Announcements

= Midterm Grades are out
= Total points (100%) 62 points. Total plus extra credit 101
= Min 21.5
= Max95.4
= Median 68.15
= Mean 66.42



Mid-semester Feedback

= Like changed:
= No exams
= Too much homework, more time
= Midterm sheet typed — Go for it!

= Latex homework no fun — as long as you
have it typed and submit pdf

= Change the location of the class....

= Professional video recording...

= More in class practice /

= Too fast

= Update to represent latest advances in Al
= Real world applications

= Midterm Grades are out



Mid-semester Feedback

" |mprove learning
= More examples
= Group activities/quizzes
= No exams
= Neural networks should be prereq
= Examples on new slide, ~
= More discussion
= Guest lectures
= Real world examples
= Too fast



CS 6300: Artificial Intelligence

Bayes’ Nets: Inference

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]



Bayes Net Representation

= Adirected, acyclic graph, one node per random variable

= A conditional probability table (CPT) for each node

= A coIIectiop of distributions over X, one for each combination
of parents values

= Bayes nets implicitly encode joint distributions
= As a product of local conditional distributions

= To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

n
P(z1,22,...2n) = || P(z;|parents(X;))
=1




Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b -e -a 0.999

[Demo: BN Applet]



Example: Alarm Network

B P(B) E P(E)

+b | 0.001 +e | 0.002

-b | 0.999 -e | 0.998
A J P(J|A) ° A M | P(M|A)
+a | 4] 0.9 +a | +m 0.7
+a | - 0.1 +a | -m 0.3
-a +j 0.05 -a | +m 0.01
-a - 0.95 -a -m 0.99

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e | -a 0.999




Example: Alarm Network

B | P(B) E | P(E)
+b | 0.001 +e | 0.002
b | 0.999 -e | 0.998
A | J | PU|A) ° A | M |PM|A)
va | 4 | 09 T o5 B | E| A | PA|BE)
+a -j 0.1 +a | -m 0.3 th | +e | +a 095
a | 4 | 005 a | +m | 0.01 thte|al 00
a | - | 095 a | -m | 099 th|ej+a| 054
+b | -e -a 0.06
) -b | +e | +a 0.29
| | . S
P( | b) 67 |Cl, Ja—l_m) - b | +e | -a 0.71
P(+b)P(~€)P(+a| + b, —€)P(~j| + a)P(+m| + a) = [ 2|« [ ] oon
-b | -e | -a 0.999

0.001 x 0.998 x 0.94 x 0.1 x 0.7



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

= Enumeration (exact, exponential complexity)

Variable elimination (exact, worst-case exponential
complexity, often better)

= |nference is NP-complete

= Sampling (approximate)



Inference

" |nference: calculating some = Examples:
useful quantity from a joint

probability distribution " Posterior probability

P(Q|E1 =e1,... B, = ¢y)

= Most likely explanation:

argmax, P(Q =q|E1 =e7...)

NE &2 N




Inference by Enumeration

* Works fine with

= General case: = We want: multiple query
» Evidence variables: FEi...Ep=e1...¢€; X1, Xo,... Xn variables, too
= Query* variable:
Query Q All variables P(Qle1 ...ex)

= Hidden variables: Hy...H,

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence
with the evidence 1

Peo
0.05 —
> X 7
0.07

02 |

—T—
0.01 W

—— Z=ZP(Q,€1'”€;C)
P(Q,e1...e;) = Z P(C\Q,hl...hr,el...e//ﬂ) 4

Bk 1
1 X1,X;..Xn P(Q\el“‘ek):EP(Qael“'ek)



Inference by Enumeration in Bayes’ Net

" Given unlimited time, inference in BNs is easy

= Reminder of inference by enumeration by example:
Q’O("\\’g\‘“\ Ao

P(B |+ j,+m) xp P(B,+j,+m)

—ZPB e,a,+7,+m)

= ZP P(a|B,e)P(+jla)P(+m|a)

=P(B)P(+e)P(+a|B, +€)P(+j| + a) P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a)
+P(B)P(—e)P(+a|B, —e) P(+j| + a) P(+m| + a) + P(B)P(—¢)P(—a|B, —e)P(+j| — a)P(+m| — a)



Inference by Enumeration?

