CS 6300: Artificial Intelligence

Reinforcement Learning II: Function Approximation

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Reinforcement Learning

\

Agent \

State: s .
Reward: r Actions: a
(nvironment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Reinforcement Learning

= We still assume an MDP:
" Asetofstatesse S
= Aset of actions (per state) A
= A model T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy 7t(s)

= New twist: don’t know T or R, so must try out actions

= Bigidea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique
Compute V*, Q*, * Value / policy iteration
\ Evaluate a fixed policy & Policy evaluation J
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V*, Q*, * VI/PIl on approx. MDP Compute V*, Q*, * Q-learning
Evaluate a fixed policy & PE on approx. MDP Evaluate a fixed policy & Value Learning

- _/ - _/

Model-Free Learning

* Model-free (temporal difference) learning

= Experience world through episodes

(s,a,r,s,a ,r',s" a" r" s"...)

= Update estimates each transition (S, a,r, S’)

= Over time, updates will mimic Bellman updates

Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qt1(s,a) = S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)
/ a

S
= But can’t compute this update without knowing T, R

* |nstead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests Q(s,a) ~r + ~ max Q(s',a")
a

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Useful alternate form of

!
Q(S’ a) — (1 N &)Q(S’ a) T (a) T4y ma?x Q(S » @) update for Q-learning.
We want to push the Q-

Q(S; Cl) « Q(S; Cl) + (1(7" + Vn}lE}XQ (S,; a’) — Q(S; Cl)) value towards the sample!

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s',a’)
a

Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s',a’), N(s',a"))

—

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

®" Too many states to visit them all in training

®= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

= Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafa(s) + ... + wnfn(s)
Q(s,a) = wi f1(s,a)Fwafa(s,a)+...+wnfn(s,a)
= Advantage: our experience is summed up in a few powerful numbers

" Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QGs,0) = wifa(s,) twnfa(s @)+ Funalsia) |

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) « Q(s,a) + «[difference] Exact Q’s

difference = [7" + v max Q(s',a")
a

w; <+ w; + « [difference] f;(s,a) Approximate Qs

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Example:

Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)

fDOT(Sa NORTH) = 0.5

fasr(s, NORTH) = 1.0

) 4

a = NORTH /
r = —500

J -

Q(s,NORTH) = +1

r + vy max Q(s',a’) = -500+0
a

Q(Slv) =0

{difference — —501 >

wpor — 4.0 + a[-501]0.5
was — —1.0 + a [-501] 1.0

Q(S, CL) — 30fDOT(S, CL) — 30fGST(S, CL) [Demo: approximate Q-

learning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression

401

20

f1(x)

Prediction:
Yy = wo + wi f1(x)

Prediction:

y; = wo + wiy f1(x) + wafo(x)

Optimization: Least Squares

2
total error = Z (y; — ;Ji)z =3 (yi — Zwkfk(wi))
i k

1

. Error or “residual’
Observation Y

Prediction :{/\

0 f1(x) -

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y - Zwkf’f(x))
k
0 e(;ror(’lU) — _ (y _ Zwkfk(aj)) fm(x)
Wm k

Wm <= Wm + O (y — Zwkfk(ff)) fm(x)
k
Approximate q update explained:

W — w4 |7+ MaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”

Tabular Q-Learning is Special Case

Wm < Wm _I_ e [T _I_ Y mgXQ(S,a a,) o Q(Sa CL)} fm(87 a’)

“target” “prediction”

Qs,0) — (1=)Q(s,0) + (@) |1 +7maxQ(s',a)|

Q(s,@) < Q(s,@) +alr +ymaxQ(s',a) = (s,)]

If feature Is just an indicator for (s,a), then we recover
the original tabular setting.

Non-linear function approximation

V(s) = wif1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfrn(s,a)

V.S.

V(s) = fo(s)
Q(s,a) = fg(s,a)

Element of Neural Network

Neuron f:R¥X >R

a Z=aw, +a,w, + o +a, w, +b
a2 _
+ — O'(Z) . a
aK _ ‘ Activation
weights b function

Neural Network

Input Layer 1 Layer 2 Layer L Output
X, - g . —N
e > N 4

2 " | Y —
@ 4 4 Y2
Xy e D . —Vm
Input = v — Output
Layer Hidden Layers Layer

Deep means many hidden layers

Example of Neural Network

. 0.98

Example of Neural Network

.._0.98 2 0.8 3 . 0.62

Changing the parameters (weights) changes the function!

Neural Networks: Non-linear function approximation

| hidden layer 1 hidden layer 2 hidden layer 3
input layer

{)

7 e N \utput layer
: %; i ’.\\\\\‘__ Q-Value Action 1

SEMSNNE . Q-Value Action 2
i X2 Q-Value Action 3

XIS "{lﬁz}é\

S WI’I;:. ' Q-Value Action 4

States—»

Differences between RL and Supervised Learning

Predicting State-Action Value Predicting House Price

Input: size, #bedrooms,

Input: (s,a) nearby school ratings, year
bullt, etc.

