Inverse RL and
Reward Learning from Preferences

Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]



Course feedback is open

* Extra credit if class response rate is 70% or higher

» Sliding scale if we reach 70%:
 Extra credit points = response_rate_percentage / 10



Reward Learning
(Inverse Reinforcement Learning)

Why? What is the
human’s reward
function?

Observation
. > Reward
Action Reward



Why not just imitate behavior?
(Behavioral Cloning)

What would the
human do?

Action

Observation




 Credit: Simone Giertz




Human Intent Inference

D) Warneken & Tomaseio



Inverse Reinforcement Learning

° Given

MDY/ &

- Demonstrations from an optimal policy r”

-  MDP without a reward function

« Recover the reward function R that makes 7™ optimal



Imitation Learning

Inverse Reinforcement
Behavioral Cloning Learning

T
SR

* Answers the “How?” question * Answers the “Why?” question

* Mimic the demonstrator * Explain the demonstrator’s behavior

* Learn mapping from states to * Learn a reward function capturing
actions the demonstrator’s intent

» Computationally efficient * Can require lots of data and compute

* Compounding errors * Better generalization. Can recover

from arbitrary states



IRL Example: Teaching a robot to navigate
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Toy version | e




What is the reward?




What is the reward?




What is the reward?




What is the reward?




What is the reward?




What is the reward?




What is the reward?




What is the reward?




Inverse Reinforcement Learning Formalism

e Given
o MDP without a reward function
o Demonstrations from an optimal policy *

AR
e Recover the reward function R that makes * optimal

>

e Ill-Posed Problem

o Infinite number of reward functions that can make 7" optimal
m  Trivial all zero reward
m Constant reward

m aR + ¢ (positive scaling a>0, and affine shifts)



How would you do this? .
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Basic IRL Algorithm T3 AY

o Start with demonstrations, D ‘"~
. (A}uess initial reward function R,

° R — RO
o Loop:
- Solve for optimal policy 7y
o Compare D and 7

1
- Update R to try and make D and 7§ more similar
paate



Flashback: Approximate Q-Learning
Q) = wifa(s, ) Fwafals, ) Awafa(sa)

* Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,(l)
Q(s,a) «— Q(s,a) + «[difference] Exact Q’s

difference = [7" + v max Q(s',a")
a

w; — w; + « [difference] f;(s,a)  Approximate Qs

* Intuitive interpretation:
* Adjust weights of active features

» E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

« Formal justification: online least squares



Feature count matching

* Assume the reward function is a linear combination of features:
R(S) _ WT¢(S)C W L#{(S) —+ 0O, %‘Ef”)

* Value function becomes linear combination of (discounted)
feature expectations:

Vi = E; Z’th(st)
| t=0

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Feature count matching

 Assume the reward function is a linear combination of features:
L T
R(s) = w" ¢(s)

* Value function becomes linear combination of (discounted)
feature expectations:

Ve = Ex|) +'w'o(s)
L t=0

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Feature count matching %

 Assume the reward function is a linear combination of \(eatures:
L T
R(s) = w~ ¢(s)

* Value function becomes linear combination of (discounted) Jisc

: H- oAt
feature expectations: N
- - & |
T T - t T = H
Ve = wkE; E Yo(st)| =w Ur "o
| t=0 _

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Inverse reinforcement learning: feature

matching e o =max X |
(Abbeel and Ng 2004, Syed and Schapire 2007)
o |f ||W||1 < 1’ then ‘:L‘ y‘ < Haj“lHyHOO

} (fernce o p @WS
(/’LW* o /’Lﬂ-robot)

H/"LW* o /"Lﬂ-robotHoo

" Trobot

[

* If feature expectations match, then expected returns are identical.

e |dea: Can we update the reward guess R so the feature counts get
closer?

