Announcements

" Project 1: Pacman Search
" due 1/30 at 11:59pm.

= Homework 3: Expectimax and Probability
" due 2/1 at 11:59pm.

= Everyone gets 2 free late days.

= Note in HW or project submission if you wish to
use them.

= Can use retroactively for HW 1 or HW?2 if you
want. Message the TAs.

Al in the news

H100 GPU orders expected to be fulfilled in 2023

& Subscribe to newsletters Forbes Thousand H100 GPU Ukt
FORBES > INNOVATION > CONSUMER TECH Meta
. Microsoft
Meta To Build Open- Googe
WL amazon)
Source Artificial General orsce T
° Tencent D
Intelligence For All, S—
Baicy [T
Zuckerberg Says ——
Lambdalabs [ERD
John Koetsier Senior Contributor ® ByteDance
Jo:mafist,anaiysf,aufho;‘,afdspeaker. m Tesla

Focus on Open-Source AGI in contrast to OpenAl and Google DeepMind.

CS 6300: Artificial Intelligence

Markov Decision Processes

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. http://ai.berkeley.edu.]

Where we’ve been and where we’re going

= Deterministic search: known world, known rewards

=" Uninformed search: Depth first search, breadth first search, uniform
cost search

= Heuristic search: Best-first search, A* search
= Adversarial search: Minimax, Alpha-Beta Pruning

= Non-Deterministic (Stochastic) search: Markov property
" Chance nodes: Expectimax
= Uncertain action outcomes: Markov Decision Processes (MDPs)
= Unknown world, unknown rewards: Reinforcement Learning (RL)

= State uncertainty: Partially Observable Markov Decision Processes
(POMDPs)

Non-Deterministic Search

Example: Grid World

A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |If thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)

= Sometimes just R(s), R(s,a), or R(s’)
A start state
Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]

Other examples of MDPs

" Go Boardgame

=)-link robot arm

Other examples of MDPs

= Self-driving car

" Language Generation (LLMs)

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent. Conditional Independence!

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si11 = s'|St = s¢, Ay = a¢, St—1 = St—1, At—1, .. .50 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Types of Markov Models

System state is System state Is
fully observable partially observable

System is Markov chain Hidden Markov
autonomous model (HMM)

System is Markov decision Partially observable

controlled process (MDP) Markov decision

process (POMDP)

Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s

Optimal Policies

Baby Example: Racing

Baby Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated

Racing Search Tree

MDP Search Trees

= Each MDP state projects an expectimax-like search tree

~

(s,a,s) called a transition

T(s,a,s) =P(s’ |s,a)

R(s,a,s’) é\

Utilities of Sequences

Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0, 0]

Discounting

" [t's reasonable to maximize the sum of rewards
" |t's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

w{
© @9

1 gl v

Worth Now Worth Next Step Worth In Two Steps

Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])

Stationary Preferences

* Theorem: if we assume stationary preferences: :

¥ @

ai,as,...] = |b1,ba,..] @l \2
; v

ray, a9, ... > [r,bi,ba, ..]

" Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =rg+~vr1 +~v2ro- -

Quiz: Discounting

= Given: reward 10 1

a b G d =
= Actions: East, West, and Exit (only available in exit states a, €)

= Transitions: deterministic

" Quiz 1: Fory =1, what is the optimal policy? 10

" Quiz 2: Fory=0.1, what is the optimal policy? 10

" Quiz 3: For which y are West and East equally good when in state d?

Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4tre < Rmax/(1)
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)))
= Rewards R(s,a,s’) (and discount 7) 7 8,3,8

"= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = expected sum of (discounted) rewards = “expected return”

Solving MDPs

Optimal Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 553
acting optimally state

a (s, a)is a
" The value (utility) of a g-state (s,a): B g-state
Q’(s,a) = expected utility starting out A N
having taken action a from state s and 58,5 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise =0

Discount =1
Living reward = 0

Snapshot of Demo — Gridworld Q Values

s
PSP -

Noise =0

Discount=1

Snapshot of Demo — Gridworld V Values

Cridworld Display

Y
.

