You are trying to diagnose whether your computer is broken or not. On a given day, your computer's hidden state is either *broken* or *working*. Each day you make one of the following observations: *blue-screen*, *slow*, or *snappy*, depending on the state of your computer. You decide to use the following HMM to model your daily observations:

Initial Distribution		Transition Distribution			Emission Distribution		
State	$P(X_{\odot})$	State	Next State	$P(X_{t+1} X_t)$	State	Observation	$P(O_t X_t)$
working	0.9	working	working	0.9	working	snappy	0.7
broken	0.1	working	broken	0.1	working	slow	0.2
-12	,	broken	broken	1.0	working	blue-screen	0.1
		broken	working	0.0	broken	snappy	0.1
					broken	slow	0.4
					broken	blue-screen	0.5

What is the most likely sequence of hidden states X_1, X_2, X_3 given the observation sequence (*snappy, slow, blue-screen*)?

The Viterbi algorithm from the course notes has the recursive relationship:

$$m_{1}[x_{1}] = P(e_{1}|x_{1})P(x_{1})$$
$$m_{t}[x_{t}] = P(e_{t}|x_{t})\max_{x_{t-1}}P(x_{t}|x_{t-1})m_{t-1}[x_{t-1}]$$

Day 1:

$$m_{1}[working] = P(snappy|working)P(working) = 0.7 * 0.9 = 0.63$$
$$m_{1}[broken] = P(snappy|broken)P(broken) = 0.1 * 0.1 = 0.01$$

Day 2:

$$m_{2}[working] = P(slow|working) \max \begin{cases} P(working|working)m_{1}[working] \\ P(working|broken)m_{1}[broken] \end{cases}$$
$$= 0.2 \max\{0.9 * 0.63, 0.0 * 0.01\} = 0.113$$
$$m_{2}[broken] = P(slow|broken) \max \begin{cases} P(broken|working)m_{1}[working] \\ P(broken|broken)m_{1}[broken] \end{cases}$$
$$= 0.4 \max\{0.1 * 0.63, 1.0 * 0.01\} = 0.0252$$

Day 3:

$$m_{3}[working] = P(blue - screen|working) \max \begin{cases} P(working|working)m_{2}[working]\\ P(working|broken)m_{2}[broken] \end{cases}$$
$$= 0.1 * \max\{0.9 * 0.113, 0.0 * 0.0252\} = 0.0100$$
$$m_{3}[broken] = P(blue - screen|broken) \max \begin{cases} P(broken|working)m_{2}[working]\\ P(broken|broken)m_{2}[broken] \end{cases}$$
$$= 0.5 * \max\{0.1 * 0.113, 1.0 * 0.0252\} = 0.0126$$

Fill in the appropriate m_i values in the trellis below. Emphasize the back pointers by thickening the edges in the trellis from the final m_3 values for both states *working* and *broken*.

working, broken, broken is the optimal sequence.