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6-DOF Haptic Rendering Using Spatialized Normal
Cone Search

David E. Johnson, Peter Willemsen, and Elaine Cohen

Abstract— This article describes a haptic rendering algo-
rithm for arbitrary polygonal models using a six degree-of-
freedom haptic interface. The algorithm supports activities
such as virtual prototyping of complex polygonal models
and adding haptic interaction to virtual environments.
The underlying collision system computes local extrema
in distance between the model controlled by the haptic
device and the rest of the scene. The haptic rendering
computes forces and torques on the moving model based on
these local extrema. The system is demonstrated on models
with tens of thousands of triangles and developed in an
accessibility application for finding collision-free paths.

Index Terms— H.5.2.g Haptic I/O, I.3.7.g Virtual reality,
J.6.a Computer-aided design

I. INTRODUCTION

A force-feedback, or haptic, interface engages a user’s
sense of touch while exploring virtual models and en-
vironments. The forces displayed by the haptic device
are computed by a process known as haptic rendering.
Haptic rendering must not only determine contact be-
tween the models in the environment but also the degree
to which they penetrate, so some distance measure is
needed.

In this paper we present a system for haptic ren-
dering of high-resolution triangulated models (Figure
1) appropriate for activities such as virtual prototyping
and adding haptic cues to virtual environments. Virtual
prototyping systems attempt to replace the evaluative
aspects of physical prototype models with virtual models
in a computer. These types of systems have utility
in mechanical design and architecture, where physical
models can be costly to produce and limit the ability of
a designer to quickly test modifications.

A virtual prototyping environment should support ac-
tivities such as accessibility, assembly, and placement
of models. These activities are difficult to perform using
purely computational means. The size of the virtual mod-
els overwhelm current algorithmic techniques. Haptic in-
terfaces allow the sense of touch to guide the placement
of the models in the scene. This type of interaction is
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Fig. 1. Our system generates forces between high-resolution
triangulated models.

very natural and prior haptic virtual prototyping systems
have demonstrated the usefulness of including the sense
of touch in complex placement tasks. Our algorithm
allows virtual prototyping of standard polygonal models
with little preprocessing and permits modifying the scene
to quickly test changes to a design.

Our system robustly searches for distance extrema
using hierarchical normal cones and uses sets of the
resulting extrema to provide forces and torques to the
haptic interface. The forces derived from these extrema
can be used to prevent interpenetration of models, as
is desired during accessibility testing of mechanical
systems. Alternatively, these extrema can be used to
estimate the maximum interpenetration of two models
during contact, an approach which allows general haptic
exploration.

The normal cone approach differs from prior work in
distance computation in that it searches for extrema of a
minimum distance formulation in the space of normals,
rather than in Euclidean space. Furthermore, it works
directly on the triangular model instead of treating the
model as a collection of primitives. Finally, the simplicity
of the approach allows it to scale to models with tens of
thousands of triangles and many local extrema.

Some distinguishing characteristics of our approach
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are as follows:

• polygonal models of arbitrary shape can be used in
the virtual environment.

• elements of the scene can be moved or added and
deleted without requiring substantial preprocessing.

• environments with large number of triangles can be
used, increasing the accuracy of simulated model
interactions.

The paper is divided into several sections. First, the
hierarchical normal cone approach for distance compu-
tations is presented. Then, this approach is applied to
haptic rendering of triangulated models. We then add an
acceleration technique using local tracking, which pro-
vides significant speedups. These approaches are demon-
strated on a variety of models and on an accessibility
application using a haptic interface. Finally, the normal
cone approach is adapted to penetration depth computa-
tions, demonstrating how our system can handle general
haptic rendering queries in complex environments.

II. RELATED WORK

Advancements in haptic rendering and geometric com-
putations have been tightly linked. The following sec-
tions review relevant work in distance computations and
existing work in haptic rendering.

A. Distance Computations

Almost all the literature on minimum distance, espe-
cially for polygonal models, treats the problem primarily
as a Euclidean one. Approaches typically partition the
model with hierarchical spatial bounding volumes, using
primitives such as spheres [1], convex polytopes [2],
oriented swept sphere volumes [3], and convex surface
patches [4]. Nodes of the hierarchy are pruned by com-
paring lower bound distances between nodes to upper
bounds on the global distance. This approach returns the
global minimum distance between models.

