CS 6300: Artificial Intelligence
Probability

Instructor: Daniel Brown --- University of Utah

[Based on slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. http://ai.berkeley.edu.]



Today

" Probability

= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
" |Inference

" Independence

= You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!




Inference in Ghostbusters

= Aghostisin the grid

somewhere

= Sensor readings tell how
close a square is to the

ghost
®= On the ghost: red

= 1 or 2 away: orange

= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3)

P(orange | 3)

P(yellow | 3)

P(green | 3)

0.05

0.15

0.5

0.3

[Demo: Ghostbuster — no probability (L12D1) ]



Video of Demo Ghostbuster — No probability




Uncertainty

= General situation:

= QObserved variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

= Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

= Model: Agent knows something about how the known
variables relate to the unknown variables

= Probabilistic reasoning gives us a framework for 005 N oos
managing our beliefs and knowledge .
<0.01




Random Variables

" Arandom variable is some aspect of the world about
which we (may) have uncertainty

= R=Isitraining? & S
= T=lIsit hotorcold?

= D =How long will it take to drive to work?
= L =Whereis the ghost?

= We denote random variables with capital letters




Probability Distributions

= Associate a probability with each value

= Temperature: = Weather:
— P(W)
! i éﬁ@ i - L / sun
hot 0.5 T o
cold 0.5
fog
meteor




Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W =rain) = 0.1

Ve P(X =x2)>0

and

Y P(X=uz)=1



Joint Distributions

" A joint distribution over a set of random variables: X4, X5, ..

specifies a real number for each assignment (or outcome):
P(X{=x21,Xo=2o,... Xpn = zn)

P(xq,zo,...2n)

= Must obey: P(xl’ T, ... ZCn) > 0

>y P(x1,20,...20) = 1
(z1,22;...2n)

= Sjze of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

. Xn
P(T,W)
T W P
hot sun 0.4
hot rain 0.1
cold | sun 0.2
cold | rain 0.3

AV\




Probabilistic Models

= A probabilistic model is a joint distribution Distribution over TW

over a set of random variables

T W P
=  Probabilistic models: hot sun 0.4
= (Random) variables with domains hot rain 0.1
= Assignments are called outcomes
= Joint distributions: say whether assignments cold sun 0.2
(outcomes) are likely cold rain 03
= Normalized: sum to 1.0

= |deally: only certain variables directly interact



Events

= An event is a set E of outcomes

P(E)= ),

P(xq1...zpn)

" From a joint distribution, we can

calculate the probability of any event

= Probability that it’s hot AND sunny? O Lﬁ
= Probability that it’s hot? O, 5
= Probability that it’s hot OR sunny? O - 7

= Typically, the events we care about
are partial assignments, like P(T=hot)

P(T, W)
T W P
hot, @ 0.4 7
@ rain 0.1/
cold (sﬁ) O.%(
cold rain 0.3




" P(+x, +y) ? O | Z

" P+x)? B S

= P(-yOR+x)? 0. €
P (//\\)@7 -

Quiz: Events

[

D)= (6 -FPnD)

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

AR
0 (s P(T)
(\ )2 s \
P(T; W) méw X L \4'%3 T P
— f(\/\" )(}i(\/\b)‘l 5 hot 0.5
T W P —F .
hot sun 0.4 P(t) = Z P(t, s) cold 0.5
hot rain 0.1 S P(W)
cold sun 0.2 W .
cold rain 0.3 —- -~ s
P(S) N zt: P(t’ S) rain 0.4

P(X1=uz1) =) P(X1=u11,Xo =)
X



Quiz: Marginal Distributions

P(X)
P(X,Y) X P
w |02 | P@=Y Py x 109
-y 0.3 } Y P(Y)
+y 0.4 Y P
—
Y 0.1 +y ) [
P(y) = ZP(may) y 6 Y




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2 -
cold rain 0.3

P(a)

— 5T = 2
PW=sT=c)= LW=85T=c)_ 02
P(T = c) 0.5

__—

=PW=s,T=c)+P(W=r,T=c)
= 02403 =0.5

= 0.4



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1
2 ()
\/ ?
S

6 .2

. P(+x|+y)?:C\>(*><}Q3_ . //
R(+y) o 2

= P(x|+y)? |- V@ ??/5 ?/\Xﬁ7> 0. Y
Pleyy T O

= P(-y | +x) ? ?(”7w+%\f 0.5
o) 05




Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T. W)
2
W P
T W P
Q >un 0.8 hot sun 0.4
' 0.2
g e hot rain 0.1
E: P(W|T = cold) cold | sun 0.2
W P cold rain 0.3
sun 0.4
rain 0.6