P(Antilock|observed variables) = 7



Inference by Enumeration vs. Variable Elimination

= Why isinference by enumeration so slow? = Idea: interleave joining and marginalizing!

= You join up the whole joint distribution before = Called “Variable Elimination”

you sum out the hidden variables = Still NP-hard, but usually much faster than
inference by enumeration

=" First we'll need some new notation: factors



Factor Zoo
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Factor Zoo |

P(T, W)
= Joint distribution: P(X,Y) " W P
* Entries P(x,y) forall x, y hot sun | 0.4
"= Sumstol hot rain | 0.1
cold sun 0.2
cold rain | 0.3
= Selected joint: P(x,Y)
= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T W P
= Sums to P(x) cold sun | 0.2
cold rain | 0.3
= Number of capitals =

dimensionality of the table




= Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all
= Sumstol

= Family of conditionals:
P(X']Y)
= Multiple conditionals

= EntriesP(x | y) forall x,y
= Sumsto |Y]

Factor Zoo |l

T=
P(W |cold)
T W P
cold sun | 0.4 — ,
cold rain 0.6
P(W|T)
T W P
hot sun 0.8 ||
hot rain 0.2 | P(W|h0t)
cold sun 0.4 ||
cold rain 0.6 ; P(W|COld)




Factor Zoo Il

= Specified family: P(y | X)
= Entries P(y | x) for fixed vy,
but for all x
= Sums to ... who knows!

P(rain|T')

T w | P
hot rain | 0.2 J» P(rain|hot)

cold | rain | 06|+ P(rain|cold)




Factor Zoo Summary

" |n general, when we write P(Y; ... Yy | X; ... Xy)

= |tisa “factor,” a multi-dimensional array

" |tsvaluesare P(y; ... yy | X{ - Xp)

= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array




Example: Traffic Domain

- ey =

: P(R
= Random Variables r,ﬁ_(\e)& i
: /
= R: Raining Q r 1 03
" T: Traffic P(T|R) (\)ﬁ)ﬁj/ O
a |- | ] —t | 0.8
L: Late for class! a T/I_ = /f
\/( -r +t | 0.1 [
P(L) _ ? G -r t 0.9
_ ‘Sox P(L|T)
ZP r¢, L) Q/%M/S +t | + | 03 > &ré
+t I 0.7
—ZP P(t|r)P(Llt) t ol




Inference by Enumeration: Procedural Outline

gﬂ

J—

= Track objects called factors

= |nitial factors are local CPTs (one per node) @‘g\j
P(R) P(T|R) P(L|T) E{ﬁ
e B B B

-r -t | 0.9 -t -| 0.9

= Any known values are selected
= E.g.if we know L = -/, the initial factors are

P(R) P(TIR)  P(44|T)
+r 0.1 +r | +t | 0.8 +t + | 0.3
-r 0.9 +r -t | 0.2 -t + 0.1

-r +t | 0.1
-r -t 10.9

= Procedure: Join all factors, then eliminate all hidden variables



Operation 1: Join Factors

= First basic operation: joining factors

=  Combining factors:
—
= Just like a database join % —
=  Get all factors over the joining variable

= Build a new factor over the union of the variables
involved

= Example: JoinonR S \ g; 7 <

P(R) X P(T R P(R,T

O o e & rer
+r \#r | +t [0.8 ~—— —1 +r | +t | 0.08

-r | 0.9 | +r | -t {0.2 +r | -t | 0.02

0 | or | +t 0.1 -r | +t | 0.09

w | -t | 0.81

= Computation for each entry: pointwise products V7, ¢ : P(T, t) = P(T) . P(t|?”)/\

Y




Example: Multiple Joins

-
N -




Example: Multiple Joins f.».
- @3’29 Oy L r)' .»-

+r | 0.1
- 1091 JoinR P(R7 T)
+r | +t(| 0.08
P(T|R) :> +r | -t [0:027
+r | +t 0.8 r | +t]0.09
+r |t 0.2 r|t]os8l
-r | +t |0.1
-r | -t |0.9
P(L|T) P(L|T)
+t | +1 0.3 +t | +/]0.3
+t | -1 |0.7 | -1 0.7
t |+ ]0.1 -t | +]0.1
1 0.9 t]-11]0.9




