CS 6300: Artificial Intelligence

Bayes’ Nets

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]



Probabilistic Models

= Models describe how (a portion of) the world works

= Models are always simplifications
= May not account for every variable

= May not account for all interactions between variables

= “All models are wrong; but some are useful.”
— George E. P. Box

= What do we do with probabilistic models?

= We (or our agents) need to reason about unknown
variables, given evidence

= Example: explanation (diagnostic reasoning)
= Example: prediction (causal reasoning)
= Example: value of information



Probability Recap

Conditional probability P(xly) = Plz,y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X5,...Xn) = P(X1)P(Xo|X1)P(X3|X1,X5)...

T
— H P(X’ilxla"°7Xi—1)

1=1

X, Y independent if and only if: Vax,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:
Vz,y,z : P(x,y|z) = P(z|z)P(y|z)

P(x|y) = P(x)

X1Y|Z



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z Xj_Y‘Z

if and only if:
Va,y, z 1 P(x,y|z) = P(z|z)P(y|2)
or, equivalently, if and only if

Va,y.z 1 P(alz,y) = P(a]2)



implies

Prove it!

Va,y, =1 P(a,ylz) = P(a|2)P(y|2)

Va,y.z 1 P(alz,y) = P(a]2)

17



Prove it!

Va,y,z 1 P(w,ylz) = P(z|z)P(y|z)
implies

Va,y.z 1 P(alz,y) = P(a]2)

P(x,y,z) _P2)P(x,y|z) P(2)P(x|z)P(y|2)
P(y,z) P(z)P(y|z) P(z)P(y|z)

P(x|z,y) = = P(x|z)

18



Conditional Independence

= \What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence and the Chain Rule

® Chainrule: P(le Xn, .. Xn) — P(XI)P(X2|X1)P(X3‘X1}X2) ca

" Trivial decomposition:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain, Traffic)

= With assumption of conditional independence of T and U given R:

P(Traffic, Rain, Umbrella) =
P(Rain)P(Traffic|Rain) P(Umbrella|Rain)

= Why useful?
= Bayes’nets / graphical models help us express conditional independence assumptions



Ghostbusters Chain Rule

Two places to check for a ghost (top, bottom).

Each sensor depends only P(T,B,G) = P(G) P(T|G) P(B|G)
on where the ghost is

T B G P(T,B,G)

That means, the two sensors are
conditionally independent, given the + tb | +g 0.16

ghost position +t +b -g 0.16
+t -b +g 0.24
+t b -g 0.04
_t +b +g 0.04

T: Top square is red
B: Bottom square is red
G: Ghost is in the top

Givens:

P(+g)=0.5 -t +b -g 0.24
P( -g)=05 t | b | +g | 0.06
P(+t | +g)=0.8

P(+t | -g)=0.4 -t -b -g 0.06
P(+b | +g)=0.4

P(+b | -g)=0.8



Bayes’Nets: Big Picture




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly called graphical models
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified




Example Bayes’ Net: Insurance

27 Binary Variables

2727! Entries in full
joint dist.

Can simplify by
specifying local
interactions

(dependencies)




Example Bayes’ Net: Car

alternator fanbelt
broken broke

fuel line starter
hlocked hroke



Graphical Model Notation

= Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)

= Arcs: interactions

= Similar to CSP constraints @
= |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence
(more later)

" For now: imagine that arrows mean
direct causation (in general, they don’t!)



Example: Coin Flips

" N independent coin flips

" No interactions between variables: absolute independence



Example: Traffic

= Variables:
= R:I[trains
= T:There is traffic

= Model 1: independence = Model 2: rain causes traffic

= Why is an agent using model 2 better?



Example: Traffic I

= Let’s build a causal graphical model!

= Variables
= T: Traffic
= R:ltrains
= |:Low pressure
= D: Roof drips
= B: Ballgame
= C: Cavity




Example: Traffic Il

= Let’s build a causal graphical model!
= Variables

= T: Traffic ‘!I'
= R:ltrains

= |:Low pressure

= D: Roof drips

= B: Ballgame e o
= C: Cavity



Example: Alarm Network

= \ariables
= B: Burglary

h"'
L]
—
——
—

= A: Alarm goes off

3%

M: Mary calls

= J:John calls
= E: Earthquake!




Example: Alarm Network

= \ariables
= B: Burglary

h"'
L]
—
——
—

3%

= A: Alarm goes off

= M: Mary calls

= J:John calls
= E: Earthquake!




