Suppose that a patient can have a symptom S that can be caused by two different diseases A and B. Disease A is much rarer, but there is a test T that tests for the presence of A. The Bayes' Net and corresponding conditional probability tables are shown below.

A	P(A)			
+a	0.1	A	T	P(T A)
-a	0.9	+a	+t	1
		+a	-t	0
B	P(B)	-a	+t	0.2
+b	0.5	-a	-t	0.8
-b	0.5	L		1

A	В	S	P(S A,B)
+a	+b	+s	1
+a	+b	-s	0
+a	-b	+s	0.8
+a	-b	-s	0.2
-a	+b	+s	1
-a	+b	-s	0
-a	-b	+s	0
-a	-b	-s	1

- 1. From the Baye's Net structure, what is P(A, T, B, S)?
- 2. What is P(-a, -t, +b, +s)?
- 3. What is the probability that a patient has disease +a given that they have disease +b?
- 4. What is the probability that a patient has disease +a given that they have symptoms +s, disease +b, and test +t returns positive?
- 5. What is the probability that a patient has disease +a given that they have symptom +s and test +t returns positive?

1

CS 6300