You are trying to diagnose whether your computer is broken or not. On a given day, your computer's hidden state is either broken or working. Each day you make one of the following observations: blue-screen, slow, or snappy, depending on the state of your computer. You decide to use the following HMM to model your daily observations:

Initial Distribution Transition Distribution Emission Distribution

State	$P(X_{\bullet})$	State	Next State	$P(X_{t+1} X_t)$	State	Observation
working	0.9	working	working	0.9	working	snappy
broken	0.1	working	broken	0.1	working	slow
		broken	broken	1.0	working	blue-screen
		broken	working	0.0	broken	snappy

blue-screen 0.1 0.1snappy broken slow0.4 0.5 broken blue-screen

 $P(O_t|X_t)$

0.7

0.2

- 1. What is the posterior distribution of X_1 , your computer's state on day one, given the observation (slow) on day 1?
- 2. What is the posterior distribution of X_2 , your computer's state on day two, given the observation sequence (slow, slow)?
- 3. If you observe that your computer is slow every day, what is the first day for which the computer is most likely broken?