CS 6300: Artificial Intelligence
Particle Filters and Applications of HMMs




Today

= HMMs

= Particle filters
" Demo bonanza!
" Most-likely-explanation queries

= Applications:

= “1 Know Why You Went to the Clinic: Risks and Realization of HTTPS
Traffic Analysis”

= Speech recognition



[Demo: Ghostbusters Markov Model (L15D1)]

Recap: Reasoning Over Time
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[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering




Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample
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Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)

= Generally, N << |X]|

= Storing map from X to counts would defeat the point

= P(x) approximated by number of particles with value x

= So, many x may have P(x) = 0!
*= More particles, more accuracy

" For now, all particles have a weight of 1
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Particle Filtering: Elapse Time
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= Each particle is moved by sampling its next
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Particle Filtering: Observe

. . . Particles: / \
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Particle Filtering: Resample

Rather than tracking weighted samples, we
resample

N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

This is equivalent to renormalizing the
distribution

Now the update is complete for this time step,
continue with the next one
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Recap: Particle Filtering

= Particles: track samples of states rather than an\expllat distribution
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[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo — Moderate Number of Particles




Video of Demo — One Particle




Video of Demo — Huge Number of Particles




Robot Localization

" |n robot localization:

= We know the map, but not the robot’s position

= QObservations may be vectors of range finder readings DIRECTORY

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique




Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

= SLAM: Simultaneous Localization And Mapping
= We do not know the map or our location
= State consists of position AND map!

= Main techniques: Kalman filtering (Gaussian HMMs) T~
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi]



Particle Filter SLAM — Video 1

[Demo: PARTICLES-SLAM-mappingl-new.avi]



Dynamic Bayes Nets




Dynamic Bayes Nets (DBNs)

= We want to track multiple variables over time, using
multiple sources of evidence

" |dea: Repeat a fixed Bayes net structure at each time

= Variables from time t can condition on those from t-1

t=1 t=2 t=3
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= Dynamic Bayes nets are a generalization of HMMs

[Demo: pacman sonar ghost DBN model (L15D6)]



Video of Demo Pacman Sonar Ghost DBN Model




DBN Particle Filters

A particle is a complete sample for a time step

Initialize: Generate prior samples for the t=1 Bayes net
» Example particle: G, = (3,3) G,”=(5,3), [Note this is one particle!]

At S
A
Elapse time: Sample a successor for each particle
= Example successor: G,2=(2,3) G,* = (6,3)

) [ L <\
Observe: Weight each entire sample by the likelihood of the evidence conditioned on
the sample q =
= Likelihood: P(E,® |G,2) * P(E,* |G,*) = W

B
Resample: Select prior samples (tuples of values) in proportion to their likelihood



Project 4 — Pacman Sonar (with beliefs)




Most Likely Explanation




HMMs: IVILE Querles
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» HMMs defined by
= States X
= Observations E

= |nitial distribution: P(X71)
" Transitions: P(X|X_1)
= Emissions: P(FE|X)
C\'. X
= New query: most likely explanation: arg max P(x1-¢le1-¢)
L]t ' '

= New method: the Viterbi algorithm



State Trellis

State trellis: graph of states and transitions over time
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Each arc represents some transition Lt—1 — Lt

Each arc has weight  P(x¢|zi—1)P(et|xt)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence
Forward algorithm computes sums of paths, Viterbi computes best paths



Forward / Viterbi Algorithms
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HMMs in Action
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MAIN MENU MY STORIES: FORUMS JOBS ARSCOIN STORE

RISK ASSESSMENT ~ SECURITY & HACKTIVISM

New attack on HTTPS crypto might reveal if
you’re pregnant or have cancer

Scientist-devised technique determines precise address of SSL-protected websites.

by Dan Goodin - Mar 6 2014, 1:51pm PST m m m

| Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)



Challenge

Setting
= User we want to spy on uses HTTPS to browse the internet
Measurements

= |P address

= Sizes of packets coming in

Goal

" Infer browsing sequence of that user

E.g.: medical, financial, legal, ...



HMM

" Transition model

" Probability distribution over links on the current page + some
probability to navigate to any other page on the site

= Noisy observation model due to traffic variations
" Caching
" Dynamically generated content
= User-specific content, including cookies
— Probability distribution P( packet size | page)



Results
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Results

Session Length Effect
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(Old School) Speech Recognition




Digitizing Speech




Speech in an Hour

= Speech input is an acoustic waveform
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Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/
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Spectral Analysis

= Frequency gives pitch; amplitude gives volume
= Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)
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= Fourier transform of wave displayed as a spectrogram
= Darkness indicates energy at each frequency
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Human ear figure: depion.blogspot.com


http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif

Acoustic Feature Sequence

= Time slices are translated into acoustic feature vectors (~39 real numbers
per slice)
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= These are the observations E, now we need the hidden states X



Speech State Space

= HMM Specification

= P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind
of sound)

= P(X|X’) encodes how sounds can be strung together

= State Space

= \We will have one state for each sound in each word
= Mostly, states advance sound by sound

= Build a little state graph for each word and chain them together to form the state
space X



States in a Word

Word Model
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Transitions with a Bigram Model

P(W, | W,)

P(W, [ W)) 198015222 the first
194623024 the same

168504105 the following

158562063 the world

B(W, | W)
P(W, | W)

P(W, | W,}

14112454 the door

23135851162 the *

Training Counts

P(W, | W) ¢

14112454

P(door|the) = 23135851162

P(W, | W)
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= 0.0006

Figure: Huang et al, p. 618



Decoding

" Finding the words given the acoustics is an HMM inference problem
= Which state sequence x,.; is most likely given the evidence e, ;?

1.7 =argmax P(x1.7le1.7) = argmax P(z1-7,e1-7)
L1.T T1:T

" From the sequence x, we can simply read off the words

))




Next Time: Imitation Learning
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