Output: Qg (s, a) Output: fg(x)

Target: 7 + ymaxQy (s',a’) Target: $680K

RL has a non-stationary target! This leads to
Instabllities If using non-linear function approximation.

How to get Q-Learning to work with Deep Learning?

" Experience Replay Buffer
" Don’t throw away each transition (s,a,r,s’)
= Save them in a buffer or “replay memory”
" During training randomly sample a batch of transitions to update Q

How to get Q-Learning to work with Deep Learning?

= Target Network
= Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

" 2
error = — (r + ymaxQr(s’,a’;07) — Q(s, a; 9))
2 a’

Vgerror = — (r +ymaxQr(s',a’;07) — Q(s, a; 8)) Vo0(s,a;0)
a

Take step to decrease error (in the direction of the negative gradient)

0 < 0 Of(T+’)’mE}XQT(8’, a';H_)—Q(s,a; 9))V6’Q(87a; 9)

Overview of DQN

0 < 0+« (’I‘—i—"}’ mE}X QT(S,) CL/; 9_)_Q(87 a, 9)) V@Q(Sa a, 9)

Environment

DQN Loss Calculation

F 3

Gradient loss Predicted Q Targlet Q
a
. * Network for Target
Environment . . >
. Prediction Network
s
(s, a)
— T
~— R — (s’= Next State)
> Replay Memory

(s,a, r,Ss)

state (s,), action (a,), new state

(5.41), reward (7;), and done
_ will be stored

S

g

-

Deep RL Makes a Big Splash!

nature

Explore content v About the journal ¥ Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &3, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg_Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis

Login

Search Q

hCrunch+

Venture

LA L » N~ vrivvuullusv

Google Acquires Artificial
Intelligence Startup DeepMind For
More Than $500M

. r o
Catherine Shu @catherineshu / 6:20 PM MST * January 26, 2014 ! Comment

DEEPMIND

Regi

YouTube T

The Arcade Learning Environment

ooDo S

-

"
]

How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter

T
~—1 0 1
ixel < 0
Source pixe {}/
1
>3<g { 4|~ ((1x3)+(0x0)+(1x1)+
—16 L /1 y/ (2x2)+(0x6)+(2x2)+
| 2 il g o (1x2)+(0x4)+(1x1) =-3
2 _L +—13 /0/ //
=g 2 2 =] //
2 A 0 } // //
=14 e —1 6 ! L~ = 1
2 L 2 1 // e L]
16 e // L2
e 4 1 1 //
2 // // == //
3 Convolution filter //.//// =22
(Sobel Gx) = // //
Destination pixel = e //
== .// =i =
////
//

How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter
= Use several layers of multiple filters

C3: f. maps 16@10x10

INPUT gé zfgggge maps S4: f. maps 16@5x5

32x32 S2: f. maps r C5: layer
6@14x14 r 120 FG layer (:gTPUT
' Full wnAection I Gaussaan connections
Convolutions Subsampling Convolutrons Subsamplmg Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.

High-Level Architecture

" Lea rns to Hsee” Gonvglution Gonvglution Fullycgnnected
through trial and
error!

T
=4
<
8
5
5
@
Q
®
o

—_

N 0GaAANRMAI
B B3 K + + ™ & J 2> 1B
o] (@] (@] |® O @) 3

i

= | earns what actions
to take to maximize
game score.

O

p
'\&-/.'.- .

N

s

R
.

" Epsilon-greedy
exploration.

i

N+

B

* @ ll‘ * o 0 0 0 e l/:. e & 'l. e &

’ s b
RS AN AT TR AT TN AT
PN /NN dédoghn dddottd ddddosn
e T
o o -~ o " —

P o000 0eece 0000000000
. ~

Video Pinball |

Boxing |

Breakout |

Star Gunner |

Robotank |

Atlantis |

Crazy Climber |

Gopher |

Demon Attack |

Name This Game |

Krull |

Assault |

Road Runner |

Kangaroo :
James Bond

Tennis |

Pong |

Space Invaders |

Beam Rider |

Tutankham |

Kung-Fu Master |

Freeway |

Time Pilot |

Enduro |

Fishing Derby |

Up and Down |

Ice Hockey |

Q*bert |

H.E.R.O. |

Asterix |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye :

At

\

human-level or above

f13%
f7%
fe%
Es%
f2%

Montezuma's Revenge

[0%

nmn;nmlnmNW

Below human-level

Best linear learner

c—

100 200

4,500%

?' Wetrained DQN-with :

novelty-based rewards.

