
Exam 3 Review

▪ Thursday 3:30-5:30pm in class!

▪ Bring a calculator. You can check out one from the library.

▪ One page of notes front and back.

1

Look where we’ve been!

Informed Search:

A-Star
Adversarial Search:

Alpha-Beta Pruning

10 10 9 100

max

min

Expectimax Search

Look where we’ve been!

MDPs:

Value Iteration, Policy

Iteration

Reinforcement

Learning: Q-Learning,

Policy Gradients

DQN

AlphaGo

Environment

Agent

Actions: a
State: s

Reward: r

Look where we’ve been!

Bayes’ Nets D-Separation

Burglary Earthquake

Alarm

John
calls

Mary
calls

Variable Elimination

Sampling

Look where we’ve been!

Weather

Forecast
=bad

Umbrella

U

Markov Models Value of Perfect

Information

X2

E1

X1 X3

E2 E3

Hidden Markov

Models:

Particle Filters

Look where we’ve been!

Inverse RL

RL from

Human FeedbackDAgger

Behavioral Cloning

Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:

𝑃 𝑥 𝑦 = 𝑃(𝑥)

Bayes’ Net Semantics

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination
of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

D-separation: Outline

Active / Inactive Paths

▪ Question: Are X and Y conditionally independent given
evidence variables {Z}?
▪ Yes, if X and Y “d-separated” by Z
▪ Consider all (undirected) paths from X to Y
▪ No active paths = independence!

▪ A path is active if each triple is active:
▪ Causal chain A → B → C where B is unobserved (either direction)
▪ Common cause A  B → C where B is unobserved
▪ Common effect (aka v-structure)
 A → B  C where B or one of its descendents is observed

▪ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples

▪ Query:

▪ Check all (undirected!) paths between and

▪ If one or more active, then independence not guaranteed

▪ Otherwise (i.e. if all paths are inactive),

 then independence is guaranteed

D-Separation

?

Inference by Enumeration vs. Variable Elimination

Inference by Enumeration vs. Variable Elimination

▪ Why is inference by enumeration so slow?
▪ You join up the whole joint distribution before

you sum out the hidden variables

▪ Idea: interleave joining and marginalizing!

▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than
inference by enumeration

Operation 1: Join Factors

▪ First basic operation: joining factors

▪ Combining factors:

▪ Just like a database join

▪ Get all factors over the joining variable

▪ Build a new factor over the union of the variables
involved

▪ Example: Join on R

▪ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Operation 2: Eliminate

▪ Second basic operation: marginalization

▪ Take a factor and sum out a variable

▪ Shrinks a factor to a smaller one

▪ A projection operation

▪ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

General Variable Elimination

▪ Query:

▪ Start with initial factors:
▪ Local CPTs (but instantiated by evidence)

▪ While there are still hidden variables
(not Q or evidence):
▪ Pick a hidden variable H

▪ Join all factors mentioning H

▪ Eliminate (sum out) H

▪ Join all remaining factors and normalize

Example

Choose A
𝑓1 𝑗, 𝑚, 𝐵, 𝐸

𝑓1 𝑗, 𝑚, 𝐵, 𝐸

Example

Choose E

Finish with B

Normalize

Same Example in Equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z) = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Bayes’ Nets: Sampling

Sampling

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform
distribution over [0, 1)

▪ Step 2: Convert this sample u into an
outcome for the given distribution by
having each outcome associated with
a sub-interval of [0,1) with sub-interval
size equal to probability of the
outcome

▪ Example

▪ If random() returns u = 0.83,
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3

Bayes’ Net Sampling Summary

▪ Prior Sampling P

▪ Likelihood Weighting P(Q | e)

▪ Rejection Sampling P(Q | e)

▪ Gibbs Sampling P(Q | e)

Prior Sampling

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ Return (x1, x2, …, xn)

Rejection Sampling

▪ IN: evidence instantiation

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence

▪ Reject: Return, and no sample is generated in this cycle

▪ Return (x1, x2, …, xn)

Likelihood Weighting

▪ IN: evidence instantiation

▪ w = 1.0

▪ for i=1, 2, …, n

▪ if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else

▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w

Likelihood Weighting

▪ IN: evidence instantiation

▪ w = 1.0

▪ for i=1, 2, …, n

▪ if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else

▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w

Now each sample doesn’t count

as 1.0 but has a weight. Need to

take a weighted average.

