
Inverse RL and 
Reward Learning from Preferences

Instructor: Daniel Brown
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]



Course feedback is open

• Extra credit if class response rate is 70% or higher
• Sliding scale if we reach 70%:

• Extra credit points = response_rate_percentage / 10
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Reward Learning 
(Inverse Reinforcement Learning)

Action

Observation

Why? What is the 
human’s reward

function?

Reward

Reward

Action

Observation
Action

Reward
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Why not just imitate behavior?
(Behavioral Cloning)

Action

Observation

What would the 
human do?

Policy 𝜋

Action

Observation
Action
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Credit: Simone Giertz
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Human Intent Inference



Inverse Reinforcement Learning 

● Given 

○ MDP without a reward function

○ Demonstrations from an optimal policy 𝜋∗ 

● Recover the reward function 𝑹 that makes 𝜋∗ optimal



Imitation Learning  a

Behavioral Cloning

• Answers the “How?” question
• Mimic the demonstrator
• Learn mapping from states to 

actions
• Computationally efficient
• Compounding errors

Inverse Reinforcement 
Learning

• Answers the “Why?” question
• Explain the demonstrator’s behavior
• Learn a reward function capturing 

the demonstrator’s intent
• Can require lots of data and compute
• Better generalization. Can recover 

from arbitrary states

𝑅



IRL Example: Teaching a robot to navigate 
through demonstrations



Toy version 
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Inverse Reinforcement Learning Formalism 

● Given 

○ MDP without a reward function

○ Demonstrations from an optimal policy 𝜋∗ 

● Recover the reward function 𝑹 that makes 𝜋∗ optimal

● Ill-Posed Problem

○ Infinite number of reward functions that can make 𝜋∗ optimal

■ Trivial all zero reward

■ Constant reward

■ 𝑎𝑅 + 𝑐  (positive scaling a>0, and affine shifts)



How would you do this?



Basic IRL Algorithm

● Start with demonstrations, 𝐷
● Guess initial reward function 𝑅0
● ෠𝑅 = 𝑅0
● Loop:

○ Solve for optimal policy 𝜋 ෠𝑅
∗

○ Compare 𝐷 and 𝜋 ෠𝑅
∗

○ Update ෠𝑅 to try and make 𝐷 and 𝜋 ෠𝑅
∗  more similar



Flashback: Approximate Q-Learning

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on: 

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s



Feature count matching

• Assume the reward function is a linear combination of features:

• Value function becomes linear combination of (discounted) 
feature expectations:

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.
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• Assume the reward function is a linear combination of features:

• Value function becomes linear combination of (discounted) 
feature expectations:

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.

Feature count matching

= 𝑤𝑇𝜇𝜋



Inverse reinforcement learning: feature 
matching
(Abbeel and Ng 2004, Syed and Schapire 2007)

• If ||𝒘||1 ≤ 1, then

• If feature expectations match, then expected returns are identical.

• Idea: Can we update the reward guess ෠𝑅 so the feature counts get 
closer?

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Problem: Many different policies can lead 
to same expected feature counts



Maximum Entropy IRL 
(Ziebart et al. 2008)
• Collect M demonstrations D = {𝜏1, … , 𝜏𝑀}

• Initialize reward weights 𝒘

• Loop
• Solve for (soft) optimal policy 𝜋 𝑎 𝑠  via Value Iteration

• Solve for expected feature counts of 𝜋(𝑎|s)

• Compute weight update 𝒘 ← 𝒘 + 𝛼 𝜇𝐷 − 𝜇𝜋

𝑃 𝜏 =
𝑒𝑅𝑤(𝜏)

𝑍



Soft Value Iteration

Soft Maximum

Policy is a softmax policy.



Soft Maximum

• Let a > b

• log 𝑒𝑎 + 𝑒𝑏 =

• If a = b

• log 𝑒𝑎 + 𝑒𝑏 =

• In general max 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ log σ𝑖 𝑥𝑖 ≤ max 𝑥1, … , 𝑥𝑛 + log 𝑛



Soft Value Iteration

• Initialize value of terminal states to 0 and other values to −∞

• Repeat:
• Solve for Q
• Sove for V

Soft Maximum





• Maximum Likelihood Estimation

• Find reward function that maximizes the log likelihood of 
the demonstration trajectories:

Another way to look at MaxEnt IRL

𝑃 𝜏 =
𝑒𝑅𝜃(𝜏)

𝑍
𝑍 = න 𝑒𝑅𝜃(𝜏)𝑑𝜏

max
𝜃

1

𝑁
෍

𝜏∈𝐷

𝑅𝜃 𝜏 − log 𝑍



• Estimate Z with a finite set of trajectories 𝑍𝜏.

• Loop:
• Update parameters 𝜃 so demonstrations have higher reward 

than trajectories in 𝑍𝜏.

• Update 𝑍𝜏

How to avoid fully solving MDP

𝑍 = න 𝑒𝑅𝜃(𝜏)𝑑𝜏max
𝜃

1

𝑁
෍

𝜏∈𝐷

𝑅𝜃 𝜏 − log 𝑍



How to make this more tractable

𝑃 𝜏 =
𝑒𝑅𝜃(𝜏)

𝑍
Uniform sampling to 
approximate Z.

Noisy perturbations of 
demonstrations to 
approximate Z

Use current policy to approximate Z. 
Alternate between a few steps of reward 
updates and a few steps of policy updates.



Finn et al. “Guided Cost Learning.” 2016



GANs (Generative Adversarial Networks)



GAIL (Generative Adversarial Imitation Learning)

Ho and Ermon, 2016



What if we don’t want just a single 
reward estimate?
• Can we get a samples from the full Bayesian posterior?



