Announcements

" Project 1: Pacman Search
" due 1/30 at 11:59pm.

= Homework 3: Expectimax and Probability
" due 2/1 at 11:59pm.

= Everyone gets 2 free late days.

= Note in HW or project submission if you wish to
use them.

= Can use retroactively for HW 1 or HW?2 if you
want. Message the TAs.



Al in the news

H100 GPU orders expected to be fulfilled in 2023
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Focus on Open-Source AGI in contrast to OpenAl and Google DeepMind.



CS 6300: Artificial Intelligence

Markov Decision Processes

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. http://ai.berkeley.edu.]



Where we’ve been and where we’re going

= Deterministic search: known world, known rewards

=" Uninformed search: Depth first search, breadth first search, uniform
cost search

= Heuristic search: Best-first search, A* search
= Adversarial search: Minimax, Alpha-Beta Pruning

= Non-Deterministic (Stochastic) search: Markov property
" Chance nodes: Expectimax
= Uncertain action outcomes: Markov Decision Processes (MDPs)
= Unknown world, unknown rewards: Reinforcement Learning (RL)

= State uncertainty: Partially Observable Markov Decision Processes
(POMDPs)



Non-Deterministic Search




Example: Grid World

A maze-like problem
= The agent livesin a grid
= Walls block the agent’s path

Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= |If thereis a wall in the direction the agent would have
been taken, the agent stays put

The agent receives rewards each time step
=  Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

Goal: maximize sum of rewards



Grid World Actions

Deterministic Grid World Stochastic Grid World




Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)

= Sometimes just R(s), R(s,a), or R(s’)
A start state
Maybe a terminal state

MDPs are non-deterministic search problems
= One way to solve them is with expectimax search
= We'll have a new tool soon

[Demo — gridworld manual intro (L8D1)]



Other examples of MDPs

" Go Boardgame

= )-link robot arm



Other examples of MDPs

= Self-driving car

" Language Generation (LLMs)



What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent. Conditional Independence!

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si11 = s'|St = s¢, Ay = a¢, St—1 = St—1, At—1, .. .50 = So)

Andrey Markov
P(St_|_1 — S”St = Sy, A, = CLt) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)



Types of Markov Models

System state is System state Is
fully observable partially observable

System is Markov chain Hidden Markov
autonomous model (HMM)

System is Markov decision Partially observable

controlled process (MDP) Markov decision

process (POMDP)



Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s



Optimal Policies




Baby Example: Racing




Baby Example: Racing

A robot car wants to travel far, quickly
Three states: Cool, Warm, Overheated
Two actions: Slow, Fast

Going faster gets double reward 0-5

Slow

Overheated




Racing Search Tree




MDP Search Trees

= Each MDP state projects an expectimax-like search tree

~

(s,a,s ) called a transition

T(s,a,s ) =P(s’ |s,a)

R(s,a,s’) é\




Utilities of Sequences




Utilities of Sequences
= What preferences should an agent have over reward sequences?
= Moreorless? [1,2,2] or [2,3,4]

= Now or later? [0, O, 1] or [1,0, 0]




Discounting

" [t's reasonable to maximize the sum of rewards
" |t's also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially

w{
© @9

1 gl v

Worth Now Worth Next Step Worth In Two Steps




Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms converge

= Example: discount of 0.5
= U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
= U([1,2,3]) < U([3,2,1])




Stationary Preferences

* Theorem: if we assume stationary preferences: :

¥ @

ai,as,...] = |b1,ba,.. ] @l \2
; v

ray, a9, ... > [r,bi,ba, .. ]

" Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...]) =m0 +r1+rm+---

= Discounted utility: U([rg,r1,72,...]) =rg+~vr1 +~v2ro- -



Quiz: Discounting

= Given: reward 10 1

a b G d =
= Actions: East, West, and Exit (only available in exit states a, €)

= Transitions: deterministic

" Quiz 1: Fory =1, what is the optimal policy? 10

" Quiz 2: Fory=0.1, what is the optimal policy? 10

" Quiz 3: For which y are West and East equally good when in state d?



Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (r depends on time left)

= Discounting:use0<y<1

Ulros--.rse]) = S 4tre < Rmax/(1 )
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)



Recap: Defining MDPs

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’)) )
= Rewards R(s,a,s’) (and discount 7) 7 8,3,8

"= MDP quantities so far:
= Policy = Choice of action for each state
= Utility = expected sum of (discounted) rewards = “expected return”



Solving MDPs




Optimal Quantities

"= The value (utility) of a state s:

V7(s) = expected utility starting in s and A 553
acting optimally state

a (s, a)is a
" The value (utility) of a g-state (s,a): B g-state
Q’(s,a) = expected utility starting out A N
having taken action a from state s and 58,5 (s,a,8") is a
(thereafter) acting optimally / g transition

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]



Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise =0

Discount =1
Living reward = 0




Snapshot of Demo — Gridworld Q Values
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Snapshot of Demo — Gridworld V Values
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Discount =1
Living reward = 0




Snapshot of Demo — Gridworld Q Values
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Snapshot of Demo — Gridworld V Values

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Snapshot of Demo — Gridworld Q Values
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Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s, a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mngT(s, a,s’) {R(S,CL, s + ’)/V*(S/)}

S



Racing Search Tree




Racing Search Tree

&&mﬂﬂmﬁm

N EREEN AR R

A

VAT TMREERI TR CERTEORE TN T



Racing Search Tree

We're doing way too much
work with expectimax!

Problem: States are repeated

= |dea: Only compute needed
guantities once

Problem: Tree goes on forever fl fl m fl fl m fl m

= |dea: Do a depth-limited L) IR ER EREEEERN

computation, but with increasing
= Note: deep parts of the tree

eventually don’t matterif y<1 THTTREETLLL TR TR LL THITRLLL




Time-Limited Values

= Key idea: time-limited values

= Define V,(s) to be the optimal value of s if the game ends
in k more time steps

= Equivalently, it’'s what a depth-k expectimax would give from s

& &

1

[Demo — time-limited values (L8D6)]



VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




0.72 ) 1.00

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




1.00

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=4

Cridworld Display

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=5

Cridworld Display
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VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=6

Cridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=7

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=8

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=9

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=10

Cridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=11

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=12

Cridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward =0




Computing Time-Limited Values
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Value lteration




Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Vit1(s) maaxZT(s, a,s’) {R(s,a, s + ’YV]{(S,)}

5 Bellman Update Equation

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do




Example: Value Iteration

Overheated

+ Assumey =1
Vi [ 2 1 0] J

Vieg1(8) < mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]




Convergence*

How do we know the V| vectors are going to converge?

Vi(s) Vit1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed as depth
k+1 expectimax results in nearly identical search trees

= The difference is that on the bottom layer, V,,, has actual
rewards while V, has zeros

= That last layer is at best all Ry,
" |tisatworst Ry, / R
= But everything is discounted by yk that far out

1
o

\ /Rmin SR< Rmax\

= SoV,andV,,, are at most y* max|R| different
= So as kincreases, the values converge



Next Time: Policy-Based Methods
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