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Today

▪ HMMs

▪ Particle filters

▪ Demo bonanza!

▪ Most-likely-explanation queries

▪ Applications:

▪ “I Know Why You Went to the Clinic: Risks and Realization of HTTPS 
Traffic Analysis”

▪ Speech recognition



Recap: Reasoning Over Time

▪ Markov models

▪ Hidden Markov models
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[Demo: Ghostbusters Markov Model (L15D1)]



Recap: Filtering

Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )
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[Demo: Ghostbusters Exact Filtering (L15D2)]



Particle Filtering



Particle Filtering
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▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1
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Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)
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▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe
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Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the 
distribution

▪ Now the update is complete for this time step, 
continue with the next one
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Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution
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(3,3)
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Elapse Weight Resample
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[Demos: ghostbusters particle filtering (L15D3,4,5)]



Video of Demo – Moderate Number of Particles



Video of Demo – One Particle



Video of Demo – Huge Number of Particles



Robot Localization

▪ In robot localization:
▪ We know the map, but not the robot’s position

▪ Observations may be vectors of range finder readings

▪ State space and readings are typically continuous (works 
basically like a very fine grid) and so we cannot store B(X)

▪ Particle filtering is a main technique



Particle Filter Localization (Laser)

[Video: global-floor.gif]



Robot Mapping

▪ SLAM: Simultaneous Localization And Mapping
▪ We do not know the map or our location

▪ State consists of position AND map!

▪ Main techniques: Kalman filtering (Gaussian HMMs) 
and particle methods

DP-SLAM, Ron Parr

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video 1

[Demo: PARTICLES-SLAM-mapping1-new.avi]



Dynamic Bayes Nets



Dynamic Bayes Nets (DBNs)

▪ We want to track multiple variables over time, using 
multiple sources of evidence

▪ Idea: Repeat a fixed Bayes net structure at each time

▪ Variables from time t can condition on those from t-1

▪ Dynamic Bayes nets are a generalization of HMMs
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[Demo: pacman sonar ghost DBN model (L15D6)]



Video of Demo Pacman Sonar Ghost DBN Model



DBN Particle Filters

▪ A particle is a complete sample for a time step

▪ Initialize: Generate prior samples for the t=1 Bayes net

▪ Example particle: G1
a = (3,3) G1

b = (5,3) [Note this is one particle!]

▪ Elapse time: Sample a successor for each particle 

▪ Example successor: G2
a = (2,3) G2

b = (6,3)

▪ Observe: Weight each entire sample by the likelihood of the evidence conditioned on 
the sample

▪ Likelihood: P(E1
a |G1

a ) * P(E1
b |G1

b ) 

▪ Resample: Select prior samples (tuples of values) in proportion to their likelihood



Project 4 – Pacman Sonar (with beliefs)



Most Likely Explanation



HMMs: MLE Queries

▪ HMMs defined by
▪ States X
▪ Observations E
▪ Initial distribution:
▪ Transitions:
▪ Emissions:

▪ New query: most likely explanation:

▪ New method: the Viterbi algorithm
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State Trellis

▪ State trellis: graph of states and transitions over time

▪ Each arc represents some transition

▪ Each arc has weight

▪ Each path is a sequence of states

▪ The product of weights on a path is that sequence’s probability along with the evidence

▪ Forward algorithm computes sums of paths, Viterbi computes best paths
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Forward / Viterbi Algorithms
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HMMs in Action

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)



Challenge

▪ Setting

▪ User we want to spy on uses HTTPS to browse the internet

▪ Measurements

▪ IP address

▪ Sizes of packets coming in

▪ Goal

▪ Infer browsing sequence of that user

▪ E.g.: medical, financial, legal, …



HMM

▪ Transition model

▪ Probability distribution over links on the current page + some 
probability to navigate to any other page on the site

▪ Noisy observation model due to traffic variations

▪ Caching

▪ Dynamically generated content

▪ User-specific content, including cookies

→ Probability distribution P( packet size | page )



Results

BoG = described approach, others are prior work



Results
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(Old School) Speech Recognition



Digitizing Speech



Speech in an Hour

▪ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

s       p    ee ch l        a  b

“l” to “a”
transition:



Spectral Analysis

▪ Frequency gives pitch; amplitude gives volume
▪ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

▪ Fourier transform of wave displayed as a spectrogram
▪ Darkness indicates energy at each frequency

s             p    ee ch l  a  b

Human ear figure: depion.blogspot.com

http://2.bp.blogspot.com/-9dwlRNvV338/TfyK_J8WGZI/AAAAAAAAARc/PKOCa_pwY4Y/s1600/the-human-ear.gif


Acoustic Feature Sequence

▪ Time slices are translated into acoustic feature vectors (~39 real numbers 
per slice)

▪ These are the observations E, now we need the hidden states X

……………………………………………..e12e13e14e15e16………..



Speech State Space

▪ HMM Specification

▪ P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind 
of sound)

▪ P(X|X’) encodes how sounds can be strung together 

▪ State Space

▪ We will have one state for each sound in each word

▪ Mostly, states advance sound by sound

▪ Build a little state graph for each word and chain them together to form the state 
space X



States in a Word



Transitions with a Bigram Model

Figure: Huang et al, p. 618

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door
-----------------------------------
23135851162 the *
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Decoding

▪ Finding the words given the acoustics is an HMM inference problem

▪ Which state sequence x1:T is most likely given the evidence e1:T?

▪ From the sequence x, we can simply read off the words



Next Time: Imitation Learning
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