1 Sampling

The diagram below describes a person's ice cream eating habits based on the weather. The nodes W_{i} stand for the weather on a day i , which can either be rainy R or sunny S . The nodes I_{i} represent whether or not the person ate ice-cream on day i , and the node takes values T (for truly eating ice cream) or F . The conditional probability distributions relevant to the graphical model are also given to you.

W_{1}	$P\left(W_{1}\right)$
S	0.6
R	0.4

I_{i}	W_{i}	$P\left(I_{i} \mid W_{i}\right)$
T	S	0.9
T	R	0.2

W_{2}	W_{1}	$P\left(W_{2} \mid W_{1}\right)$
S	S	0.7
S	R	0.5

Suppose we want to answer the query $P\left(W_{2} \mid I_{1}=T, I_{2}=F\right)$ using likelihood weighting.

1. Generate 6 samples using the following random numbers left to right.
$\begin{array}{llll}0.41 & 0.85 & 0.93 & 0.67\end{array}$
$0.13 \quad 0.81 \quad 0.05$
0.33
$0.58 \quad 0.49 \quad 0.61$
0.49

Sample number	Sample
1	S,T,R,F
2	R,T,R,F
3	S,T,R,F
4	S,T,S,F
5	S,T,S,F
6	R,T,S,F

2. Derive the weights w for each sample.

Sample number	weight
1	$0.9 * 0.8=0.72$
2	$0.2 * 0.8=0.16$
3	0.72
4	$0.9 * 0.1=0.09$
5	0.09
6	$0.2 * 0.1=0.02$

3. Use likelihood weighting to estimate $P\left(W_{2} \mid I_{1}=T, I_{2}=F\right)$.

$$
\begin{aligned}
& P\left(W_{2}=R \mid I_{1}=T, I_{2}=F\right)=\frac{0.72+0.16+0.72}{0.72+0.16+0.72+0.09+0.09+0.02}=0.889 \\
& P\left(W_{2}=S \mid I_{1}=T, I_{2}=F\right)=1-0.889=0.111
\end{aligned}
$$

