇𝜃 𝑠 + 𝜎𝜙 𝑠 ⨀𝑧, 𝑧 ∼ 𝑁(0, 𝐼)

𝑠 𝜇𝜃 𝑠

𝜙𝜃

log 𝜎𝜙



Goal: Update Policy via Gradient Ascent

▪ We have a parameterized policy and we want to update it so that 
it maximizes the expected return.

▪ We want to find the gradient of the return with respect to the 
policy parameters and step in that direction.

15

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

Policy gradient



Fact #1

▪ Probability of a trajectory: 

▪ The probability of a trajectory 𝜏 = (𝑠0, 𝑎0, … 𝑠𝑇+1) given that actions 
come from 𝜋𝜃 is

𝑃 𝜏 𝜋 = 𝜌0 𝑠0 ෑ

𝑡=0

𝑇−1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

16



Fact #2

▪ Log-probability of a trajectory: 

▪ The log-probability of a trajectory 𝜏 = (𝑠0, 𝑎0, … 𝑠𝑇+1) given that 
actions come from 𝜋𝜃 is

log 𝑃 𝜏 𝜋 = log 𝜌0 𝑠0 ෑ

𝑡=0

𝑇

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

= log 𝜌0 𝑠0

+ ෍

𝑡=0

𝑇

log 𝑃 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 +  log 𝜋𝜃(𝑎𝑡|𝑠𝑡)



Fact #3

▪ Grad-Log-Prob of a Trajectory

▪ Note that gradients of everything that doesn’t depend on 𝜃 is 0.

∇𝜃  log 𝑃 𝜏 𝜃 = ∇𝜃  log 𝜌0 𝑠0 + ෍

𝑡=0

𝑇

∇𝜃  log 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃  log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

= ෍

𝑡=0

𝑇

∇𝜃  log 𝜋𝜃(𝑎𝑡|𝑠𝑡)



Fact #4

▪ Log-Derivative Trick: 

▪ This is based on the rule from calculus that the derivative of log x is 1/x

𝑑

𝑑𝑥
log 𝑔 𝑥 =

1

𝑔 𝑥

𝑑

𝑑𝑥
𝑔(𝑥)  ⇒

∇𝜃𝑃 𝜏 𝜋 = 𝑃 𝜏 𝜋 ∇𝜃logP 𝜏 𝜃

𝑔(𝑥)
𝑑

𝑑𝑥
log 𝑔 𝑥 =

𝑑

𝑑𝑥
𝑔(𝑥)



Derivation of Policy Gradient

∇𝜃𝐽 𝜋𝜃 = ∇𝜃𝐸𝜏∼𝜋𝜃
𝑅 𝜏

= ∇𝜃 σ𝜏 𝑃 𝜏 𝜃 𝑅(𝜏)

= σ𝜏 ∇𝜃𝑃 𝜏 𝜃 𝑅(𝜏)

= σ𝜏 𝑃 𝜏 𝜃 ∇𝜃 log 𝑃 𝜏 𝜃 𝑅(𝜏)

= 𝐸𝜏∼𝜋𝜃
∇𝜃 log 𝑃 𝜏 𝜃 𝑅(𝜏)

= 𝐸𝜏∼𝜋𝜃
σ𝑡=0

𝑇 ∇𝜃log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Fact #4

Fact #3



The Policy Gradient

▪ We can now perform gradient ascent to improve our policy!

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Estimate with a 

sample mean over a 

set D of policy rollouts 

given current 

parameters



How would you implement this?

1. Start with random policy parameters 𝜃0

2. Run the policy in the environment to collect N rollouts 
(episodes) of length T and save returns of each trajectory.

𝑎𝑡 ∼ 𝜋𝜃 ⋅ 𝑠𝑡 ⇒ (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … , 𝑟𝑇 , 𝑠𝑇+1)

𝐷 = 𝜏1, … 𝜏𝑁 , 𝑅 = {𝑅(𝜏1), … 𝑅(𝜏𝑁)}

3. Compute policy gradient

4. Update policy parameters

5. Repeat (Go to 2)

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃  log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘



Some more intuition (thanks to Andrej Karpathy)

https://karpathy.github.io/2016/05/31/rl/

• Blue Dots: samples from Gaussian

• Blue arrows: gradients of the log 

probability with respect to the 

gaussian's mean parameter

• To update the Gaussian mean 

parameter, we average up all the 

green arrows, and the negative of 

the red arrows.

