Alice decides that she wants to keep re-taking AI every semester for the rest of eternity (she really likes AI). We're interested in modeling whether she passes the class or not as a Markov chain. Suppose that in semester t she passes the class; then in semester $t+1$ she passes the class with probability 0.8 (maybe she gets bored and forgets to pay attention). On the other hand, if she doesn't pass in semester t then she'll pass with probability 0.4.

1. Suppose that in semester $t=0$ Alice passes the class with probability 0.5 . Compute the probability that she passes in semester $t=1$ and semester $t=2$.

The transition matrix is

$$
T=\left[\begin{array}{ll}
p(P \mid P) & P(P \mid F) \\
p(F \mid P) & P(F \mid F)
\end{array}\right]=\left[\begin{array}{ll}
0.8 & 0.4 \\
0.2 & 0.6
\end{array}\right]
$$

Her probability distribution at $t=1$ is

$$
t_{1}=T *\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]=\left[\begin{array}{l}
0.6 \\
0.4
\end{array}\right]
$$

Her probability distribution at $t=2$ is

$$
t_{2}=T * t_{1}=\left[\begin{array}{l}
0.64 \\
0.36
\end{array}\right]
$$

2. Compute the stationary distribution of this chain.

The stationary value is found from $t_{\infty}=T * t_{\infty}$.

$$
\begin{aligned}
{\left[\begin{array}{c}
t_{\infty 1} \\
t_{\infty 2}
\end{array}\right] } & =T *\left[\begin{array}{l}
t_{\infty 1} \\
t_{\infty 2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.8 & 0.4 \\
0.2 & 0.6
\end{array}\right] *\left[\begin{array}{l}
t_{\infty 1} \\
t_{\infty 2}
\end{array}\right]
\end{aligned}
$$

This leads to simulataneous equations.

$$
\begin{aligned}
t_{\infty 1} & =0.8 * t_{\infty 1}+0.4 t_{\infty 2} \\
t_{\infty 2} & =0.2 * t_{\infty 1}+0.6 t_{\infty 2}
\end{aligned}
$$

Both equations lead to $t_{\infty 1}=2 t_{\infty 2}$. Therefore the normalized probabilities are [2/3 1/3] .

