
Exam 3 Review

▪ Thursday 3:30-5:30pm in class!

▪ Bring a calculator. You can check out one from the library.

▪ One page of notes front and back.
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Look where we’ve been!

Informed Search:

A-Star
Adversarial Search:

Alpha-Beta Pruning

10 10 9 100

max

min

Expectimax Search



Look where we’ve been!

MDPs:

Value Iteration, Policy 

Iteration

Reinforcement 

Learning: Q-Learning,

Policy Gradients

DQN

AlphaGo

Environment

Agent

Actions: a
State: s

Reward: r



Look where we’ve been!

Bayes’ Nets D-Separation

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

Variable Elimination

Sampling



Look where we’ve been!

Weather

Forecast
=bad

Umbrella

U

Markov Models Value of Perfect 

Information

X2

E1

X1 X3

E2 E3

Hidden Markov 

Models:

Particle Filters



Look where we’ve been!

Inverse RL

RL from 

Human FeedbackDAgger

Behavioral Cloning



Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule 

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:

𝑃 𝑥 𝑦 = 𝑃(𝑥)



Bayes’ Net Semantics

▪ A directed, acyclic graph, one node per random variable

▪ A conditional probability table (CPT) for each node

▪ A collection of distributions over X, one for each combination 
of parents’ values

▪ Bayes’ nets implicitly encode joint distributions

▪ As a product of local conditional distributions

▪ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:



D-separation: Outline



Active / Inactive Paths

▪ Question: Are X and Y conditionally independent given 
evidence variables {Z}?
▪ Yes, if X and Y “d-separated” by Z
▪ Consider all (undirected) paths from X to Y
▪ No active paths = independence!

▪ A path is active if each triple is active:
▪ Causal chain A → B → C where B is unobserved (either direction)
▪ Common cause A  B → C where B is unobserved
▪ Common effect (aka v-structure)
 A → B  C where B or one of its descendents is observed
 

▪ All it takes to block a path is a single inactive segment

 

Active Triples Inactive Triples



▪ Query: 

▪ Check all (undirected!) paths between        and 

▪ If one or more active, then independence not guaranteed

   

▪ Otherwise (i.e. if all paths are inactive),

    then independence is guaranteed

D-Separation

?



Inference by Enumeration vs. Variable Elimination



Inference by Enumeration vs. Variable Elimination

▪ Why is inference by enumeration so slow?
▪ You join up the whole joint distribution before 

you sum out the hidden variables

▪ Idea: interleave joining and marginalizing!

▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than 
inference by enumeration



Operation 1: Join Factors

▪ First basic operation: joining factors

▪ Combining factors:

▪ Just like a database join

▪ Get all factors over the joining variable

▪ Build a new factor over the union of the variables 
involved

▪ Example: Join on R

▪ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Operation 2: Eliminate

▪ Second basic operation: marginalization

▪ Take a factor and sum out a variable

▪ Shrinks a factor to a smaller one

▪ A projection operation

▪ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



General Variable Elimination

▪ Query:

▪ Start with initial factors:
▪ Local CPTs (but instantiated by evidence)

▪ While there are still hidden variables 
(not Q or evidence):
▪ Pick a hidden variable H

▪ Join all factors mentioning H

▪ Eliminate (sum out) H

▪ Join all remaining factors and normalize



Example

Choose A
𝑓1 𝑗, 𝑚, 𝐵, 𝐸

𝑓1 𝑗, 𝑚, 𝐵, 𝐸



Example

Choose E

Finish with B

Normalize



Same Example in Equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Bayes’ Nets: Sampling



Sampling

▪ Sampling from given distribution

▪ Step 1: Get sample u from uniform 
distribution over [0, 1)

▪ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each outcome associated with 
a sub-interval of [0,1) with sub-interval 
size equal to probability of the 
outcome

▪ Example

▪ If random() returns u = 0.83, 
then our sample is C = blue

▪ E.g, after sampling 8 times:

