Exam 3 Review

" Thursday 3:30-5:30pm in class!
" Bring a calculator. You can check out one from the library.
" One page of notes front and back.

Look where we’ve been!

v < 2

J

Informed Search: Adversarial Search: Expectimax Search
A-Star Alpha-Beta Pruning

maxX

min

White to move

Black winning

Look where we’ve been!
o J

MDPs: Reinforcement DON
Value lteration, Policy Learning: Q-Learning, AlphaGo
Ilteration Policy Gradients

Actions: a

y
EENEPF SN
®

Environment

(&

Look where we’ve been!

/ S V4

Bayes’ Nets D-Separation Variable Elimination

Look where we’ve been!

/ 4 /
Markov Models Value of Perfect Hidden Markov
Information Models:

Particle Filter

Umbrella

Weather

Forecast
=bad

Look where we’ve been!

Behavioral Cloning | K L Inverse RL

What is the reward?

30 Output
Units

Py

A O

[
A 4

S e "-uiu-lf"'-—f"'-—f
e S S

El 30x32 Video
Input Retina

RL from
Human Feedback

RLHF

Pre-ranked demonstrations

=
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL frem Observations." ICML 2019

Probability Recap

o< .
Conditional probability P(zly) = P]ga(j;;) /% P[X//) ~ P/Y;;;@/J
Product rule P(z,y) = P(z|y)P(y)

Chain rule P(X1,X2,...Xn)
T
— H P(X’ilxla"°7Xi—1)

1=1

X, Y independent if and only if: Vax,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z : P(x,y|z) = P(z|z)P(y|z)

P(X1)P(X2|X1)P(X3]X1,X2)...

P(x|y) = P(x)

X1Y|Z

Bayes Net Semantics

= A directed, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1

D-separation: Outline

Active / Inactive Paths

= Question: Are X and Y conditionally independent given Active Triples Inactive Triples
evidence variables {Z}?
= Yes,if Xand Y “d-separated” by Z O—PO—PO
» Consider all (undirected) paths from Xto Y
= No active paths = independence! C

= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B <~ C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment

~d{ §

D-Separation AU DlE

ABC D
= Query: X, L Xj‘{Xkly“ Xk } ? @\@ -
= Check all (undirected!) paths between X; and X 1// /

= |f one or more active, then independence not guaranteed

X, }KX]‘{Xklavan}
& eé

X L XXk ey X,) ®%O

= Otherwise (i.e. if all paths are inactive),

then independence is guaranteed

Inference by Enumeration vs. Variable Elimination

DD e T
> LA C J Stex
=) Z V(5 Qu @(ZH* j)

c Y
= RO, CJP (D10
c

[E—

¥“\vm¥r\~// C g VP
ﬁé - +tC Y o+ N
/ Wx\y_?(c\?(% ALY D g (Db c> Rk j ;

L7§€;i3\émi\ SO |

T LER

Inference by Enumeration vs. Variable Elimination

= Why isinference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

Operation 1: Join Factors

= First basic operation: joining factors

= Combining factors:
= Just like a database join % ——1
= Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example:JoinonR

R P(R) x P(T|R) =—— P(R,T)
_+r P01 | |+t &—@ —‘m)0.08

-r 0.9 +r | -t 0.2 +r | -t | 0.02
° r |+t |01 -r | +t | 0.09
-r | -t 0.9 -r | -t | 0.81

= Computation for each entry: pointwise products V?“, . P(T, t) — P(T) . P(t|7”)

Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
» Shrinks a factor to a smaller one

= A projection operation
= Example:

P(R,T)
+r | +t (6.085/ sum i

+r | -t | 0.02 >@q>::> +t
-r | +t N0.09-
-r | -t 1081

General Variable Elimination

Query: P(Q|E1 = e1,... B = ey)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize

Example

P(Blj, m)/OC P(B,j,m)
P(B) P(E) P(A|B, E) P@jlA) P(m]A)
Choose A
P(A|B, E) f1(.m, B, E)
]Jz&ﬁ) X > PG.m AIB.E) [£) P(im|B,E)
P(B) P(E) P(j,m|B,E) | £(j,m,B,E)