Bayes’ Net Semantics




Bayes’ Net Semantics +ifs

= Aset of nodes, one per variable X
= Adirected, acyclic graph (DAG)

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(X‘ﬂl .. .(ln.)

= CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities




Probabilities in BNs ) ET

= Bayes’ nets implicitly encode joint distributions
= As a product of local conditional distributions

= Claim: To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

T
P(z1,z0,...2n) = [] P(zi|parents(X;))

=1
Toothache @

= Example:

P(+cavity, +catch, —toothache) = P(+cavity)P(+catch|+cavity)P(—toothache| + catch)



Probabilities in BNs e,

= Why are we guaranteed that setting

T
P(z1,22,...20) = [[ P(wzi|parents(X;))
i=1

results in a proper joint distribution?

n

= Chain rule (valid for all distributions): P(z1,20,...2n) = |[ Plzilzy .. 2i—1)
i=1

= Assume conditional independences: P(x;|x1,... . 2i_1) = P(x;|parents(X;))

T
- Consequence:  P(z1,x5,...25) = H P(x;|parents(X;))

- (Couty
|

Doesn’t say anything about causality (more later)!
= Not every BN can represent every joint distribution -
Toothache @

= The topology enforces certain conditional independencies



Example: Coin Flips

® ® - @

P(Xy1) P(X>) P(Xn)
h |05 h |05 o h |05
t |05 t |05 t |05
P(h,h,t,h) = 05*05*05*05

Only distributions whose variables are absolutely independent can be
represented by a Bayes ’ net with no arcs.



O

P(R)

Example: Traffic

+r

1/4

3/4

+r

P(T|R)

+t

3/4

1/4

+t

1/2

1/2

P(4r, —t) =




Example: Alarm Network

Burglary

Earthquake

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M | P(M]A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002

-e | 0.998

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b -e | +a 0.001
-b -e -a 0.999




O

= Causal direction

P(R)

+r

1/4

3/4

P(T|R)

Example: Traffic

+r

+t

3/4

1/4

+t

1/2

P(T, R)
+r +t 3/16
+r -t 1/16
-r +t 6/16
-r -t 6/16

1/2




Example: Reverse Traffic

= Reverse causality?

P(T)
+t 9/16
-t 7/16

P(R|T)

+t +r 1/3
-t +r 1/7
-r 6/7




Causality?

= When Bayes’ nets reflect the true causal patterns:

= Often simpler (nodes have fewer parents)
= Often easier to think about
= Often easier to elicit from experts

= BNs need not actually be causal

= Sometimes no causal net exists over the domain
(especially if variables are missing)
= E.g. consider the variables Traffic and Drips

= End up with arrows that reflect correlation, not causation

= What do the arrows really mean?

= Topology may happen to encode causal structure
= Topology really encodes conditional independence

P(x;|lx1, ... 251) = P(xs|parents(X;))




Bayes’ Nets

= So far: how a Bayes’ net encodes a joint
distribution

= Next: how to answer queries about that
distribution

= Today:
= First assembled BNs using an intuitive notion of
conditional independence as causality
= Then saw that key property is conditional independence
= Main goal: answer queries about conditional
independence and influence

= After that: how to answer numerical queries
(inference)




	Slide 1: CS 6300: Artificial Intelligence 
	Slide 14: Probabilistic Models
	Slide 15: Probability Recap
	Slide 16: Conditional Independence
	Slide 17: Prove it!
	Slide 18: Prove it!
	Slide 19: Conditional Independence
	Slide 20: Conditional Independence and the Chain Rule
	Slide 21: Ghostbusters Chain Rule
	Slide 22: Bayes’Nets: Big Picture
	Slide 23: Bayes’ Nets: Big Picture
	Slide 24: Example Bayes’ Net: Insurance
	Slide 25: Example Bayes’ Net: Car
	Slide 26: Graphical Model Notation
	Slide 27: Example: Coin Flips
	Slide 28: Example: Traffic
	Slide 29: Example: Traffic II
	Slide 30: Example: Traffic II
	Slide 31: Example: Alarm Network
	Slide 32: Example: Alarm Network
	Slide 33: Bayes’ Net Semantics
	Slide 34: Bayes’ Net Semantics
	Slide 35: Probabilities in BNs
	Slide 36: Probabilities in BNs
	Slide 37: Example: Coin Flips
	Slide 38: Example: Traffic
	Slide 39: Example: Alarm Network
	Slide 40: Example: Traffic
	Slide 41: Example: Reverse Traffic
	Slide 42: Causality?
	Slide 44: Bayes’ Nets