C P(C)

red 0.6

green 0.1

blue 0.3



Bayes’ Net Sampling Summary

▪ Prior Sampling  P

▪ Likelihood Weighting  P( Q | e)

▪ Rejection Sampling  P( Q | e )

▪ Gibbs Sampling  P( Q | e )



Prior Sampling

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ Return (x1, x2, …, xn)



Rejection Sampling

▪ IN: evidence instantiation

▪ For i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

▪ If xi not consistent with evidence

▪ Reject: Return, and no sample is generated in this cycle

▪ Return (x1, x2, …, xn)



Likelihood Weighting

▪ IN: evidence instantiation

▪ w = 1.0

▪ for i=1, 2, …, n

▪ if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else

▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w



Likelihood Weighting

▪ IN: evidence instantiation

▪ w = 1.0

▪ for i=1, 2, …, n

▪ if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else

▪ Sample xi from P(Xi | Parents(Xi))

▪ return (x1, x2, …, xn), w

Now each sample doesn’t count 

as 1.0 but has a weight. Need to 

take a weighted average.

P(Q|Evidence) = 

Sum(weights of samples 

consistent with Query) / Total 

Weight of All samples.



Decision Networks

Weather

Forecast

Umbrella

U

▪ Action selection

▪ Instantiate all evidence

▪ Set action node(s) each 
possible way

▪ Calculate posterior for all 
parents of utility node, given 
the evidence

▪ Calculate expected utility for 
each action

▪ Choose maximizing action



Decision Networks

Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70



Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



VPI Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution



Value of Information

▪ Assume we have evidence E=e.  Value if we act now:

▪ Assume we see that E’ = e’.  Value if we act then:

▪ BUT E’ is a random variable whose value is
 unknown, so we don’t know what e’ will be

▪ Expected value if E’ is revealed and then we act:

▪ Value of information: how much MEU goes up
 by revealing E’ first then acting, over acting now:

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)

U

{+e}

P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a



Markov Models Recap

▪ Explicit assumption for all   t :

▪ Consequence, joint distribution can be written as: 

▪ Implied conditional independencies:

▪ Past variables independent of future variables given the present

i.e., if                     or                      then:

▪ Additional explicit assumption:                         is the same for all t

Huge savings in number 

of parameters needed!



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution 

gets less and less over time.

▪ The distribution we end up in is 
independent of the initial distribution



HMMs Recap

▪ Explicit assumption for all   t :

▪ Consequence, joint distribution can be written as: 

▪ Implied conditional independencies:

▪ Past variables independent of future variables given the present

i.e., if                     or                      then:

▪ Additional explicit assumption:                         is the same for all t



The Forward Algorithm

▪ We are given evidence at each time and want to know

▪ We can derive the following recursive update

𝑃 𝑥𝑡 𝑒1:𝑡 = 𝑃(𝑥𝑡|𝑒1:𝑡−1, 𝑒𝑡) Divide up evidence

∝ 𝑃 𝑒𝑡 𝑥𝑡, 𝑒1:𝑡−1 𝑃(𝑥𝑡|𝑒1:𝑡−1) Bayes’ rule

= 𝑃 𝑒𝑡 𝑥𝑡 𝑃(𝑥𝑡|𝑒1:𝑡−1) Sensor Markov assumption

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃(𝑥𝑡 , 𝑥𝑡−1|𝑒1:𝑡−1) Reverse marginalization

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑒1:𝑡−1, 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Product rule

= 𝑃 𝑒𝑡 𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡 𝑥𝑡−1 𝑃(𝑥𝑡−1|𝑒1:𝑡−1) Markov assumption



Particle Filtering



Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

▪ Filtering: approximate solution

▪ Sometimes |X| is too big to use exact inference
▪ |X| may be too big to even store B(X)
▪ E.g. X is continuous

▪ Solution: approximate inference
▪ Track samples of X, not all values
▪ Samples are called particles
▪ Time per step is linear in the number of samples
▪ But: number needed may be large
▪ In memory: list of particles, not states

▪ This is how robot localization works in practice

▪ Particle is just new name for sample



Representation: Particles

▪ Our representation of P(X) is now a list of N particles (samples)
▪ Generally, N << |X|

▪ Storing map from X to counts would defeat the point

▪ P(x) approximated by number of particles with value x
▪ So, many x may have P(x) = 0! 