Example

P(B) P(E) P(j,m|B,)
Choose E
PLE) :><> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X P(j,m,B) Normalize > P(B‘j, WL)

Same Example in Equations

Qvaryr
P(B|j,m) o< P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA) P(m|A)

P(Blj,m) o P(B,j,m) N e T 0 -
= Y P(B,j,m,e,a) o - marginal can be obtained from joint by summing out
, v
— Z P(B)YP(e)P(a|B,e)P(jla) P(m|a) use Bayes’ net joint distribution expression

_ Z P(B)P(e) ZP(a|B e)P(g\a)P&m @) i use x*(y+z) = xy + xz
= Z P(B)P(e)fl(B e, 7, m) e joining on a, and then summing out gives f,
= P(B) Y P(e)f1(B,e, j,m) use x*(y+z) =xy + xz
€
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Bayes’ Nets: Sampling

Sampling

. . L O . /25
= Sampling from given distribution = Example
= Step 1: Get sample u from uniform
distribution over [0, 1) C P(C)
>>> import random , . o
T - lﬂandum‘random() red 0'6 0 E L < (].6-_, _}' C S ?"ﬁd
0.6303136415860905 green 0.1 0.6 <u<0.7, = C = green
= Step 2: Convert this sample u into an blue 0.3 0.7<u<1,— C = blue
outcome for the given distribution by
having each outcome associated with
a sub-interval of [0,1) with sub-interval = If random() retur-ns u=0.83,
size equal to probability of the then our sample is C = blue

outcome = E.g, after sampling 8 times:

T

Bayes’ Net Sampling Summary

= Prior Sampling P = Rejection Sampling P(Q | e)

Prior Sampling

= Fori=], 2, ..., n
= Sample x, from P(X; | Parents(X.))

= Return (xq, Xy, ..., X))

Rejection Sampling

= |N: evidence instantiation
= Fori=]1, 2, ..., n

= Sample x; from P(X. | Parents(X.))

= [f x, not consistent with evidence

= Reject: Return, and no sample is generated in this cycle

= Return (x4, X,, .., X,,)

P& |~) Likelihood Weighting

)) . wi
, = |N: evidence instantiation
)V\O \,fl—%&\/j/lﬂbm w10 “9 5 [/—/

. : \ ~+&~> _ N
\ ‘ QL*}M /V> ?(*VV\ for |'—1, ?, o) n. | 3
. b_r uJAV = if X, is an evidence variable (% ?
\/\ lj : = X; = observation x; for X / \

= Setw=w *P(x; | Parents(X;)) @
= else j /VL
= Sample x; from P(X, | Parents(X,)) T-J @

= return (Xy, X,, ..., X)), W

Likelihood Weighting

= |N: evidence instantiation
Now each sample doesn’t count

" w=10 as 1.0 but has a weight. Need to
= fori=1, 2, .. n take a weighted average.

= if X, is an evidence variable
P(Q|Evidence) =
Sum(weights of samples
consistent with Query) / Total
Weight of All samples.

= X; = observation x; for X;
= Setw=w *P(x; | Parents(X;))
= else
= Sample x; from P(X, | Parents(X,))

= return (xq, X,, ..., X)), W

Decision Networks

= Action selection

Instantiate all evidence

Set action node(s) each
possible way

Calculate posterior for all
parents of utility node, given
the evidence

Calculate expected utility for
each action

Choose maximizing action

G X Ekw (b

Umbrella

Y
e W e
— WA

F@w@d

Weather

+ AU - >
O)

%

s)

Decision Networks

Umbrella = leave

U(leave) Z P(w)U (leave, w)

Umbrella

20.7-100—|—O.3—O:7O

Umbrella = take

EU(take) Z P(w)U(take, w) @

A W U(A,W)
—0.7-20 4+ 0.3 - 70 = 35 W P(W) leave sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
Optimal decision = leave .
take rain 70