Operation 2: Eliminate

= Second basic operation: marginalization

= Take a factor and sum out a variable
» Shrinks a factor to a smaller one

= A projection operation

= Example:
P(R,T)
+r | +t | 0.08 . sum R P(T)

sl t]002] —> +t

-r | +t | 0.09 -1
-r| -t |0.81




QLD

P(T, L)/
+t | + |(0.051 |
+t| -l | 0.119
-t | +1 | 0.083
-t | -l | 0.747

Multiple Elimination

o ﬂ@
2% Sum

out T

P(L)

+

0.134

0.886




Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

(




Marginalizing Early (= Variable Elimination)




Traffic Domain

®  P(L)z2"

o " Inference by Enumeration " Variable Elimination N

(Y
1
2l =323 P Pe) P =Y P(L|t) Y P(r)P(t|r)
o t r |_"_’ t r \ - f
Joinonr Joinonr
L Y ] L Y )] —> i,
Joinont Eliminate r
T g 0 J
Eliminate r Join (')n t
T ' | | ]

Y
Eliminate t Eliminate t



o=

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+]

0.3

+t

0.7

-t

+]

0.1

-t

0.9

Join R

—>

Marginalizing Early! (aka VE)

P(R,T)

+r

+t

0.08

+r

-t

0.02

-

+t

0.09

-r

-t

0.81

R, T

®

P(L|T)

+t

+]

0.3

+t

0.7

+]

0.1

0.9

Sum out R

—>

P(T)

+t | 0.17

-t | 0.83

P(L|T)

+t | +l |0.3

+t | -1 |0.7

0.1

0.9

JoinT

—>

Sumout T

Q>

P(T,L)

—>

+t

+]

0.051

+t

0.119

+|

0.083

0.747

L

P(L)

+l

0.134

0.866




Evidence

= |f evidence, start with factors that select that evidence

= No evidence uses these initial factors:

P(R) P(T|R) P(L|T)
+r 0.1 +r + | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -l 0.7
-r + | 0.1 -t +| 0.1
-r -t |1 09 -t -l 0.9

= Computing P(L| + r)the initial factors become:

P(+r) P(T|+7)  P(LIT)

. +t +| 0.3

+r -t | 0.2 +t -l 0.7
-t + 0.1

-t -l 0.9

= We eliminate all vars other than query + evidence



Evidence |l

= Result will be a selected joint of query and evidence
= E.g.for P(L | +r), we would end up with:

P(""’"a L) Normalize P(L +T)

+r | +l | 0.026 :E +| | 0.26
+r | -l | 0.074 -l 1 0.74

" To get our answer, just normalize this!

* That’sit!




General Variable Elimination

Query: P(Q|E1 = e1,... B = ey)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables
(not Q or evidence):

= Pick a hidden variable H

= Join all factors mentioning H

= Eliminate (sum out) H

Join all remaining factors and normalize
(- X



Example

P(B|j,m) « P(B,j,m)

P(B)  P(E) P(AB,E)  P(jlA)  P(m|A)

Choose A - | 7
P(A|B,E) L fl(]'m'B'E)
P(j]A) X > P(j,m,AlB,E) |[¥ > P(j,m|B,E)
P(m|A)

P(B) P(E) P(j,m|B,E) | £(j,m,B,E)




Example

P(B) P(E) P(j,m|B, )
Choose E Z@
PLE) :><> P(j,m, E|B) :z > P(j,m|B)
P(j,m|B, E)
P(B) P(j,m|B)
Finish with B
P(B)

P(j,m|B)

X P(j,m,B) Normalize > P(B‘j, WL)



" How much computation did we do?
" | ook at size of the factors

37



Same Example in Equations

P(B|j,m) « P(B,j,m) O o O

P(Blj,m) o« P(B,j,m)

— % = ) P(B.,j,m,e,a) marginal can be obtained from joint by summing out

ht

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

— Z P(B)YP(e)P(a|B,e)P(jla) P(m|a) use Bayes’ net joint distribution expression

— ZP(B)P(@)ZP(CW\G,) use x*(y+z) = xy + xz

= Z P(B)P(e)f1(B,e,j,m) Z joining on a, and then summing out gives f,
= P(B) Y P(e)f1(B,e, j,m) use x*(y+z) =xy + xz