Y

VALUES AFTER 100 ITERATIONS Noise = 0.2

Discount =1
Living reward = 0

Snapshot of Demo — Gridworld Q Values

S
WIMI

O-VALUES AFTER 100 ITERATIONS N.oise=0.2

Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Snapshot of Demo — Gridworld Q Values

MKI

WWWW "

Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S

Racing Search Tree

Racing Search Tree

&&mﬂﬂmﬁm

N EREEN AR R

A

VAT TMREERI TR CERTEORE TN T

Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited L) IR ER EREEEERN

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterif y<1 THTTREETLLL TR TR LL THITRLLL

Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’'s what a depth-k expectimax would give from s

& &

1

[Demo — time-limited values (L8D6)]

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

0.72) 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=5

Cridworld Display

Y
.H

Y
“u

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0

Computing Time-Limited Values

L
g

U e e e

VO || O Y | VO | O O Y VO O i

H'H‘!“ H‘Hh‘“h'i” H'H‘!“ H.HM”J‘J“ H'H‘!“ ﬁi'i”

Value lteration

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

5 Bellman Update Equation

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Example: Value Iteration

Overheated

+ Assumey =1
Vi [2 1 0] J

Vieg1(8) < mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]

Convergence*

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

= That last layer is at best all Ry,
" |tisatworst Ry, / R
= But everything is discounted by yk that far out

1
o

\ /Rmin SR< Rmax\

= SoV,andV,,, are at most y* max|R| different
= So as kincreases, the values converge

Next Time: Policy-Based Methods

	Slide 1: Announcements
	Slide 2: AI in the news
	Slide 3: CS 6300: Artificial Intelligence
	Slide 4: Where we’ve been and where we’re going
	Slide 5: Non-Deterministic Search
	Slide 6: Example: Grid World
	Slide 7: Grid World Actions
	Slide 8: Markov Decision Processes
	Slide 9: Other examples of MDPs
	Slide 10: Other examples of MDPs
	Slide 12: What is Markov about MDPs?
	Slide 13: Types of Markov Models
	Slide 14: Policies
	Slide 15: Optimal Policies
	Slide 16: Baby Example: Racing
	Slide 17: Baby Example: Racing
	Slide 18: Racing Search Tree
	Slide 19: MDP Search Trees
	Slide 20: Utilities of Sequences
	Slide 21: Utilities of Sequences
	Slide 22: Discounting
	Slide 23: Discounting
	Slide 24: Stationary Preferences
	Slide 25: Quiz: Discounting
	Slide 26: Infinite Utilities?!
	Slide 27: Recap: Defining MDPs
	Slide 28: Solving MDPs
	Slide 29: Optimal Quantities
	Slide 30: Snapshot of Demo – Gridworld V Values
	Slide 31: Snapshot of Demo – Gridworld Q Values
	Slide 32: Snapshot of Demo – Gridworld V Values
	Slide 33: Snapshot of Demo – Gridworld Q Values
	Slide 34: Snapshot of Demo – Gridworld V Values
	Slide 35: Snapshot of Demo – Gridworld Q Values
	Slide 38: Bellman Equations
	Slide 39: Racing Search Tree
	Slide 40: Racing Search Tree
	Slide 41: Racing Search Tree
	Slide 42: Time-Limited Values
	Slide 43: k=0
	Slide 44: k=1
	Slide 45: k=2
	Slide 46: k=3
	Slide 47: k=4
	Slide 48: k=5
	Slide 49: k=6
	Slide 50: k=7
	Slide 51: k=8
	Slide 52: k=9
	Slide 53: k=10
	Slide 54: k=11
	Slide 55: k=12
	Slide 56: k=100
	Slide 57: Computing Time-Limited Values
	Slide 58: Value Iteration
	Slide 59: Value Iteration
	Slide 60: Example: Value Iteration
	Slide 61: Convergence*
	Slide 62: Next Time: Policy-Based Methods