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Problem: Many different policies can lead
to same expected feature counts



Maximum Entropy IRL e Rw(7)
(Ziebart et al. 2008) P(r) = 7

* Collect M demonstrations D = {14, ..., Tj;}

* Initialize reward weights w R(s) = wl¢(s)
* Loop

* Solve for (soft) optimal policy m(als) via Value Iteration

* Solve for expected feature counts of m(a|s) /Q)\&)itl ~ /J&T [ ( rj

« Compute weight update w « w + c/x\(,uD — Ur)

6&0&3 22



Soft Value Iteration

o (A¢St) = EQ?T{?:?(A“S”_V??(S” Policy is a softmax policy. )
soft . Z - Q(b/f
VIt (5,) =log 3 ePre (4050 0.(A>) QOj ;
AtEA 6 = & @\(7;/§>
AN R (4,5) /)bﬁ )
Soft Maximum - >
QLS
- &
— A, S
€. (2%

&



Soft Maximum Cj@b : J) - Qa]/ej:o



Soft Value Iteration

mTe (At|St) — BQi‘E’t (Atgst)—VTf;ft(St) /SoftMaximum
V;;ft (St) _ 10g Z e@iﬁt(ﬂtast)
AeA
soft (At St) — R@ (St At) —+ Z PT (SF‘At St) VSth (Sf)
e j ’ ! Te

S'eS

e Initialize value of terminal states to 0 and other values to —

* Repeat:
* Solve for Q
* Sove for V



Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

Markus Wulfmeier', Dominic Zeng Wang' and Ingmar Posner!

Sensory Input Initial States

Demonstration Samples

State Visiting
Frequencies

y

Determine Loss &
Gradient

Expected State
Visiting Frequencies

Solve MDP

A 4

Reward Approximation

- ————— - — -

Fig. 1: Schema for training neural networks in the Maximum
Entropy paradigm for IRL.




Another way to look at MaxEnt IRL

@@/fX§t = BRQ(T) e x JZO (\D(TB
— ~ P(1) = Z = | eRoe@dr)
- A e Lo Q//
=
* Maximum Likelihood Estimation
* Find reward function that maximizes the log likelihood of (/)

the demonstration trajectories:

QO &6(? 2
\D\ =4 1 o - / J -



How to avoid fully solving MDP

1 — Rg(T)
max NZ:RH(T)_IOgZ Z—fee dt

TED

* Estimate Z with a finite set of trajectories Z;.
* Loop:

* Update parameters 6 so demonstrations have higher reward
than trajectories in Z;.

« Update Z;



How to make this more tractable

Relative Entropy Inverse Reinforcement Learning

Abdeslam Boularias Jens Kober Jan Peters
Max-Planck Institute for Intelligent Systems
72076 Tiibingen, Germany
{abdeslam.boularias, jens.kober, jan.peters}@tuebingen.mpg.de

Learning Objective Functions for Manipulation

Mrinal Kalakrishnan®, Peter Pastor®, Ludovic Righetti*T, and Stefan Schaal*f
kalakris@usc.edu, pastorsalfusc.edu, ludovic.righetti@al3.epfl.ch, sschaal@usc.edu
*CLMC Lab, University of Southern California, Los Angeles CA 90089
fMax Planck Institute for Intelligent Systems, Tiibingen, Germany 72076

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn CBFINN@EECS.BERKELEY.EDU
Sergey Levine SVLEVINE@EECS.BERKELEY.EDU
Pieter Abbeel PABBEEL @EECS.BERKELEY.EDU

University of California, Berkeley, Berkeley, CA 94709 USA

eRG(T)

P(7) = Z

Uniform sampling to
approximate Z.

Noisy perturbations of
demonstrations to
approximate Z

Use current policy to approximate Z.
Alternate between a few steps of reward
updates and a few steps of policy updates.



Finn et al. “Guided Cost Learning.” 2016
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GANs (Generative Adversarial Networks)

N
C}@
Training set Discriminator
AN
N Real
Random _' I {Fa ke
noise

Generator Fake image

o !




GAIL (Generative Adversarial Imitation Learning)

jéwyot"/s / gl C»>

Expert policy N
. TE ” DR--.
- V |
Training set / N Silzeii Agent :
N S.a |
Random / - I ) {Fake S , g (als) ( ’ ) i
I' % — G State & Action |
State :
Generator Fake image : ________________________ :

Cost function

Ho and Ermon, 2016



What if we don’t want just a single
reward estimate?

* Can we get a samples from the full Bayesian posterior?

\‘\M{\ \\A bb%\ @\/\\b r

P(R|D)x P(D|R)P(R)



Markov Chain Monte Carlo (IMCMC)
Markov chain: @ @ @ @ o

P(X1)  P(XyXi-1)
Stationary Distribution:  Pa(X) = Poi1(X) = ) P(X|z) P (2)

MCMC is a sampling approach for Bayesian inference where we
construct a Markov chain such that the stationary distribution is
the posterior distribution we care about.