MEU(¢) = max EU(a) = 70

Example: Decision Networks

Umbrella = leave A W UAw)
Umbrella leave | sun 100
EU(leave|bad) = Z P(w|bad)U (leave, w) eave | rain 0
v take sun 20
=0.34-1004+0.66 - 0 = 34 take | rain 70
ol o)
Umbrella = take " ?(U % — 7 (?/\«D P(D\D
eather =
EU(take|bad) = Z P(w|bad)U (take, w) W | P(W]|F=bad) ’ UZ)

sun 0.34
= 0.34 - 204 0.66 - 70 :@ \\h rain 0.66 -—-]
i i Forecast) 5 —n—
Optimal decision = take ,

MEU(F = bad) = max EU(a|bad) = 53

VPl Example: Weather

MEU with no evidence Umbrella

leave | sun 100

MEU(Q) = mc?x EU(CL) =70 leave | rain 0
MEU if forecast is bad @ take | sun [20
take rain 70

MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good

MEU(F' = good) = max EU(a|good) = 95

Forecast distribution

i 0.59 - (95) + 0.41 - (53) — 70
good 0.59
bad | 041 778 —70=7.8

EJ

VPI(E'le) = (Z P(c"e)MEU(c,e")) — MEU(e)

Value of Information

Assume we have evidence E=e. Value if we act now: {+e}
a
MEU(e) = mﬂaxz P(sle) U(s,a)
s P(s | +e)
Assume we see that E’ =e’. Value if we act then: U
MEU(e, ') = mgxz P(sle,e") U(s,a) (re, +e’]

BUT E’ is a random variable whose value is
unknown, so we don’ t know what e’ will be P(s | +e, +e)

Expected value if E” is revealed and then we act:

MEU(e, E") =Y P(e'|le)MEU(e, €')
t—?f

Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

VPI(E'|e) = MEU(e, E') — MEU(e)

Markov Models Recap

" Explicit assumption for all t: Xe AL Xq,..., X o | X41
= Consequence, joint distribution can be written as:
P(X1,Xs,...,X71) = P(X1)P(X2|X1)P(X35|X3) ... P(X7| X7_1)

T
®/7@ — (<2 _ P(Xl)HP(Xt‘Xt—l) Huge savings in number

Pl of parameters needed!

" Implied conditional independencies:
= Past variables independent of future variables given the present
i.e., if 1 <tg <tz OF t1 >ty > 13 then: th Al Xt3 ‘ Xt2

= Additional explicit assumption: pP(X, | X,_,) isthe same for all t

Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

OO OOy

P(xq1) = known

P(:z:t) — Z P(xi_q,x)

Tt—1

Stationary Distributions

" For most chains: = Stationary distribution:
* |Influence of the initial distribution " The distribution we end up with is called
gets less and less over time. the stationary distribution P__of the
* The distribution we end up in is chain
independent of the initial distribution " |t satisfies

ML& = Pun(X) = Y P(X[2)P
Z V)=

af o0

Q\D@ @ HMMs Recap
@ < 563

= Explicit assumptlon for all Xe AL Xq,..., X o | X41
= Consequence, joint distribution can be written as:

P(X1, X, ..., QWXT\XT 1 %/ >
(v, \ Y1) ¥ <
?(X\(\?(ﬁ) (¢ 1 ? Xt X 1) XJC(Xﬁ 7
t—= 2
" Implied conditional independencies: <€J6’§<D
= Past variables independent of future variables given the present

e, if h<to<tz or >t>ts then: Xy AL Xi, | Xy,

= Additional explicit assumption: pP(X, | X,_,) isthe same for all t

The Forward Algorithm

= We are given evidence at each time and want to know

Bi(X) = P(X¢le1:)

= We can derive the following recursive update

P(x;lei) = P(x¢|lei.t—1,€r) Divide up evidence
o P(eelxe, eq.0-1)P(xe|€q.4-1) Bayes' rule
= P(e¢lx;)P(x¢|e1.0—1) Sensor Markov assumption
= P(e¢|x;) z P(x¢ xp—1l€1.621) Reverse marginalization
Xt—1
= P(e¢|xt) 2 P(x¢leq.c—1, x¢—1)P(x¢—1l€1:.—1) Product rule
Xt—1
= P(e¢|xt) z P(xe|xe—1)P(xe—qler-1) Markov assumption