Normalization Trick

P(T =c¢)
_ P =s5,T =rc)
P(T, W) - P(W =351 =4+P(W=nr,1T =c)
0.2
= = 0.4
T W P 0.2+ 0.3 P(W|T = ¢)
hot sun 0.4 >
W P
hot rain 0.1
/\/ sun 0.4
cold sun 0.2 / , 0.6
P(W=nrT= rain .
cold rain 0.3 PW=rT=c¢c)= ( L )




Normalization Trick

P(W =s,T=rc)
P(T=r¢)
. P(W=s5T=c)
T PW=sT=c)+PW=rT=c)

PW =s|T =¢c) =

0.2+4+0.3
P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(e,W) (make it sum to one) P(WI|T' = c)
hot sun 0.4 evidence T W P i p
hot rain 0.1 . cold sun 0.2 I sun 0.4
cold sun 0.2 cold | rain 1 0.3 rain | 0.6
cold rain 0.3

PW=rT=0¢)

P(T=¢)
. PW=rT=c¢)
T PW=sT=c¢)+PW=rT=0¢)
03
T 02403

P(V[/ = 7"|T = C) =

=056



Normalization Trick

P(T,W) SELECT the joint NORMALIZE the
probabilities selection .

T W P matching the P(ce, W) (make it sum to one) P(WI|T' = c)
hot sun 0.4 evidence T W P W p
hot rain 0.1 — cold | sun | 0.2 p sun 0.4
cold | sun 0.2 cold | rain | 0.3 rain | 0.6
cold rain 0.3

= Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(xy,20) _  P(xy,22)
P(x2) >oaq P(r1,22)

P(z1|z) =



-

i

Quiz: Normalization Trick

SELECT the joint | ><\ \/C j P NORMALIZE the %/Y’ﬂ ?

probabilities selection
matching the 0.3 make it sum to one) R
evidence

|

0.7
O, 2.5



= (Dictionary) To bring or restore to a

= Procedure:

= Step 1: Compute Z = sum over all entries
= Step 2: Divide every entry by Z

= Example 1

W P
sun 0.2
rain 0.3

Normalize

ﬂ
Z=0.5

To Normalize

normal condition

W P
sun 0.4
rain 0.6

N

All entries sum to ONE

= Example 2

T W P
hot sun 20
hot rain 5
cold sun 10
cold rain 15

Normalize

ﬁ
Z =50

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3




Probabilistic Inference

= Probabilistic inference: compute a desired
probability from other known probabilities (e.g.
conditional from joint)

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
= These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5a.m.) =0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
» Evidence variables: FEi...Ep=e1...¢€; X1, Xo,... Xn variables, too
= Query* variable:
Query Q All variables P(Qle1 ...ex)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Peo
0.05 —
> X 7
0.07

02 |

—T—
0.01 W

—— Z=ZP(Q,€1'”€;C)
P(Q,e1...e;) = Z P(C\Q,hl...hr,el...e//ﬂ) 4

Bk 1
1 X1,X;..Xn P(Q\el“‘ek):EP(Qael“'ek)



Inference by Enumeration

= P(W)? Z(\)(ijglﬂ ﬂ{i S T W p

Sl Son|O (S summe—_hot | sun | 0.30
\[—fbl\/\ &, (56 r e
summe | hot | rain | 0.05

=

= P(W | winter)?

summe | cold sun 0.10

summe | cold rain 0.05

= P(W | winter, hot)? winter | hot sun | 0.10

winter hot rain 0.05

winter | cold | —sun—1 0.15

| winter—{—cotd~ | rain | 0.20




Inference by Enumeration

= QObvious problems:
= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) <& reb=

~ =l




= Example:

P(W)

R

P

sun

0.8 |

rain

0.2

The Product Rule

P(y)P(z|y) = P(x,y)

P(D|W)

D W P
wet sun 0.171
dry sun 0.9+
wet rain 0.7

dry rain 0.3

P(D,W)
_/‘,q\ \/\)
7
D\ | WH| Ps
vl | Tm |

A _J
dry %ﬂn :
wet i ¢ TV
dry rai@ 1, (

2 /

O,bg
72




The Chain Rule

More generally, can always write any joint distribution as an

incremental product of conditional distributions P (> \/\
P(z1,22,23) = P(x1)P(x2]|z1) P(23]21, 22) (\N%H> ) @(Y>

P(z1,x2,...xn) = || P(ailzy ... 2-1)
i
You can pick any order.