(s > = —>.

\

MCMC (Metropolis Hastings Algonthm)

P(@c% e

* We want to sample from P(RID) %\\
» Start with random sample 7, Hf
* LOOP ?mpajc\ Assume q is symmetric. For example, a Gaussian

o Sample r’ ~ CI(Rt+1 |Tt) distribution W|th mean x; and standard deviation o @

. . . P(r'|D) (b ™ r
« With probability min {1, > (Tt|D)} ety =% pccept! @1@ /
159 (oo

Normalizing constant cancels in the ratio! P( D) (/) P /“)

(1)) _ PO
—mw T Ceealy  PEIOFT

\)



Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

e Assume demonstrator is Boltzman rational

* Demonstrator follows a softmax policy with i mperature c
e Q i (8 Y a Y R)

P(D|R) =

H ZbeA ecQ*(s;b,R)

(s,a)eD

-

\_

Q" (s,a,R) =

How much reward will | expect to see if | take action
a in state s and act optimally thereafter.

~N

J




Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

* Assume demonstrator is Boltzman rational
* Demonstrator follows a softmax policy with inverse temperature c

[ Q" (s,a,R) )
&
P(DIR) = ]
c@Q*(s,b,R
(s,a)eD \ZbEA € ( )

Y,
Expert ,_@ - - Alternative
action action

P R e@ (s 1)
((s,9)112) = e@(s,—R) 4 Q" (s, R)




Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

e Assume demonstrator is Boltzman rational

* Demonstrator follows a softmax policy with inverse temperature c

cCQ" (s,a,R)
D‘R H Z ecQ*(s,b,R)
(s,a)eD be A
* Perform Bayesian inference (MCMC) to sample from posterior
distribution s ~

P(R|D)x P(D|R)P(R)

P(R|D)




. . PRI D)
Applications of Bayesian IRL

Mo ol gosnm pross s wf‘nzg D=

* Active Learning —
* Uncertainty Estimation
* Demonstration Sufficiency



Center for
%@B AIR C 1 [ritz— ROBOTICS CENTER
X A I e ) THE UNIVERSITY OF UTAH

LIGENCE RESEARCH

Autonomous Assessment of
Demonstration Sufficiency via Bayesian
Inverse Reinforcement Learning

=
[ L]

Am I able to learn a
policy that performs
within 5% of the expert
with high confidence?

Demos f @% Learned policy



RL from Human Feedback (RLHF)

HUMAN
< .............
PREDICTED REWARD PREDICTOR FEEDBACK
REWARD

N

OBSERVATION

RL ALGORITHM ENVIRONMENT

ACTION



RL from Human Preferences

o 9 Detler Mgt 5 Detter

https://arxiv.org/abs/1706.03741



Why would you want to learn a reward
from ranked examples?



Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

1. Typically couldn’t do much better than
the demonstrator.

2. Were hard to scale to complex
problems. .

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

86



Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

the-demonstrator

Find a reward function that explains the
ranking, allowing for extrapolation.

2. Were hard to scale to complex
problems. .

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019




Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

the-demonstrator

Find a reward function that explains the
ranking, allowing for extrapolation.

22— \Were nard-to-scateto-complex
e il

Reward learning becomes a supervised
learning problem.

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation
(T-REX)

Reward

Function

Pre-ranked demonstrations

89
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation
(T-REX)

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Reward Function

Examples of S:

Current Robot Joint
Angles and Velocities

RQZS—> R

é_(

— 0.5

- —0.7



Reward Function

RQZ S—-> R
Examples of S:
Current Robot Joint
Angles and Velocities ‘)——( — 0.5 ’\B\ - —0.7

Short
Sequence of
Images




Binary Classification and the Cross Entropy Loss

Multi-class classification

https://www.v7labs.com/blog/cross-entropy-loss-guide



Flashback: How should we parameterize
our policy?

* We need to be able to do two things:
 Sample actions a; ~ g (- |S¢)
- Compute log probabilities log mg (a;|s;)

* Categorical (classifier over discrete actions)

* Typically, you output a value x; for each action (class) and then the
probability is given by a softmax equation

///i\\\
\,l;{ 74
A A exp(x;)
S mg(a;ls) =
X\ /"i&s»\y ; Zj eXp (xj)
SV AV = n




True probability distribution

Cross Entropy it

H(p,q) = — 2 p(x)log q(x)

Your model’s predicted
probability distribution

f N 4 ™
S X Softmax R CrOSﬁ-OESr;tropy
\ 4 \ J
eSi C
f(s)i = =¢ CE=—) tilog(f(s))
2_j € ?-.