A different approach is found in work on sculptured
surfaces, such as B-splines [5], [6]. These approaches
develop techniques for tracking the locally closest or
extremal points between two surfaces after initialization
by a global search [7]. The set of equations that describe
these local distances is based on collinearity of normals
rather than Euclidean distance.

In [8], the collinearity approach is adapted to polygo-
nal models through the spatialized normal cone hierarchy
data structure. This technique efficiently finds all local
minima between polygonal models.

B. Haptic Rendering

Haptic rendering algorithms were first developed to
support three degree-of-freedom (DOF) haptic interfaces.
These algorithms and devices support a moving point
touching a computer model. Researchers have developed
algorithms for haptic point contact with polygonal [9],
[10], [11], [12], [13], implicit [14], and NURBS [15]
models. Thompson [16] has developed a complete sys-
tem for three DOF haptic interaction with trimmed
NURBS models.

Other efforts have focused on developing techniques
to haptically render the interactions between two models.
The resulting forces include torques as well as transla-
tion forces, and a six DOF haptic device is needed to
accurately reflect the results back to a user.

In the polygonal model domain, the first efforts at six
DOF haptic rendering were for small convex shapes [17].
More recently, research has looked at collections of
convex bodies [18], as well as incremental methods for
computing the penetration depth [19]. Most recently,
the convex decomposition approach has been extended
with perceptual level of detailing to accelerate haptic
rendering for very large models [20].

Model-model haptic rendering for general NURBS
models is developed in [5]. This system uses a three pass
approach: initial distance monitoring using polygonal
approximations, local closest point initialization using
Newton’s method on an extremal distance formulation,
and stable maintenance of the penetration depth distance
with a velocity relation between parametric space and
Euclidean movement. Another method based on control
theory maintains the extremal distance even with impre-
cise starting values [6].

Instead of using penetration-based methods, re-
searchers at Boeing create a voxel-based scene that
allows a point-sampled model to interact with the vox-
els [21]. The advantage is that the computation time can
be tightly bound by the number of voxels and the number
of points in the free-moving model. They also created a
voxel boundary around the models in the scene to prevent
interpenetration of models, which would invalidate the
correctness of the virtual prototyping.

This article expands on the normal cone approach
in [8], by more fully describing the pruning and leaf
tests used, and then provides a cohesive view of the
normal cone approach’s application to haptics in [22]
and [23]. In addition, this article presents an extension
of the approach to handle haptic rendering of model-
model penetration.
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III. APPROACH

Prior work in haptic rendering of point-model contact
found local minima in distance by searching for a global
distance minimum and then constraining movement from
the solution at the previous time step to the new global
solution. Instead, our approach is to search directly for
local distance minima based on techniques commonly
applied to smooth models, such as splines.

For continuous, parametric models, the distance be-
tween surfaces f(u,v) and g(s, t) is

D(u, v, s, t) = ||f(u, v) − g(s, t)|| (1)

A global minimum can be found generically by solv-
ing for all local extrema and returning the smallest.
Extrema are found at simultaneous zeros of the partials
of Eq. 1, as in
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Equation 2 shows that the location of distance extrema
depends on the collinearity of normals on each surface
to the vector connecting the solution points. We develop
a technique called spatialized normal cone hierarchies
(SNCH) to search for such distance extrema on polyg-
onal surfaces rather than parametric models. The next
section develops SNCH search for local distance minima
between two polygonal models and following sections
extend it to haptic rendering of model-model contact.

IV. SPATIALIZED NORMAL CONE HIERARCHIES

While other collision and distance techniques use
hierarchies of conservative spatial bounds to prune away
portions of a model, we seek instead to conservatively
bound the range of normals at each node in a hierarchy.
A cone, defined by an axis vector and a spread angle,
provides such a bound.

A. Building the Hierarchy

Our system uses a vertex-edge-face data structure with
neighbor information for vertices and edges on top of the
triangulated model, rather than an unstructured triangle
cloud. Most unstructured models can be collapsed into
our mesh format by searching for common vertices and
edges. For a given model A, a hierarchy is constructed
using the binary spatial splitting technique described
in [3]. The leaf nodes point to the original triangles of the
model. If normals are not provided they are computed

for the triangle faces and estimated for the edges and
vertices.

