1 Temporal Difference Learning

We meet our beloved MDP again. There are 5 states: C(ollege), G(rad school), I(ndustry), A(cademia), and U(nemployed). States I, A and U are terminal states. The possible actions from states C and G are:

- State C: You may choose stayC, but with probability 1/4 you end up going to state G. You may also choose to goI, but with probability 1/4 you end up in state U.
- State G: You may choose to stayG, but with probability 1/4 you end up in state U. You may also choose to goA, but with probability 3/4 you end up in state I.

![MDP diagram]

For the MDP above, you decide to use experience and TD learning to find the values. You experience the following 3 episodes.

Episode 1
S	A	R
C | stayC | 40
C | stayC | 40
C | stayC | 400
G | stayG | 40
G | stayG | -200
U | |

Episode 2
S	A	R
C | stayC | 40
C | goI | 200
C | |
G | stayG | 40
G | goA | 400
A | |

Episode 3
S	A	R
C | stayC | 400
G | stayG | 40
I | |
A | |

The learning rate is $\alpha = (1/2)^n$, where n is the episode number. The discount factor is $\gamma = 1$. Perform TD learning to estimate the state values $V^\pi(S)$. All values should be initialized to 0.
2 Q-learning

In this simplified version of blackjack, the deck is infinite and the dealer always has a fixed count of 15. The deck contains cards 2 through 10, J, Q, K, and A, each of which is equally likely to appear when a card is drawn. Each number card is worth the number of points shown on it, the cards J, Q, and K are worth 10 points, and A is worth 11. At each turn, you may either hit or stay.

- If you choose to hit, you receive no immediate reward and are dealt an additional card.
- If you stay, you receive a reward of 0 if your current point total is exactly 15, +10 if it is higher than 15 but not higher than 21, and -10 otherwise (i.e., lower than 15 or larger than 21).
- After taking the stay action, the game enters a terminal state end and ends.
- A total of 22 or higher is referred to as a bust; from a bust, you can only choose the action stay.

As your state space you take the set \{0, 2, \ldots, 21, bust, end\} indicating point totals.

Given the partial table of initial Q-values below left, fill in the partial table of Q-values on the right after the episode center below occurs. Assume \(\alpha = 0.5 \) and \(\gamma = 1 \). The initial portion of the episode has been omitted. Show the derivation of the Q values that are updated.

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(Q(s, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>hit</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>stay</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>hit</td>
<td>-4</td>
</tr>
<tr>
<td>20</td>
<td>stay</td>
<td>7</td>
</tr>
<tr>
<td>21</td>
<td>hit</td>
<td>-6</td>
</tr>
<tr>
<td>21</td>
<td>stay</td>
<td>8</td>
</tr>
<tr>
<td>bust</td>
<td>stay</td>
<td>-8</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c|c}
 s & a & r & s' \\
 19 & hit & 0 & 21 \\
 21 & hit & 0 & bust \\
 bust & stay & -10 & end \\
\end{array}
\]

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(Q(s, a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>hit</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>stay</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>hit</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>stay</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>hit</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>stay</td>
<td></td>
</tr>
<tr>
<td>bust</td>
<td>stay</td>
<td></td>
</tr>
</tbody>
</table>