Input image

0.775

0.116

0.039

0.070

Output

<N

Logits (L) Softmax probabilities Classes
(P)
r T e
32 0.775 Dog
| exp(y;)
NN 1.3 S(y)i= — | ome Cat
Layers 2 ex V.
’ 0.2 i=1 P() 0.039 Horse
0.8 0.070 Cheetah
\ . ) S— /
Cross-Entropy
S(Y) L
0.7 1.0
L~e(S,T)
CE
0.2 D(S’L):_ziLi l0g(S:) 0.0
0.1 0.0
v7 V7



Trajectory-ranked Reward Extrapolation

(T-REX)
(r)<[re < - <7

S

Bradley-Terry pairwise ranking loss €Xp Z RQ(S)

L(0) = —
0 TZ; eXPZRe +6XPZRQ

SET; SET;

SCT;




Irajectc

[ |

(T-REX

—L Softmax J
Si
JS)i C

_( Cross-Entropy

L Loss

tion

98



Trajectory-ranked Reward Extrapolation

(T-REX)
(r)<[r2 < -+ <7

Given pre-ranked demos, reward learning can be
formulated as a standard supervised learning task.

— — = )
Minimize cross-entropy loss exp Z Ry (s)
SCT;




Reward Extrapolation

® Demonstrations ® Unseen Trajectories
. oF -
§ 3000 c%"o’k ‘
T 2500 % '3"
3 o*
S 2000 )
S . ’/
21500 ¥ * ¥ °
2 1000 " i
Q 1 .. .’/’. *
e # o ® /.
o 500{ & °
ar} o® s’
9 e
2 OI.*/’ *o.
% —500 i : :
0 1000 2000 3000

Ground Truth Returns

T-REX can extrapolate beyond the performance of the best demo

101
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



“Autonomous Driving” in Atari

Best demo (Score = 84) T-REX (Score = 520)

Uses only 12 ranked demonstrations

102



Atari Breakout

Behavioral

Best of 12 Cloning GAIL (Ho and

demos Ermon 2016)




What if you don’t have explicit
preference labels?

Learning from a learner [ICML19]

v v
Ti<7'j

Automatic preference label generation [CoRL 20]

Goal Goal v, . /Goal

,,1'(2 ,,.,.w‘o
T - - T 3 '
,’I:,.o “/(-‘~‘-.—'
/,_ .4 0—,
d'k-'l -

Goal

Start



Automatic Rankings via Noise Injection

* Assumption: Demonstrator is
significantly better than a 40-
purely random policy.

= 301 —— demos
. . . 5 bc
* Provides automatic rankings ©20{ -
as noise increases. 0.
* Generates a large diverse set 01 T
of ranked demonstrations 0.00 0.25 0.50 0.75 1.00

Epsilon-greedy noise

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

Behavioral
Cloning

TBC

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection




Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection

Reward

I:> Function

R(s)



Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection




Experiments

D-REX consistently
outperforms the best
demonstration as well as
outperforming BC and GAIL.

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



O Warneken & Tomaseion

Al systems can efficiently infer human
intent from suboptimal demonstrations.

112



T-REX only learns a maximum likelihood estimate
of the reward function.

113



Reward Hacking

000000
GECTOR D1

* Overfit to spurious correlations
* No consideration of alternative hypotheses






Next time: LLMs and ChatGPT

Prompts & Text Dataset

Train Language Model

A4

~N
Initial Language Model

g o3,

| Y

Nel'e/
@

Human Augmented
Text (Optional)

Prompts Dataset

Sample many prompts

s
Initial Language Model

D)
4
</

Ny

X
<

2099

Train on

{sample, reward} pairs

Reward (Preference)
Model

text

Lorem ipsum dolor
sit amet, consecte
adipiscing elit. Aen
Donec quam felis
vulputate eget, arc|
Nam quam nunc
eros faucibus tinci

luctus pulvinar, herl

\

Human Scoring

Generated text

Outputs are ranked
(relative, ELO, etc.)
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