Xt—1

Particle Filtering

Particle Filtering

Filtering: approximate solution

Sometimes | X]| is too big to use exact inference
= |X| may be too big to even store B(X)
= E.g. Xis continuous

Solution: approximate inference

= Track samples of X, not all values

= Samples are called particles

= Time per step is linear in the number of samples
But: number needed may be large
= |n memory: list of particles, not states

This is how robot localization works in practice

Particle is just new name for sample

00 [04 | 00

0.0 | 0.0 | 0.2

00 | 02 | 05
O

o0

00 | o0

Representation: Particles

= Qur representation of P(X) is now a list of N particles (samples)
= Generally, N << |X]|
= Storing map from X to counts would defeat the point

* P(x) approximated by number of particles with value x
= So, many x may have P(x) = 0!
= More particles, more accuracy

" For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

= Each particle is moved by sampling its next
position from the transition model

' = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

* This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

s i)
3] I
o |3°

Particle Filtering: Observe

= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) x P(e|X)B'(X)
As before, the probabilities don’t sum to one,

since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particles:

-
DNoNRk DL

Particle Filtering: Resample

= Rather than tracking weighted samples, we
resample

= N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

= This is equivalent to renormalizing the
distribution

= Now the update is complete for this time step,
continue with the next one

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4
(3,3) w=4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution

Elapse (\D CXJC/\ ><J°V\}§ight p<€£/ ><ﬁ/égmple

@ |90 T — e | o

o |0 B ®

@ @

O P ® o2

@

Particles: Particles:

(3,3) (3,2)
(2,3) (2,3)
(3,3) (3,2)
(3,2) (3,1)
(3,3) (3,3)
(3,2) (3,2)
(1,2) (1,3)
(3,3) (2,3)
(3,3) (3,2)
(2,3) (2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=4
(3,3) w=4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9
(2,2) w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Partially Observable Markov Decision Processes

= A POMDP is defined by:

= Asetofstatess e S
= Aset of actionsa € A
= A transition function T(s, a, s')

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

= Areward function R(s, a, s’)
= Sometimes just R(s), R(s,a), or R(s’)
= A start state distribution
= Maybe a terminal state
= QObservations Z
= Emission Model O(s,z) = P(z]s)

= POMDPs are non-deterministic search problems
where you don’t know where you are!

MDP vs POMDP

* MDP

" + Tractable to solve
= + Relatively easy to specify
= -Assumes perfect knowledge of state

= POMDP

= +Models the real world
= +Allows for information gathering actions

= -Hugely intractable to solve optimally

Belief State MDP

D
= State space: B (5 C@Zj @Q (A
= Action space: A - W(QK 9
@
P(b'|b,a) = ZP(b’,zlb, a) = ZP(b’Ib, a,2)P(z|b, a)

= Transition Function: P(b’|b,a) PLs2)
‘\ Variable elimination in
0 or 1 depending 0/ orderS, &’

state estimation

= Reward function: Z P(z|s") z P(s'|s,a)b(s)

n

R(b,a) = b(s)r(s,a)
= Problems? s

Behavioral Cloning

training supervised

| : 7T<9(at|0t)

— training trajectory
- — Ty expected trajectory

51

Distribution Shift

D~ (Ot) 7é Prg (Ot)

Expert trajectory
Learned Policy
— I
i G-
..::::‘\\‘-. \... ."
o i Train ,y)~D s~P(lsn(s)
how to recover it A
Test (x,y) ~D s~ P(:|s,m(s))

52

DAgger

can we make Pgata(0t) = pr,(0¢)7

idea: instead of being clever about p,(0¢), be clever about pgata(0t)!

DAgger: Dataset Aggregation

goal: collect training data from p,,(0:) instead of pgata(0t)
how? just run 7mg(a;|o;)

but need labels a;!

