
CS 6300: Artificial Intelligence
Reinforcement Learning II: Function Approximation

Instructor: Daniel Brown --- University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel  http://ai.berkeley.edu.]



Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Reinforcement Learning

▪ We still assume an MDP:

▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R, so must try out actions

▪ Big idea: Compute all averages over T using sample outcomes



The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal    Technique

Compute V*, Q*, *  Value / policy iteration

Evaluate a fixed policy   Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal   Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal   Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning



Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates
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Q-Learning

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a)  (Why?)

▪ So keep a running average

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′  − 𝑄(𝑠, 𝑎))

Useful alternate form of 

update for Q-learning.

We want to push the Q-

value towards the sample!



Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)



Exploration vs. Exploitation



How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep 

thrashing around once learning is done

▪ One solution: lower  over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] 
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]



Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Approximate Q-Learning



Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn 
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from 

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll 
see it over and over again

[demo – RL pacman]



Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)] 
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover 
through experience 

that this state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!



Video of Demo Q-Learning Pacman – Tiny – Watch All



Video of Demo Q-Learning Pacman – Tiny – Silent Train



Feature-Based Representations

▪ Solution: describe a state using a vector of 
features (properties)
▪ Features are functions from states to real numbers 

(often 0/1) that capture important properties of the 
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)



Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any 
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]



Video of Demo Approximate Q-Learning -- Pacman



Q-Learning and Least Squares
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Optimization: Least Squares
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Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”



Tabular Q-Learning is Special Case

“target” “prediction”

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

If feature is just an indicator for (s,a), then we recover 

the original tabular setting.



Non-linear function approximation

v.s.

𝑉 𝑠 = 𝑓𝜃 𝑠

𝑄 𝑠, 𝑎 = 𝑓𝜃(𝑠, 𝑎)









Changing the parameters (weights) changes the function!



Neural Networks: Non-linear function approximation



Differences between RL and Supervised Learning

Input: (s,a)

Output: 𝑄𝜃(𝑠, 𝑎)
Target: 𝑟 + 𝛾max

𝑎′
𝑄𝜃 𝑠′, 𝑎′

Input: size, #bedrooms, 

nearby school ratings, year 

built, etc.

Output: 𝑓𝜃(𝒙)
Target: $680𝐾

Predicting House PricePredicting State-Action Value

RL has a non-stationary target! This leads to 

instabilities if using non-linear function approximation.



How to get Q-Learning to work with Deep Learning?

▪ Experience Replay Buffer

▪ Don’t throw away each transition (s,a,r,s’)

▪ Save them in a buffer or “replay memory”

▪ During training randomly sample a batch of transitions to update Q



How to get Q-Learning to work with Deep Learning?

▪ Target Network

▪ Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

𝑒𝑟𝑟𝑜𝑟 =
1

2
𝑟 + 𝛾max

𝑎′
𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃

2

∇𝜃𝑒𝑟𝑟𝑜𝑟 = − 𝑟 + 𝛾max
𝑎′

𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃 ∇𝜃𝑄(𝑠, 𝑎; 𝜃)

Take step to decrease error (in the direction of the negative gradient)



Overview of DQN

44

Environment

(s, a, r, s’)



Deep RL Makes a Big Splash!

45
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The Arcade Learning Environment
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How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

48



How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

▪ Use several layers of multiple filters

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.



High-Level Architecture

50

▪ Learns to “see” 
through trial and 
error!

▪ Learns what actions 
to take to maximize 
game score.

▪ Epsilon-greedy 
exploration.





52



53



Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]



Generalizing Count-Based Exploration

▪ Normal counts of a state:
𝑁𝑛(𝑠)

𝑛

▪ Pseudo-Counts: 

▪ First assume access to a density model 𝜌 that measures the probability 
of a state. 



Generalizing Count-Based Exploration

▪ Normal counts of a state:
𝑁𝑛(𝑠)

𝑛

▪ Pseudo-Counts: 

▪ First assume access to a density model 𝜌 that measures the probability 
of a state. 

▪ Define 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) as the probability of the (n+1)-th state being s 
given the first n states. 

▪ We could empirically estimate this as 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛



Generalizing Count-Based Exploration

▪ Pseudo-Counts: 

▪ First assume access to a density model 𝜌 that measures the probability 
of a state. 

▪ Define 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) as the probability of the (n+1)-th state being s 
given the first n states. 

▪ We could empirically estimate this as 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛

▪ Define 𝜌𝑛
′ 𝑠 = 𝜌(𝑠|𝑠1:𝑛, 𝑠) as the probability of s given we see state s 

again.

▪ We could empirically estimate this as 𝜌𝑛
′ 𝑠 =

𝑁𝑛 𝑠 +1

𝑛+1



Generalizing Count-Based Exploration

▪ Pseudo-Counts: 

▪ 𝜌𝑛 𝑠 =
𝑁𝑛(𝑠)

𝑛

▪ 𝜌𝑛
′ 𝑠 =

𝑁𝑛 𝑠 +1

𝑛+1

We don’t know N or n and don’t want to explicitly 

count them.

But it turns out we can solve the linear system 

for what they would be given the density models!

0, 0.1

0.3, 0.31



Generalizing Count-Based Exploration

▪ Pseudo-Counts: 

▪ 𝜌𝑛 𝑠 = 𝜌(𝑠|𝑠1:𝑛) estimated probability density before seeing state s

▪ 𝜌𝑛
′ 𝑠 = 𝜌 𝑠 𝑠1:𝑛, 𝑠 = 𝜌𝑛+1 estimated probability density after 

updating density given new observation of s

▪ Reward bonus is added to sparse true reward
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DQN only works for discrete action spaces

▪ Next Time: How to deal with continuous action spaces
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