€
= P(B)f2(B,j,m) joining on e, and then summing out gives f,

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Example 2: P(B|+a)

Start / Select Joinon B Normalize
LB (B
B P
+b 0.1 ,‘
5 [ o @ P(a, B) P(B|a)
A B P A B P
P(A|B)—>P(a|B) +a +b | 008 +a +b 8/17
B A P +a —b 0.09 +a —b 9/17
+b +3 0.8
5 T o pya
—b +a 0.1
—ria 8 8-5




Another Variable Elimination Example

Query: P(X3|Y1 =y1,Y2 = y2, Y3 = y3)

Start by inserting evidence, which gives the following initial factors: (
_ T
p(Z2)p(X1|Z)p(X2| Z)p(X3| Z)p(y1 | X1)p(y2| X2)p(ys| Xs) — Q

Eliminate X1, this introduces the factor fi(Z,y1) = >, p(21]|Z)p(y1|z1), and
we are left with: //—

p(2)f(Z, y1)p(5‘fc/2LZ)p(X3\Z)p(yg [ X2)p(ys| Xs)

-

Eliminate X, this introduces the factor fa(Z,y2) = >_,, p(72|Z)p(y2|r2), and
we are left with: - T

P(2)f1(Z,y1) f2(Z, y2)p(X35]| Z)p(y3| X3)

— " Computational complexity critically
Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, p(2) f1(2,11) f2(2,y2)p(X35|2), depends on the largest factor being
and we are left: generated in this process. Size of factor
p(ys|Xs), fs(yr, ya, Xs) = number of entries in jcable-. In
— example above (assuming binary) all
No hidden variables left. Join the remaining factors to get: factors generated are of size 2 --- as

they all only have one variable (Z, Z,

fa(y1,y2,y3, X3) = P(ys| X3) f3(y1, y2, X3). .
and X, respectively).

Normalizing over X3 gives P(Xs|y1,y2,Y3).



Variable Elimination Ordering

" Forthe query P(X,|yy,...,Y,) work through the following two different orderings
as done in previous slide: Z, X,, ..., X, ; and X, ..., X, ;, Z. What is the size of the
ik s 17 *x2 Tn-lr

maximum factor generated for each of the orderings?
© © KV \

s
S ale) T

=  Answer (assuming binary) : 2" (start with Z) versus 22 (start with Xs)

= |n general: the ordering can greatly affect efficiency.



VE: Computational and Space Complexity

» The computational and space complexity of variable elimination is
determined by the largest factor

* The elimination ordering can greatly affect the size of the largest factor.
= E.g., previous slide’s example 2" vs. 2

" Does there always exist an ordering that only results in small factors?
= No!



Worst Case Complexity?

= 3-SAT constraint satisfaction problem: NI I . S i Oy /S
(.’L‘lVl‘gV_lxg)/\(_l$1\f$3\/_|$4)/\(:132\/_'.’.!32\/234)/\(_I$3V_|$4V_l£€5)A($2V$5V$7)/\($4V$5\/$6)/\(_I.’L‘5Vﬂ?ﬁ\/—liﬁ?)/\(_lﬂig,v_liﬁﬁvx'?)

P(X;=0)=P(X;=1) = 0.5
Vi =XV XoV-X;

Yy = =X5 V Xg V X5

YLQ =Y A Y5

Yo =Y AYg
Yiosa=Y12AY34
Ys678 =Ys56 /A Y7s

Z=Y1234NY5678 #satisfying assignments
P(Z = true) = X

= |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.



Polytrees

= A polytree is a directed graph with no undirected cycles

" For poly-trees you can always find an ordering that is efficient
= Poly-tree is a directed graph with no undirected cycles
= Polynomial time and space
= Linear in network size if you eliminate in the right order

ali o




Polytrees cont.

= Always pick a singly-connected

node to eliminate @ @

= Always exists for a polytree

u Example: D, A, C, X1,..Xk,B . ?[@]A Cj

= No factor ever larger than original

conditional probability tables! ﬂ \\

= Eliminating B first would be much

worse! @ @o o o @

45



Bayes’ Nets

& Representation
« Conditional Independences

= Probabilistic Inference

J Enumeration (exact, exponential
complexity)

J Variable elimination (exact, worst-case
exponential complexity, often better)

J Inference is NP-complete

= Sampling (approximate)
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