1 Bayes Nets (49pts)

Consider the graphical model below.

1.1 Variable Elimination (24pts)

Answer the query $p(A \mid \neg b)$ by variable elimination.
(4pts) A possible solution sequence eliminates the hidden variables in the order C, D. From the Bayes' net structure,

$$
P(A \mid \neg b)=\alpha P(A) P(\neg b \mid A) \sum_{d} P(D \mid A, \neg b) \sum_{c} P(C \mid A)
$$

- (4pts) There is only one factor with C , and summing it out yields $f_{1}(A)=1$.

A	C	$P(C \mid A)$			
T	T	0.8			
T	F	0.2			
F	T	0.5			
F	F	0.5	\rightarrow	A	$f_{1}(A)$
:---:	:---:				
T	$0.8+0.2=1$				
F	$0.5+0.5=1$				

- $(4 \mathrm{pts})$ There is only one factor with D , and summing it out yields $f_{2}(A, \neg b)=1$.

A	B	D	$P(D \mid A, B)$				
T	F	T	0.2				
T	F	F	0.8				
F	F	T	0.4				
F	F	F	0.6	\rightarrow	A	B	$f_{2}(A, \neg b)$
:---:	:---:	:---:					
T	F	1					
F	F	1					

- (8pts) Join on A to yield $f_{3}(A, \neg b)=P(A) P(\neg b \mid A) f_{1}(A) f_{2}(A)=P(A) P(\neg b \mid A)$.

A	$f_{3}(A, \neg b)$
T	$0.5^{*} 0.8=0.4$
F	$0.5^{*} 0.5=0.25$

- (4pts) Normalize to find $P(A \mid \neg b)$.

A	$P(B \mid \neg b)$
T	$0.4 / 0.65=8 / 13$
F	$0.25 / 0.65=5 / 13$

1.2 Sampling (25pts)

Answer the query $p(A \mid \neg b)$ by sampling as follows.

1. (15pts) Perform 5 rounds of sampling on this network (given the evidence that $B=\neg b$). Sample top-down and when you need to arbitrarily choose a variable to sample next, choose alphabetically. Use the following sequence of random values to perform this.

0.15	0.95	0.48	a	$\neg b$	$\neg c$	$\neg d$
0.80	0.42	0.91	$\neg a$	$\neg b$	c	$\neg d$
0.79	0.85	0.93	$\neg a$	$\neg b$	$\neg c$	$\neg d$
0.25	0.62	0.15	a	$\neg b$	c	d
0.49	0.93	0.05	a	$\neg b$	c	d

2. (5pts) For each sample, determine the weight using likelihood weighting.

$$
\begin{array}{rrrrr}
a & \neg b & \neg c & \neg d & 0.8 \\
\neg a & \neg b & c & \neg d & 0.5 \\
\neg a & \neg b & \neg c & \neg d & 0.5 \\
a & \neg b & c & d & 0.8 \\
a & \neg b & c & d & 0.8
\end{array}
$$

3. (5pts) Now write down two estimates of the answer to the original query.

$$
\begin{aligned}
P(A \mid \neg b) & =\left[\begin{array}{c}
P(a \mid \neg b) \\
P(\neg a \mid \neg b)
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{0.8+0.8+0.8}{0.8+0.5+0.5+0.8+0.8} \\
0.8+0.5+0.5 \\
0.5+0.8+0.8
\end{array}\right] \\
& =\frac{1}{3.4}\left[\begin{array}{c}
2.4 \\
1.0
\end{array}\right]
\end{aligned}
$$

2 HMMs (54pts)

You are part of the CS 6300 Search Team to find Waldo. Waldo randomly moves around floors A, B, C, and D. Waldo's location at time t is X_{t}. At the end of each timestep, Waldo stays on the same floor with probability 0.5 , goes upstairs with probability 0.3 , and goes downstairs with probability 0.2 . If Waldo is on floor A , he goes down with probability 0.2 and stays put with probability 0.8 . If Waldo is on floor D , he goes upstairs with probability 0.3 and stays put with probability 0.7 . Waldo can only move one floor at a time; e.g., $P(D \mid A)=0$. Waldo will not go onto the roof or into the basement.

To aid the search a sensor S_{r} is installed on the roof and a sensor S_{b} is installed in the basement. Both sensors detect either sound $(+s)$ or no sound $(-s)$. The distribution of sensor measurements is determined by d, the number of floors between Waldo and the sensor. For example, if Waldo is on floor B , then $d_{b}=2$ because there are two floors (C and $\mathrm{D})$ between floor B and the basement and $d_{r}=1$ because there is one floor (A) between floor B and the roof. Note that d_{r} or d_{b} might be zero if Waldo is adjacent to the respective sensor.

