CS 6300: Artificial Intelligence

Markov Decision Processes

Instructor: Daniel Brown

University of California, Berkeley

[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]
Where we’ve been and where we’re going

- **Deterministic search:** known world, known rewards
 - Uninformed search: *Depth first search, breadth first search, uniform cost search*
 - Heuristic search: *Best-first search, A* search*
 - Adversarial search: *Minimax*

- **Non-Deterministic (Stochastic) search:** Markov property
 - Chance nodes: *Expectimax*
 - Uncertain action outcomes: *Markov Decision Processes (MDPs)*
 - Unknown world, unknown rewards: *Reinforcement Learning (RL)*
 - State uncertainty: *Partially Observable Markov Decision Processes (POMDPs)*
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
 - A start state
 - Maybe a terminal state

- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We’ll have a new tool soon
What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent.

- For Markov decision processes, “Markov” means action outcomes depend only on the current state:

 \[P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots S_0 = s_0) = P(S_{t+1} = s'|S_t = s_t, A_t = a_t) \]

- This is just like search, where the successor function could only depend on the current state (not the history).
Types of Markov Models

<table>
<thead>
<tr>
<th></th>
<th>System state is fully observable</th>
<th>System state is partially observable</th>
</tr>
</thead>
<tbody>
<tr>
<td>System is autonomous</td>
<td>Markov chain</td>
<td>Hidden Markov model (HMM)</td>
</tr>
<tr>
<td>System is controlled</td>
<td>Markov decision process (MDP)</td>
<td>Partially observable Markov decision process (POMDP)</td>
</tr>
</tbody>
</table>
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

- For MDPs, we want an optimal policy π^*: $S \rightarrow A$
 - A policy π gives an action for each state.
 - An optimal policy is one that maximizes expected utility if followed.
 - An explicit policy defines a reflex agent.

- Expectimax didn’t compute entire policies
 - It computed the action for a single state only.

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s.
Optimal Policies

- $R(s) = -2.0$
- $R(s) = -0.4$
- $R(s) = -0.03$
- $R(s) = -0.01$
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
Racing Search Tree
Each MDP state projects an expectimax-like search tree.

- (s,a,s') called a transition
- $T(s,a,s') = P(s' \mid s,a)$
- $R(s,a,s')$
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \([1, 2, 2] \) or \([2, 3, 4] \)
- Now or later? \([0, 0, 1] \) or \([1, 0, 0] \)
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$
 - $U([1,2,3]) < U([3,2,1])$
Theorem: if we assume stationary preferences:

\[[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots] \]

\[\Downarrow \]

\[[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots] \]

Then: there are only two ways to define utilities

- Additive utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \)
- Discounted utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \)
Quiz: Discounting

- **Given:**
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- **Quiz 1:** For $\gamma = 1$, what is the optimal policy?
- **Quiz 2:** For $\gamma = 0.1$, what is the optimal policy?
- **Quiz 3:** For which γ are West and East equally good when in state d?
Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$
 \[
 U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma)
 \]
 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' \mid s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs
Optimal Quantities

- The value (utility) of a state \(s \):
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state \((s,a)\):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0
Discount = 1
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0
Discount = 1
Living reward = 0
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 1
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 1
Living reward = 0
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Q-VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Bellman Equations

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[V^*(s) = \max_a Q^*(s, a) \]
 \[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
Racing Search Tree
- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
$k=0$

VALUES AFTER 0 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 2 \)

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<table>
<thead>
<tr>
<th></th>
<th>0.37</th>
<th>0.66</th>
<th>0.83</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td>0.51</td>
<td></td>
<td>-1.00</td>
</tr>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k=5\)

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>0.73</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>0.41</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.21</td>
<td>0.31</td>
<td>0.43</td>
<td>0.19</td>
</tr>
</tbody>
</table>

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\(k = 7 \)

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
<table>
<thead>
<tr>
<th>0.64</th>
<th>0.74</th>
<th>0.85</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.55</td>
<td></td>
<td>0.57</td>
<td>-1.00</td>
</tr>
<tr>
<td>0.46</td>
<td>0.40</td>
<td>0.47</td>
<td>0.27</td>
</tr>
</tbody>
</table>

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
\[k = 100 \]

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Time-Limited Values
Value Iteration
Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero.
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
 Bellman Update Equation
- Repeat until convergence.
- Complexity of each iteration: $O(S^2A)$
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do.
Example: Value Iteration

Assume $\gamma = 1$

\[
V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
\]
How do we know the V_k vectors are going to converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values

Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - So V_k and V_{k+1} are at most $\gamma^k \max|R|$ different
 - So as k increases, the values converge
Next Time: Policy-Based Methods