You are trying to diagnose whether your computer is broken or not. On a given day, your computer's hidden state is either broken or working. Each day you make one of the following observations: blue-screen, slow, or snappy, depending on the state of your computer. You decide to use the following HMM to model your daily observations:
Initial Distribution

State	$P\left(X_{\bullet}\right)$
working	0.9
broken	0.1

Transition Distribution

State	Next State	$P\left(X_{t+1} \mid X_{t}\right)$
working	working	0.9
working	broken	0.1
broken	broken	1.0
broken	working	0.0

Emission Distribution

State	Observation	$P\left(O_{t} \mid X_{t}\right)$
working	snappy	0.7
working	slow	0.2
working	blue-screen	0.1
broken	snappy	0.1
broken	slow	0.4
broken	blue-screen	0.5

1. What is the posterior distribution of X_{1}, your computer's state on day one, given the observation (slow) on day 1 ?

The equation for starting out is:

$$
P\left(X_{1} \mid e_{1}\right)=\alpha P\left(e_{1} \mid X_{1}\right) \sum_{x_{0}} P\left(X_{1} \mid x_{0}\right) P\left(x_{0}\right)
$$

Particularized to this problem, and using the relevant CPTs:

$$
\begin{aligned}
& P\left(X_{1} \mid \text { slow }\right)=\alpha P\left(\text { slow } \mid X_{1}\right) \sum_{x_{0}} P\left(X_{1} \mid x_{0}\right) P\left(x_{0}\right) \\
& =\alpha\left[\begin{array}{c}
P(\text { slow } \mid \text { working }) \\
P(\text { slow } \mid \text { broken })
\end{array}\right]\left\{P(\text { working })\left[\begin{array}{c}
P(\text { working } \mid \text { working }) \\
P(\text { broken } \mid \text { working })
\end{array}\right]+\right. \\
& \left.P(\text { broken })\left[\begin{array}{c}
P(\text { working } \mid \text { broken }) \\
P(\text { broken } \mid \text { broken })
\end{array}\right]\right\} \\
& =\alpha\left[\begin{array}{l}
0.2 \\
0.4
\end{array}\right]\left\{0.9\left[\begin{array}{l}
0.9 \\
0.1
\end{array}\right]+0.1\left[\begin{array}{l}
0.0 \\
1.0
\end{array}\right]\right\} \\
& =\alpha\left[\begin{array}{l}
0.2 \\
0.4
\end{array}\right]\left[\begin{array}{l}
0.81 \\
0.19
\end{array}\right] \\
& =\alpha\left[\begin{array}{l}
0.162 \\
0.076
\end{array}\right]
\end{aligned}
$$

Normalizing,

$$
P\left(X_{1} \mid \text { slow }\right)=\frac{1}{119}\left[\begin{array}{l}
81 \\
38
\end{array}\right]
$$

2. What is the posterior distribution of X_{2}, your computer's state on day two, given the observation sequence (slow, slow)?

For day 2, the general expression is:

$$
P\left(X_{2} \mid e_{1}, e_{2}\right)=\alpha P\left(e_{2} \mid X_{2}\right) \sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1} \mid e_{1}\right)
$$

For this problem,

$$
\begin{aligned}
P\left(X_{2} \mid \text { slow, slow }\right)= & \alpha P\left(\text { slow } \mid X_{2}\right) \sum_{x_{1}} P\left(X_{2} \mid x_{1}\right) P\left(x_{1} \mid \text { slow }\right) \\
= & \alpha\left[\begin{array}{c}
P(\text { slow } \mid \text { working }) \\
P(\text { slow } \mid \text { broken })
\end{array}\right]\left\{P(\text { working } \mid \text { slow })\left[\begin{array}{c}
P(\text { working } \mid \text { working }) \\
P(\text { broken } \mid \text { working })
\end{array}\right]+\right. \\
& \left.P(\text { broken } \mid \text { slow })\left[\begin{array}{c}
P(\text { working } \mid \text { broken }) \\
P(\text { broken } \mid \text { broken })
\end{array}\right]\right\} \\
= & \alpha\left[\begin{array}{c}
0.2 \\
0.4
\end{array}\right]\left\{\frac{81}{119}\left[\begin{array}{c}
0.9 \\
0.1
\end{array}\right]+\frac{38}{119}\left[\begin{array}{c}
0.0 \\
1.0
\end{array}\right]\right\} \\
= & \alpha\left[\begin{array}{c}
0.2 \\
0.4
\end{array}\right]\left[\begin{array}{c}
72.9 \\
46.1
\end{array}\right] / 119 \\
= & \alpha\left[\begin{array}{c}
0.1225 \\
0.1550
\end{array}\right]
\end{aligned}
$$

Normalizing,

$$
P\left(X_{2} \mid \text { slow }, \text { slow }\right)=\left[\begin{array}{l}
0.4414 \\
0.5586
\end{array}\right]
$$

3. If you observe that your computer is slow every day, what is the first day for which the computer is most likely broken?

Day 2 is the first time when broken is more likely (denominator greater than the numerator).