2.1 Forward Algorithm (36pts)

(6pts) At $t=1$, Waldo potentially moves and the corresponding sensor readings are $S_{r}=$ $+s, S_{b}=-s$. Estimate $P\left(X_{1} \mid S_{r}=+s, S_{b}=-s\right)$.

$$
\begin{aligned}
P\left(X_{1} \mid S_{r}=+s, S_{b}=-s\right)= & \alpha P\left(S_{r}=+s \mid X_{1}\right) P\left(S_{b}=-s \mid X_{1}\right) \sum_{x_{0}} P\left(X_{1} \mid x_{0}\right) P\left(x_{0}\right) \\
= & \alpha\left[\begin{array}{l}
P\left(S_{r}=+s \mid A\right) P\left(S_{b}=-s \mid A\right) \\
P\left(S_{r}=+s \mid B\right) P\left(S_{b}=-s \mid B\right) \\
P\left(S_{r}=+s \mid C\right) P\left(S_{b}=-s \mid C\right) \\
P\left(S_{r}=+s \mid D\right) P\left(S_{b}=-s \mid D\right)
\end{array}\right] \\
& {\left[\begin{array}{l}
P(A \mid A) P(A)+P(A \mid B) P(B)+P(A \mid C) P(C)+P(A \mid D) P(D) \\
P(B \mid A) P(A)+P(B \mid B) P(B)+P(B \mid C) P(C)+P(B \mid D) P(D) \\
P(C \mid A) P(A)+P(C \mid B) P(B)+P(C \mid C) P(C)+P(C \mid D) P(D) \\
P(d \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C)+P(D \mid D) P(D)
\end{array}\right] }
\end{aligned}
$$

(24pts) Substituting the sensor values, entries for A and D are zeroed out.

$$
\begin{aligned}
P\left(X_{1} \mid S_{r}=+s, S_{b}=-s\right)= & \alpha\left[\begin{array}{c}
0 * 0.9 \\
0.3 * 0.6 \\
0.6 * 0.3 \\
0.9 * 0
\end{array}\right] \\
& {\left[\begin{array}{c}
P(A \mid A) P(A)+P(A \mid B) P(B)+P(A \mid C) P(C)+P(A \mid D) P(D) \\
P(B \mid A) P(A)+P(B \mid B) P(B)+P(B \mid C) P(C)+P(B \mid D) P(D) \\
P(C \mid A) P(A)+P(C \mid B) P(B)+P(C \mid C) P(C)+P(C \mid D) P(D) \\
P(d \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C)+P(D \mid D) P(D)
\end{array}\right] } \\
= & 0.18 \alpha\left[\begin{array}{c}
0 \\
P(B \mid A) P(A)+P(B \mid B) P(B)+P(B \mid C) P(C)+P(B \mid D) P(D) \\
P(C \mid A) P(A)+P(C \mid B) P(B)+P(C \mid C) P(C)+P(C \mid D) P(D) \\
0
\end{array}\right]
\end{aligned}
$$

(6pts) Now substitute the transition values and initial state probabilities.

$$
\begin{aligned}
P\left(X_{1} \mid S_{r}=+s, S_{b}=-s\right) & =0.18 \alpha\left[\begin{array}{c}
0 \\
0.2 * 0.1+0.5 * 0.2+0.3 * 0.3+0 * 0.4 \\
0 * 0.1+0.2 * 0.2+0.5 * 0.3+0.3 * 0.4 \\
0
\end{array}\right] \\
& =0.18 \alpha\left[\begin{array}{c}
0 \\
0.21 \\
0.31 \\
0
\end{array}\right] \\
& =\frac{1}{0.52}\left[\begin{array}{c}
0 \\
0.21 \\
0.31 \\
0
\end{array}\right]
\end{aligned}
$$

2.2 Particle Filtering (18pts)

You decide to track Waldo by particle filtering with 3 particles. At time $t=2$, the particles are at positions A, B and C.

1. (6pts) Without incorporating any sensory information, what is the probability that the particles will be resampled as B, B, and C respectively after time elapse?

$$
P(B \mid A) P(B \mid B) P(C \mid C)=(0.2)(0.5)(0.5)=0.05
$$

2. (6pts) To decouple this from the previous question, assume the particles after time elapsing are at B, C and D, and the sensors observe $S_{r}=+s$ and $S_{b}=-s$. What are the particle weights given these observations?

Particle	Weight
$X_{1}=B$	$P\left(S_{r}=+s \mid d_{r}=1\right) P\left(S_{b}=-s \mid d_{b}=2\right)=0.18$
$X_{2}=C$	$P\left(S_{r}=+s \mid d_{r}=2\right) P\left(S_{b}=-s \mid d_{b}=1\right)=0.18$
$X_{3}=D$	$P\left(S_{r}=+s \mid d_{r}=3\right) P\left(S_{b}=-s \mid d_{b}=0\right)=0$

3. (6pts) To decouple this from the previous question, assume the particle weights in the following table. What is the probability the particles will be resampled as B, B and D ?

Particle	Weight
$X=B$	0.1
$X=C$	0.6
$X=D$	0.3

$0.1 * 0.1 * 0.3=0.003$

