CS 6300: Artificial Intelligence
Hidden Markov Models

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar (no beliefs)




Hidden Markov Models




Hidden Markov Models

= Markov chains not so useful for most agents
= Need observations to update your beliefs

= Hidden Markov models (HMMs)

= Underlying Markov chain over states X
= You observe outputs (effects) at each time step
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Example: Weather HMM
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" An HMM is defined by:
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= |nijtial distribution:
Transitions:
" EFmissions:
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Example: Ghostbusters HMM

P(X;) = uniform 1/911/9 }@
7
1/9(]'1/9 1/?
P(X|X") = usually move clockwise, but J{
sometimes move in a random direction or 1/9|1/9711/9
stay in place
P(X,)
P(R;|X) = same sensor model as before: :
red means close, green means far away. | 1/6 | 1¢-p1/2
-
0 |1/6| O
ONONAROSEE a0k
P(X| X" =<1,2>)

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



Joint Distribution of an HMM

= Joint distribution:

P(X1, B, Xa, By, X3, Es) = P(X1)P(E1|X1) P(Xa| X1) P(E2| X2) P(X3] X2) P(E3| Xs)

= More generally: -

P(X1,Er,..., X7, Br) = P(X1)P(E1|X1) [ [ P(X¢|Xio1) P(E| X,)

, t=2
= Questions to be resolved:

= Does this indeed define a joint distribution?

= Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization?



Implied Conditional Independencies

OOS

= Many implied conditional independencies, e.g.,
El AL X27 E27X37 ES | Xl
" To prove them

= Approach 1: follow similar (algebraic) approach to what we did in the
Markov models lecture

" Approach 2: directly from the graph structure (D-Separation)



HMMs Recap

Explicit assumption for all t: Xe AL Xq,..., X o | X41
Consequence, joint distribution can be written as:
P(X1,Xs,...,X71) = P(X1)P(X2|X1)P(X35|X3) ... P(X7| X7_1)

= P(X1) | | P(X¢| Xi—1)

Implied conditional independencies:
= Past variables independent of future variables given the present
e, if h<to<tz or >t>ts then: Xy AL Xi, | Xy,

Additional explicit assumption: P(X, | X,_;) isthe sameforallt



Conditional Independence

= HMMs have two important independence properties:
= Markov hidden process: future depends on past via the present

= Current observation independent of all else given current state
?_'?_'?_' o

= Quiz: does this mean that evidence variables are guaranteed to be independent?

= [No, they tend to correlated by the hidden state]



Real HMM Examples

= Speech recognition HMMs: ’ )
= QObservations are acoustic signals (continuous valued) ?(v)w% SW
= States are specific positions in specific words (so, tens of thousands)

= Machine translation HMMs:

= QObservations are words (tens of thousands)
~® States are translation options

= Robot tracking:
= QObservations are range readings (continuous)
= States are positions on a map (continuous)
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Inference in HMM!: Filtering / Monitoring

= Filtering, or monitoring, is the task of tracking the distribution
B.(X) = P.(X; | ey, ..., &) (the bM) over time

= We start with B,(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

= The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program



Example: Robot Localization

Example from \
Michael Pfeiffer
]
B
v
\
s
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.



Example: Robot Localization

N
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization
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Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1

t=4



Example: Robot Localization

Prob 0 1

t=5



Inference: Base Cases

e

OnO

P(Xile1) P(X5)

S
P(etler) = Plen,er)/P(ey) 000 L2

¢\
xx, P(z1,e1) ZQ Q(%\

= P(x1)P(e1|z1)
Qe o

P(zp) =) P(x1,22)

= > P(z1)P(z2|z1)



Passage of Time

= Assume we have current belief P(X | evidence to date) @ @
—>
B(Xt) = P(thel:t)

= Then, after one time step passes: @
P(Xt+1’61:t) = ZP(Xt+1,l't‘61;t) V\%\ ﬁ/‘\&

o ¢

=Y P(Xiqalmy, ex:) Plilery) " Orcompactly: )
T ) k&% e }“’
Con B (Xy11) ZP (X'|z¢) B(x)

— ZP(XtH’xt) (z¢]e1:t)

= Basicidea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step t the belief is about, and what
evidence it includes



Example: Passage of Time

= As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

T=1

<0.01 <0.01<0.01 <0.01{| <0.01
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Observation

= Assume we have current belief P(X | previous evidence):

B'(X41) = P(Xiq1ler)

= Then, after evidence comes in:

P(Xiiqleriv1) = P(Xig1,err1lers)/Pleitilert)

XX P(Xiy1,€r41]e1:)
= P(eiyilers, Xep1)P(Xipiler) A
(\/5\/\}\\'\}\ -~ T L/ /e K%’fl
— P(€t+1 Xt+1)P(Xt+1’€1:t)
= Basicidea: beliefs “reweighted”
" Or, compactly: by likelihood of evidence
B(Xi11) <x,,, Plers1]|Xiy1)B (Xig1) = Unlike passage of time, we have

to renormalize



Example: Observation

= As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01/(<0.01|<0.01 <0.01|<0.01}|<0.01f|<0.01[<0.01{<0.01

Before observation After observation

B(X) «x P(e|X)B'(X)




Example: Weather HMM

B(+r) = 0.5
B(-r) =0.5

B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.182 B(-r) =0.117
Rain, Rain,

Umbrella, Umbrella,

o 71

Re | Rus | PRualR) | [ R | U, | P(UR)
+r +r 0.7 +r | +u 0.9
+r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U 0.2
-r -r 0.7 -r -u 0.8




The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:) ﬂ@btxa)\ ( /X“‘\X@

= We can derive the following updates

We can normalize as we go if we
want to have P(x|e) at each time

P(Cli‘t|€]_:t) XX P(CL‘t,Gl:t)  ‘ step, or just once at the end...

— P _1,T¢, €1
mtz;l (CC‘t 1, Lt 61.75) @ 7@@)?

= Y P(xy_1,e1:4 1) P(at|zy_1) P(et|xt) \/

\/
Tt—1 L @
= P(etxt) Y P(xtlwp—1)P(xi—1,e1:—

Ti—1
<\> Qv& © \es




Online Belief Updates

= Every time step, we start with current P(X | evidence)
= We update for time:

P(x¢ler:4—1) = Z P(xi_1le1:4—1) - P(xy|eg—q) @_»@

Ti—1

= We update for evidence: @

P(x¢ler+) xx P(xiler+—1) - Plet|xt)

= The forward algorithm does both at once (and doesn’t normalize)
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[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Video of Demo Pacman — Sonar (with beliefs)




Next Time: Particle Filtering and Applications of HMMs
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