1. train my(a;|o;) from human data D = {0y,a;,...,0yx,an}
2. run my(as|o;) to get dataset D, = {01,...,0p}
3. Ask human to label D, with actions a;

4. Aggregate: D+ DU D,
Ross et al. ‘11

Behavioral Cloning Inverse Reinforcement Legréning

—_
L—
Answers the “How?” question = Answers the “Why?” question
Mimic the demonstrator = Explain the demonstrator’s behavior

Learn mapping from states to actions a};B = Learn a reward function capturing the
Computationally efficient o< demonstrator’s intent

Compounding errors S@A\Vj = Can require lots of data and compute

= Better generalization. Can recover from
arbitrary states

Basic IRL Algorithm

w. Start with demonstrations, D
x. Guess initial reward function R

&R\:RO
x. Loop:

[] L) *

x Solve for optimal policy 75
k
x Compare D and 5

x Update R to try and make D and 3 more similar

RL from Human Feedback (RLHF)

A =6
HUMAN
<
PREDICTED REWARD PREDICTOR FEEDBACK
REWARD

N

OBSERVATION

N

RL ALGORITHM ENVIRONMENT

ACTION

RL from Human Preferences

n Delter

‘7.\""7

RLHF

Pre-ranked demonstrations

59
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

RLHF

Pre-ranked demonstrations T-REX Policy

60
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

Learning from preferences

.-<’7'2<

SETl SETQ

Bradley-Terry pairwise ranking exp Z Ry(s
loss SET;

L(0) = —
O 2 S R+ e S ol

SET; “seT;

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used to
fine-tune GPT-3.5
with supervised
learning.

r N
7
Explain reinforcement

learning to a 6 year old.

$

o)

4

We give treats and

punishments to teach...

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

~
L

Explain reinforcement
learning to a 6 year old.

A o

learning, the
agontis..

In reinforcesmpent xplain revaras..

In machine We give treals and

arning mmi‘t:"v«:m_\ 1

7

&)

0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A=

Write a story
about otters.

We made it!

63

	Slide 1: Exam 3 Review
	Slide 3: Look where we’ve been!
	Slide 4: Look where we’ve been!
	Slide 5: Look where we’ve been!
	Slide 6: Look where we’ve been!
	Slide 7: Look where we’ve been!
	Slide 8: Probability Recap
	Slide 9: Bayes’ Net Semantics
	Slide 10: D-separation: Outline
	Slide 11: Active / Inactive Paths
	Slide 12: D-Separation
	Slide 15: Inference by Enumeration vs. Variable Elimination
	Slide 16: Inference by Enumeration vs. Variable Elimination
	Slide 17: Operation 1: Join Factors
	Slide 18: Operation 2: Eliminate
	Slide 19: General Variable Elimination
	Slide 20: Example
	Slide 21: Example
	Slide 22: Same Example in Equations
	Slide 23
	Slide 24: Sampling
	Slide 25: Bayes’ Net Sampling Summary
	Slide 26: Prior Sampling
	Slide 27: Rejection Sampling
	Slide 28: Likelihood Weighting
	Slide 29: Likelihood Weighting
	Slide 30: Decision Networks
	Slide 31: Decision Networks
	Slide 32: Example: Decision Networks
	Slide 33: VPI Example: Weather
	Slide 34: Value of Information
	Slide 36: Markov Models Recap
	Slide 37: Mini-Forward Algorithm
	Slide 38: Stationary Distributions
	Slide 39: HMMs Recap
	Slide 40: The Forward Algorithm
	Slide 41: Particle Filtering
	Slide 42: Particle Filtering
	Slide 43: Representation: Particles
	Slide 44: Particle Filtering: Elapse Time
	Slide 45: Particle Filtering: Observe
	Slide 46: Particle Filtering: Resample
	Slide 47: Recap: Particle Filtering
	Slide 48: Partially Observable Markov Decision Processes
	Slide 49: MDP vs POMDP
	Slide 50: Belief State MDP
	Slide 51: Behavioral Cloning
	Slide 52: Distribution Shift
	Slide 53: DAgger
	Slide 54
	Slide 55: Basic IRL Algorithm
	Slide 57: RL from Human Feedback (RLHF)
	Slide 58: RL from Human Preferences
	Slide 59: RLHF
	Slide 60: RLHF
	Slide 61: Learning from preferences
	Slide 62
	Slide 63: We made it!