P(Q|Evidence) =

Sum(weights of samples

consistent with Query) / Total

Weight of All samples.

Decision Networks

Weather

Forecast

Umbrella

U

▪ Action selection

▪ Instantiate all evidence

▪ Set action node(s) each
possible way

▪ Calculate posterior for all
parents of utility node, given
the evidence

▪ Calculate expected utility for
each action

▪ Choose maximizing action

Decision Networks

Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take

VPI Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution

Value of Information

▪ Assume we have evidence E=e. Value if we act now:

▪ Assume we see that E’ = e’. Value if we act then:

▪ BUT E’ is a random variable whose value is
 unknown, so we don’t know what e’ will be

▪ Expected value if E’ is revealed and then we act:

▪ Value of information: how much MEU goes up
 by revealing E’ first then acting, over acting now:

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)

U

{+e}

P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a

Markov Models Recap

▪ Explicit assumption for all t :

▪ Consequence, joint distribution can be written as:

▪ Implied conditional independencies:

▪ Past variables independent of future variables given the present

i.e., if or then:

▪ Additional explicit assumption: is the same for all t

Huge savings in number

of parameters needed!

Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

▪ Stationary distribution:
▪ The distribution we end up with is called

the stationary distribution of the
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution

gets less and less over time.

▪ The distribution we end up in is
independent of the initial distribution

HMMs Recap

▪ Explicit assumption for all t :

▪ Consequence, joint distribution can be written as:

▪ Implied conditional independencies:

▪ Past variables independent of future variables given the present

i.e., if or then:

▪ Additional explicit assumption: is the same for all t

The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following recursive update

𝑃 𝑥𝑡 𝑒1:𝑡 = 𝑃(𝑥𝑡|𝑒1:𝑡−1, 𝑒𝑡) Divide up evidence

∝ 𝑃 𝑒𝑡 𝑥𝑡, 𝑒1:𝑡−1 𝑃(𝑥𝑡|𝑒1:𝑡−1) Bayes’ rule

= 𝑃 𝑒𝑡 𝑥𝑡 𝑃(𝑥𝑡|𝑒1:𝑡−1) Sensor Markov assumption

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃(𝑥𝑡 , 𝑥𝑡−1|𝑒1:𝑡−1) Reverse marginalization

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑒1:𝑡−1, 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Product rule

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Markov assumption

Particle Filtering

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample

Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0!

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next
position from the transition model

▪ This is like prior sampling – samples’ frequencies
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and

after (consistent)

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight
samples based on the evidence

▪ As before, the probabilities don’t sum to one,
since all have been downweighted (in fact they
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Particle Filtering: Resample

▪ Rather than tracking weighted samples, we
resample

▪ N times, we choose from our weighted sample
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the
distribution

▪ Now the update is complete for this time step,
continue with the next one

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
 (3,3)
 (2,3)
 (3,3)
 (3,2)
 (3,3)
 (3,2)
 (1,2)
 (3,3)
 (3,3)
 (2,3)

Elapse Weight Resample

Particles:
 (3,2)
 (2,3)
 (3,2)
 (3,1)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (2,2)

Particles:
 (3,2) w=.9
 (2,3) w=.2
 (3,2) w=.9
 (3,1) w=.4
 (3,3) w=.4
 (3,2) w=.9
 (1,3) w=.1
 (2,3) w=.2
 (3,2) w=.9
 (2,2) w=.4

(New) Particles:
 (3,2)
 (2,2)
 (3,2)
 (2,3)
 (3,3)
 (3,2)
 (1,3)
 (2,3)
 (3,2)
 (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Partially Observable Markov Decision Processes

▪ A POMDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s), R(s,a), or R(s’)

▪ A start state distribution
▪ Maybe a terminal state
▪ Observations Z
▪ Emission Model O(s,z) = P(z|s)

▪ POMDPs are non-deterministic search problems
where you don’t know where you are!

MDP vs POMDP

▪ MDP

▪ + Tractable to solve

▪ + Relatively easy to specify

▪ -Assumes perfect knowledge of state

▪ POMDP

▪ +Models the real world

▪ +Allows for information gathering actions

▪ -Hugely intractable to solve optimally

Belief State MDP

▪ State space:

▪ Action space:

▪ Transition Function:

▪ Reward function:

▪ Problems?