Why is the Chain Rule always true?

(>< ><7, 3\ <)><\\ O/* Y) (%3 \XZ> @(39%2)?@%@

v

Shh S

\



Bayes Rule




Bayes’ Rule

Qfﬂ?(x(\/\ = POy

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(x|y)P(y) = P(ylz)P(x)

That’s my rule! }

= Dividing, we get:

Plaly) = 50 Pa)

= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems (e.g. ASR, MT, IRL)

= |n the running for most important Al equation!


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)

P(causeleffect) = P (effect)

= Example:

= M: meningitis, S: stiff neck

P(4+m) = 0.0001 .
P(+s|+m)=0.8  2orP€

givens
P(+s| —m) = 0.01
P(tm|+s) = LUEslEmIPGEm) P(+s| +m)P(+m) B 0.8 x 0.0001
= P(+s) ~ P(4s| +m)P(+m) 4+ P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

= Note: pos@@p{cfba%Yﬁﬁ/ﬁf@i@gfﬁs/sﬁﬂ@éw}ﬁﬁllp/ s)
= Note: you s%ulM‘rge’(stiff necks checked out! Why?



Quiz: Bayes’ Rule

. P(D|W)
= Jlven:
P(W) D W P
R P wet sun 0.1
cun 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

= Whatis P(W | dry) ? — (\><¢Qr// w>?(w> . PR JW) P/W)

Pl ey) " 19)76) < By )

_ ~ | 1l
Aw=snIDHP) = yq 08 1T /
O?\O\%% U\%'O w/l\




Ghostbusters, Revisited

= Let’s say we have two distributions:
= Prior distribution over ghost location: P(G)
= Let’s say this is uniform
= Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R=vyellow | G=(1,1)) =0.1

P(g|r) o< P(r|g)P(g)

= We can calculate the posterior
distribution P(G|r) over ghost locations
given a reading using Bayes’ rule:

[Demo: Ghostbuster — with probability (L12D2) ]



Video of Demo Ghostbusters with Probability




Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)

Ve,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

X11Y

= Can use independence as a modeling assumption
= Independence can be a simplifying assumption
=  Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?



Example: Independence?

HJC_/LA) D(ﬁ/w - P[{)W/(«Q
> P(T) Tiw?

T P
hot 0.5
P1(T, W) cold | 0.5 By (T, W) = P(T)P(W)
T W P AT W P
hot sun | 0.4 Pﬂ“ﬁj ?( wn) = S hot | sun | 0.3
hot rain 0.1 hot rain 0.2
cold sun 0.2 cold sun 0.3
cold rain 0.3 P(W) cold rain 0.2
W P
sun 0.6

rain 0.4




Example: Independence

" N fair, independent coin flips:

P(X71) P(X>5) P(Xn)
H | o5 H | o5 o H | o5
T 0.5 T 0.5 T 0.5

\

—

P(X1,Xo, ... Xn)




Conditional Independence




Conditional Independence

P(Toothache, Cavity, Catch) XJV :> ?/)//\/B - Q/X) PA/)

If | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
= One can be derived from the other easily




Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XJ_|_Y|Z

if and only if:
Vz,y, 2 P(z,ylz) = P(z|z) P(yl|2)
or, equivalently, if and only if

Va,y,z 1 Px|z,y) = P(z|2)
-




Conditional Independence

= \What about this domain:

R TUU (R

= Umbrella
= Raining




= \What about this domain:

Conditional Independence

" Fire
= Smoke
= Alarm

ALLFIS
NS




Probability Recap

= Conditional probability P(xly) = Pz, y) (j ) - "ﬂ
P(y) Yz
= Product rule P(z,y) = P(z|ly)P(y) = [ @\ <P (=)
- Chain r'UIe P(Xl,XQ,...Xn) = P(Xl)P(X2|X1)P(X3‘X1,X2)...
= P X,LX ..... X?Z—
z’lz_ll (Xl X1 1) \ _D x)

= X, Yindependent if and only if: Vz,y: P(z,y) = P(:U)P(y) X)V

= XandY are conditionally independent given Z if and only if: XUY|Z
Vz,y, z . P(x, =P P B
v Poyl) = PGP g 117



Next Time: MDPs
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