S

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <—a R(s,a,s") +ymaxQ(s',a’)
a

Modified Q-Update: Q(s,a) <a R(s,a,s") +ymax f(Q(s',a’), N(s',a"))

—

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Generalizing Count-Based Exploration

Ny (s)
n

= Normal counts of a state:

" Pseudo-Counts:
" First assume access to a density model p that measures the probability

of a state.
" histogram - kernel density
S S (“gaussian”)

c c
S5 © § o
~— —
2 2
= =
c o
<)) (V)
(] (a]

0.05
0.05

0.00
0.00

L1 L . .
L1 T3 T4 T Te T1 T3 24 T5Tg
. To

Generalizing Count-Based Exploration

Ny (s)
n

= Normal counts of a state:

= Pseudo-Counts:

" First assume access to a density model p that measures the probability
of a state.

= Define p,,(s) = p(s|sy.,,) as the probability of the (n+1)-th state being s
given the first n states.

histogram

Ny (s)

wn
o
c
S5
g S
3 o
n =
& |
c |
3 wn
o (=R
o
2 ‘
o T I Iv -I I T
Tl Iz T4 5T
Ie

= We could empirically estimate this as p, (S) =

Generalizing Count-Based Exploration

= Pseudo-Counts:

" First assume access to a density model p that measures the probability
of a state.

» Define p,,(s) = p(s|sy.,,) as the probability of the (n+1)-th state being s
given the first n states.

N
= We could empirically estimate this as p,,(S) = nn(S)
» Define p,,(s) = p(S|s1., S) as the probability of s given we see state s
again.
N,(s)+1

= We could empirically estimate this as p,’l (s) = 1

Generalizing Count-Based Exploration

= Pseudo-Counts: | | .
We don’t know N or n and don’t want to explicitly

" .. (s) = Nn () count them.
n

= p!(s) = N”(S)1+1 But it turns out we can solve the linear system
n+

for what they would be given the density models!

0,0.1

0.3,0.31 . ’G;I“(S) N pﬂ(s)

Generalizing Count-Based Exploration

" Pseudo-Counts:
* p.(s) = p(s|si.,) estimated probability density before seeing state s

* p,(s) = p(s|sy..,, S) = pn4q1 estimated probability density after
updating density given new observation of s

-) pn(s)(1 — p. (s
N(s) = ipn(s) = LI Pnl)
.ﬂn(s) - pn(ﬂ)
= Reward bonus is added to sparse true reward

e

R} (x,a) := B(Nyp(z) +0.01)"1/2

?' Wetrained DQN-with :

novelty-based rewards.

S

DQN only works for discrete action spaces

= Next Time: How to deal with continuous action spaces

	Slide 2: CS 6300: Artificial Intelligence
	Slide 3: Reinforcement Learning
	Slide 4: Reinforcement Learning
	Slide 5: The Story So Far: MDPs and RL
	Slide 6: Model-Free Learning
	Slide 7: Q-Learning
	Slide 8: Q-Learning Properties
	Slide 10: Exploration vs. Exploitation
	Slide 11: How to Explore?
	Slide 14: Exploration Functions
	Slide 18: Approximate Q-Learning
	Slide 19: Generalizing Across States
	Slide 20: Example: Pacman
	Slide 21: Video of Demo Q-Learning Pacman – Tiny – Watch All
	Slide 22: Video of Demo Q-Learning Pacman – Tiny – Silent Train
	Slide 24: Feature-Based Representations
	Slide 25: Linear Value Functions
	Slide 26: Approximate Q-Learning
	Slide 27: Example: Q-Pacman
	Slide 28: Video of Demo Approximate Q-Learning -- Pacman
	Slide 29: Q-Learning and Least Squares
	Slide 30: Linear Approximation: Regression
	Slide 31: Optimization: Least Squares
	Slide 32: Minimizing Error
	Slide 33: Tabular Q-Learning is Special Case
	Slide 34: Non-linear function approximation
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Neural Networks: Non-linear function approximation
	Slide 40: Differences between RL and Supervised Learning
	Slide 41: How to get Q-Learning to work with Deep Learning?
	Slide 42: How to get Q-Learning to work with Deep Learning?
	Slide 44: Overview of DQN
	Slide 45: Deep RL Makes a Big Splash!
	Slide 46
	Slide 47: The Arcade Learning Environment
	Slide 48: How do you learn from raw pixels?
	Slide 49: How do you learn from raw pixels?
	Slide 50: High-Level Architecture
	Slide 51
	Slide 52
	Slide 53
	Slide 54: Exploration Functions
	Slide 55: Generalizing Count-Based Exploration
	Slide 56: Generalizing Count-Based Exploration
	Slide 57: Generalizing Count-Based Exploration
	Slide 58: Generalizing Count-Based Exploration
	Slide 59: Generalizing Count-Based Exploration
	Slide 60
	Slide 61: DQN only works for discrete action spaces