𝑃 𝑏′ 𝑏, 𝑎 = ෍

𝑧

𝑃 𝑏′, 𝑧 𝑏, 𝑎 = ෍

𝑧

𝑃 𝑏′ 𝑏, 𝑎, 𝑧 𝑃(𝑧|𝑏, 𝑎)

S S’

Z

A

0 or 1 depending on
state estimation

෍

𝑠′

𝑃(𝑧|𝑠′) ෍

𝑠

𝑃 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

Variable elimination in
order S, S’

𝑅 𝑏, 𝑎 = ෍

𝑠

𝑏 𝑠 𝑟(𝑠, 𝑎)

𝐵

A

P(b’|b,a)

51

Behavioral Cloning

Distribution Shift

52

Supervised

Learning

Supervised

Learning +

Control

Train 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋∗ 𝑠)

Test 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋 𝑠)

DAgger

53
Ross et al. ‘11

Behavioral Cloning

▪ Answers the “How?” question
▪ Mimic the demonstrator
▪ Learn mapping from states to actions
▪ Computationally efficient
▪ Compounding errors

Inverse Reinforcement Learning

▪ Answers the “Why?” question
▪ Explain the demonstrator’s behavior
▪ Learn a reward function capturing the

demonstrator’s intent
▪ Can require lots of data and compute
▪ Better generalization. Can recover from

arbitrary states

𝑅

Basic IRL Algorithm

 Start with demonstrations, 𝐷
 Guess initial reward function 𝑅0


෠𝑅 = 𝑅0

 Loop:

 Solve for optimal policy 𝜋 ෠𝑅
∗

 Compare 𝐷 and 𝜋 ෠𝑅
∗

 Update ෠𝑅 to try and make 𝐷 and 𝜋 ෠𝑅
∗ more similar

RL from Human Feedback (RLHF)

RL from Human Preferences

RLHF

≺ ⋯ ≺

Pre-ranked demonstrations

Reward

Function

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

59

RLHF

≺ ⋯ ≺

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

60

Learning from preferences

Bradley-Terry pairwise ranking

loss

61

62

We made it!

63

	Slide 1: Exam 3 Review
	Slide 3: Look where we’ve been!
	Slide 4: Look where we’ve been!
	Slide 5: Look where we’ve been!
	Slide 6: Look where we’ve been!
	Slide 7: Look where we’ve been!
	Slide 8: Probability Recap
	Slide 9: Bayes’ Net Semantics
	Slide 10: D-separation: Outline
	Slide 11: Active / Inactive Paths
	Slide 12: D-Separation
	Slide 15: Inference by Enumeration vs. Variable Elimination
	Slide 16: Inference by Enumeration vs. Variable Elimination
	Slide 17: Operation 1: Join Factors
	Slide 18: Operation 2: Eliminate
	Slide 19: General Variable Elimination
	Slide 20: Example
	Slide 21: Example
	Slide 22: Same Example in Equations
	Slide 23
	Slide 24: Sampling
	Slide 25: Bayes’ Net Sampling Summary
	Slide 26: Prior Sampling
	Slide 27: Rejection Sampling
	Slide 28: Likelihood Weighting
	Slide 29: Likelihood Weighting
	Slide 30: Decision Networks
	Slide 31: Decision Networks
	Slide 32: Example: Decision Networks
	Slide 33: VPI Example: Weather
	Slide 34: Value of Information
	Slide 36: Markov Models Recap
	Slide 37: Mini-Forward Algorithm
	Slide 38: Stationary Distributions
	Slide 39: HMMs Recap
	Slide 40: The Forward Algorithm
	Slide 41: Particle Filtering
	Slide 42: Particle Filtering
	Slide 43: Representation: Particles
	Slide 44: Particle Filtering: Elapse Time
	Slide 45: Particle Filtering: Observe
	Slide 46: Particle Filtering: Resample
	Slide 47: Recap: Particle Filtering
	Slide 48: Partially Observable Markov Decision Processes
	Slide 49: MDP vs POMDP
	Slide 50: Belief State MDP
	Slide 51: Behavioral Cloning
	Slide 52: Distribution Shift
	Slide 53: DAgger
	Slide 54
	Slide 55: Basic IRL Algorithm
	Slide 57: RL from Human Feedback (RLHF)
	Slide 58: RL from Human Preferences
	Slide 59: RLHF
	Slide 60: RLHF
	Slide 61: Learning from preferences
	Slide 62
	Slide 63: We made it!