• We score each sample

• Red have score -1

• Green have scores +1

Samples from this distribution will have a 

higher expected score, as desired.

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)



Policy Gradient RL Algorithms

▪ We can directly update the policy to achieve high reward.

▪ Pros:

▪ Directly optimize what we care about: Utility!

▪ Naturally handles continuous action spaces!

▪ Can learn specific probabilities for taking actions.

▪ Often more stable than value-based methods (e.g. DQN).

▪ Cons:

▪ On-Policy -> Sample-inefficient we need to collect a large set of new 
trajectories every time the policy parameters change.

▪ Q-Learning methods are usually more data efficient since they can reuse 
data from any policy (Off-Policy) and can update per sample. 



Many forms of policy gradients

What we derived:
Follows a similar 

derivation:

https://medium.com/@thechrisyoon/deriving-policy-

gradients-and-implementing-reinforce-f887949bd63

▪ What is better about the second approach?

▪ Focuses on rewards in the future!

▪ Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63


Many forms of policy gradients

Looks familiar….

▪ Now we have an approach that combines a parameterized policy 
and a parameterized value function!



27



Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”



Actor Critic Algorithms

▪ Combining value learning with direct policy learning

▪ One example is policy gradient using the advantage function

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑄𝑤
𝜋𝜃(𝑠𝑡, 𝑎𝑡)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝛿 = (𝑟𝑡 + 𝛾𝑄𝑤
𝜋𝜃 𝑠𝑡+1,𝑎𝑡+1 − 𝑄𝑤

𝜋𝜃(𝑠𝑡 , 𝑎𝑡))

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝜃𝑄𝑤
𝜋_𝜃



Q Actor Critic Algorithm Pseudo Code

31



Many forms of policy gradients

Advantage Function



Advantage Actor Critic (A2C)

▪ Combining value learning with direct policy learning

▪ One example is policy gradient using the advantage function

TD error 𝛿𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡) 

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝑤𝑉(𝑠, 𝑎; 𝑤) 

Policy gradient update

TD-Learning update



Rough Taxonomy of RL Algorithms

38



Model-Based RL via Model-Predictive Control

▪ Use model to plan good 
looking sequence of 
actions.

▪ Take a step

▪ Update model of 
transitions

▪ Repeat

39



▪ Next time: Alpha Go

40


	Slide 1: CS 6300: Artificial Intelligence 
	Slide 2: Rough Taxonomy of RL Algorithms
	Slide 3
	Slide 4
	Slide 5: What is the goal of RL?
	Slide 6: Two approaches to model-free RL
	Slide 7: Policy Search
	Slide 8: Policy Search
	Slide 9: Policy Search
	Slide 10: Policy Search
	Slide 11: Preliminaries
	Slide 12: Preliminaries
	Slide 13: How should we parameterize our policy?
	Slide 14: How should we parameterize our policy?
	Slide 15: Goal: Update Policy via Gradient Ascent
	Slide 16: Fact #1
	Slide 17: Fact #2
	Slide 18: Fact #3
	Slide 19: Fact #4
	Slide 20: Derivation of Policy Gradient
	Slide 21: The Policy Gradient
	Slide 22: How would you implement this?
	Slide 23: Some more intuition (thanks to Andrej Karpathy)
	Slide 24: Policy Gradient RL Algorithms
	Slide 25: Many forms of policy gradients
	Slide 26: Many forms of policy gradients
	Slide 27
	Slide 28: Approximate Q-Learning
	Slide 29: Minimizing Error
	Slide 30: Actor Critic Algorithms
	Slide 31: Q Actor Critic Algorithm Pseudo Code
	Slide 32: Many forms of policy gradients
	Slide 33: Advantage Actor Critic (A2C)
	Slide 38: Rough Taxonomy of RL Algorithms
	Slide 39: Model-Based RL via Model-Predictive Control
	Slide 40