Markov Chain Monte Carlo (MCMC)

Markov chain:

Stationary Distribution:

MCMC is a sampling approach for Bayesian inference where we 
construct a Markov chain such that the stationary distribution is 
the posterior distribution we care about. 

X2X1 X3 X4



MCMC (Metropolis Hastings Algorithm)

• We want to sample from P(R|D)

• Start with random sample 𝑟0

• Loop
• Sample 𝑟′ ∼ 𝑞 𝑅𝑡+1 𝑟𝑡

• With probability min 1,
𝑃(𝑟′|𝐷)

𝑃(𝑟𝑡|𝐷)
  set 𝑥𝑡+1 = 𝑥′ 

• Else set 𝑟𝑡+1 = 𝑟𝑡

 

Assume q is symmetric. For example, a Gaussian 
distribution with mean 𝑥𝑡 and standard deviation 𝜎 

Accept!

Reject!

Normalizing constant cancels in the ratio!



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzman rational
• Demonstrator follows a softmax policy with inverse temperature c

How much reward will I expect to see if I take action 
a in state s and act optimally thereafter.



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzman rational
• Demonstrator follows a softmax policy with inverse temperature c

Expert 
action

Alternative 
action

𝑠



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzman rational
• Demonstrator follows a softmax policy with inverse temperature c

• Perform Bayesian inference (MCMC) to sample from posterior 
distribution

R

P
(R

|D
)



Applications of Bayesian IRL 

• Active Learning

• Uncertainty Estimation

• Demonstration Sufficiency



Autonomous Assessment of
Demonstration Sufficiency via Bayesian

Inverse Reinforcement Learning

Demos Learned policy



RL from Human Feedback (RLHF)



RL from Human Preferences

https://arxiv.org/abs/1706.03741



Why would you want to learn a reward 
from ranked examples?



Inverse Reinforcement Learning

Prior approaches …

1. Typically couldn’t do much better than 
the demonstrator.

We find a reward function that explains 
the ranking, allowing for extrapolation.

2. Were hard to scale to complex 
problems.

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

Pre-Ranked 
Demonstrations

86
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Inverse Reinforcement Learning

Prior approaches …

1. Typically couldn’t do much better than 
the demonstrator.

Find a reward function that explains the 
ranking, allowing for extrapolation.

2. Were hard to scale to complex 
problems.

Reward learning becomes a supervised 
learning problem.

Pre-Ranked 
Demonstrations

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation 
(T-REX)

≺ ⋯ ≺

Pre-ranked demonstrations

Reward 
Function

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
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Trajectory-ranked Reward Extrapolation 
(T-REX)

≺ ⋯ ≺

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
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Reward Function

𝑅𝜃: 𝑆 →  ℝ

91

Examples of S:

Current Robot Joint 
Angles and Velocities → 0.5 → −0.7



Reward Function

𝑅𝜃: 𝑆 →  ℝ

92

Examples of S:

Current Robot Joint 
Angles and Velocities → 0.5 → −0.7

Short
Sequence of

Images
→ 0.9 → −1.2



Binary Classification and the Cross Entropy Loss

https://www.v7labs.com/blog/cross-entropy-loss-guide



Flashback: How should we parameterize 
our policy?
• We need to be able to do two things:

• Sample actions 𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)

• Compute log probabilities log 𝜋𝜃 𝑎𝑡 𝑠𝑡

• Categorical (classifier over discrete actions)
• Typically, you output a value 𝑥𝑖 for each action (class) and then the 

probability is given by a softmax equation

𝜋𝜃 𝑎𝑖 𝑠 =
exp(𝑥𝑖)

σ𝑗 exp(𝑥𝑗)
𝑥𝑛

𝑥0

𝑠

𝜃



Cross Entropy



Example: Image Classification



Trajectory-ranked Reward Extrapolation 
(T-REX) 

Bradley-Terry pairwise ranking loss
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Trajectory-ranked Reward Extrapolation 
(T-REX) 

98

Logits

Minimize cross-entropy loss



Trajectory-ranked Reward Extrapolation 
(T-REX) 
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Logits

Minimize cross-entropy loss

Given pre-ranked demos, reward learning can be 
formulated as a standard supervised learning task.



Reward Extrapolation

T-REX can extrapolate beyond the performance of the best demo

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
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Best demo (Score = 84) T-REX (Score = 520)

Uses only 12 ranked demonstrations

“Autonomous Driving” in Atari

102



Atari Breakout

103

Best of 12 
demos

GAIL (Ho and 
Ermon 2016)

T-REXBehavioral
Cloning



What if you don’t have explicit 
preference labels?

Learning from a learner [ICML’19]

Automatic preference label generation [CoRL’20]

104



Automatic Rankings via Noise Injection

• Assumption: Demonstrator is 
significantly better than a 
purely random policy.

• Provides automatic rankings 
as noise increases.

• Generates a large diverse set 
of ranked demonstrations

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

T-REX

Reward
Function

R(s)
≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

T-REX
Policy 

Optimization

D-REX Policy

≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Experiments

D-REX consistently 
outperforms the best 
demonstration as well as 
outperforming BC and GAIL.

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



AI systems can efficiently infer human 
intent from suboptimal demonstrations.

112



a
T-REX only learns a maximum likelihood estimate 
of the reward function.

113

𝑅



Reward Hacking

• Overfit to spurious correlations
• No consideration of alternative hypotheses

114



a

𝑷(𝑹|𝑫)

115



Next time: LLMs and ChatGPT
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