▪ More particles, more accuracy

▪ For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Elapse Time

▪ Each particle is moved by sampling its next 
position from the transition model

▪ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

▪ Here, most samples move clockwise, but some move in 
another direction or stay in place

▪ This captures the passage of time
▪ If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



▪ Slightly trickier:

▪ Don’t sample observation, fix it

▪ Similar to likelihood weighting, downweight 
samples based on the evidence

▪ As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

▪ Rather than tracking weighted samples, we 
resample

▪ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

▪ This is equivalent to renormalizing the 
distribution

▪ Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Recap: Particle Filtering

▪ Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Partially Observable Markov Decision Processes

▪ A POMDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s), R(s,a), or R(s’)

▪ A start state distribution
▪ Maybe a terminal state
▪ Observations Z
▪ Emission Model O(s,z) = P(z|s)

▪ POMDPs are non-deterministic search problems 
where you don’t know where you are!



MDP vs POMDP

▪ MDP

▪ + Tractable to solve

▪ + Relatively easy to specify

▪ -Assumes perfect knowledge of state

▪ POMDP

▪ +Models the real world

▪ +Allows for information gathering actions

▪ -Hugely intractable to solve optimally



Belief State MDP

▪ State space: 

▪ Action space:

▪ Transition Function:

▪ Reward function:

▪ Problems?

𝑃 𝑏′ 𝑏, 𝑎 = ෍

𝑧

𝑃 𝑏′, 𝑧 𝑏, 𝑎 =  ෍

𝑧

𝑃 𝑏′ 𝑏, 𝑎, 𝑧 𝑃(𝑧|𝑏, 𝑎)

S S’

Z

A

0 or 1 depending on 
state estimation

෍

𝑠′

𝑃(𝑧|𝑠′) ෍

𝑠

𝑃 𝑠′ 𝑠, 𝑎 𝑏(𝑠)

Variable elimination in 
order S, S’

𝑅 𝑏, 𝑎 =  ෍

𝑠

𝑏 𝑠 𝑟(𝑠, 𝑎)

𝐵

A

P(b’|b,a)
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Behavioral Cloning



Distribution Shift

52

Supervised 

Learning

Supervised 

Learning + 

Control

Train 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋∗ 𝑠 )

Test 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋 𝑠 )



DAgger

53
Ross et al. ‘11



Behavioral Cloning

▪ Answers the “How?” question
▪ Mimic the demonstrator
▪ Learn mapping from states to actions
▪ Computationally efficient
▪ Compounding errors

Inverse Reinforcement Learning

▪ Answers the “Why?” question
▪ Explain the demonstrator’s behavior
▪ Learn a reward function capturing the 

demonstrator’s intent
▪ Can require lots of data and compute
▪ Better generalization. Can recover from 

arbitrary states

𝑅



Basic IRL Algorithm

 Start with demonstrations, 𝐷
 Guess initial reward function 𝑅0


෠𝑅 = 𝑅0

 Loop:

 Solve for optimal policy 𝜋 ෠𝑅
∗

 Compare 𝐷 and 𝜋 ෠𝑅
∗

 Update ෠𝑅 to try and make 𝐷 and 𝜋 ෠𝑅
∗  more similar



RL from Human Feedback (RLHF)



RL from Human Preferences



RLHF

≺ ⋯ ≺

Pre-ranked demonstrations

Reward 

Function

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

59



RLHF

≺ ⋯ ≺

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

60



Learning from preferences

Bradley-Terry pairwise ranking 

loss

61
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We made it!

63
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