At each node ΦA in the hierarchy, the face, edge, and
vertex normals from contained triangles are averaged
to compute a cone axis vector ~CΦA

. Once the axis
is computed, the half spread angle φΦA

is just the
maximum deviation of a contained normal from the axis
vector. This cone data is stored in each node.

Each node also stores a bounding sphere with center
SΦA

and radius ρΦA
that spatially bounds the contained

geometry. We use a simple averaging and maximum
deviation scheme to create the sphere. This bounding
sphere is used in the search for extrema as described in
the next section.

B. Searching the Hierarchy

For a minimum distance search between two models
A and B there will be two SNCH structures, one for each
model. The top nodes of each structure are connected as
an active pair. Each active pair undergoes a series of
tests that determine whether or not a local minimum for
the full models can potentially exist for the contained
geometries. An active pair that passes the tests forms
four new active pairs connecting the two sets of children
nodes, one from each hierarchy, and these new active
pairs are recursively tested.

Recalling the system of equations (Eq. 2) that define
a distance minimum, the pruning test for an active pair
first checks if if there exists a vector in the cone for A

collinear with a vector in the cone for B by comparing
the angle between cone axes and their spreads. If

π − arccos ( ~CΦA
· ~CΦB

) > φΦA
+ φΦB

(3)

is true, then the active pair is rejected, since no part of
one cone is collinear with the other.

If this first test is passed, then a more comprehensive
test is needed. Eq. 2 does not specify just that the
surface normals must be collinear, but also that the line
connecting the closest pair of points is collinear with
each surface normal. Because the closest pair of points
between each node has not yet been determined (and will
not be until the leaf nodes are reached), the spheres that
bound the nodes’ geometries are used to conservatively
bound the range of possible solution lines between the
two nodes.

The range of possible solution lines forms a double
cone, the solution line cone, between the two spheres,
with a central axis connecting the spheres’ centers and
a half spread angle σΦAΦB

equal to

σΦAΦB
= arcsin

(

ρΦA
+ ρΦB

||SΦB
− SΦA

||

)

. (4)
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Fig. 2. The normal cones must point toward each other and along
the dual solution line cone for a local distance minimum to exist.

The spread angle is mapped to a 0-180 degree range by
subtracting the angle from π if the arcsine is negative.

Given the solution line cone, an active pair is tested
for whether its contained geometry could satisfy Eq. 2
(Figure 2) by seeing if

arccos
[

(SΦA
− SΦB

) · ~CΦA

]

− σΦAΦB
− φΦA

≤ π

arccos
[

(SΦA
− SΦB

) · ~CΦA

]

+ σΦAΦB
+ φΦA

≥ π

arccos
[

(SΦA
− SΦB

) · ~CΦB

]

− σΦAΦB
− φΦB

≤ 0 (5)

arccos
[

(SΦA
− SΦB

) · ~CΦB

]

+ σΦAΦB
+ φΦB

≥ 0.

Active pairs that do not satisfy all these predicates are
pruned. Pairs that pass are subdivided and recursively
tested.

C. Leaf Tests

If both nodes are leaves, then an exact test is done
on the leaf triangles TA and TB . A local minimum, if
it exists, must be between the closest points between
TA and TB . So the first step of the exact leaf test is to
find those closest points. The features the closest points
are on, either a triangle face, edge, or vertex, are also
recorded.

The closest points between leaf triangles form a po-
tential solution vector. The normalized solution vector
~LTATB

is tested for collinearity with a vector in the
normal range of each triangle’s closest feature, to check
for compliance with the constraints of Eq. 2.

1) Face Test: If the closest feature on model A is a
triangle face, then the associated normal range is just the
triangle normal ~NTA

. The solution vector ~LTATB
must

satisfy the collinearity condition for the face

Fig. 3. If the solution line falls on a triangle face it is compared
with the face normal for collinearity.

Fig. 4. Edges encompass a range of normals between neighbor faces.
Only half the range is tested for each triangle to avoid redundant
solutions.

~LTATB
· NTA

= 1. (6)

2) Edge Test: For a solution vector emanating from
an edge, the test is slightly more complex. An edge has
a range of vectors between the normals of the two faces
that share the edge. However, each triangle only tests
from its face normal ~NTA

to the average edge normal
~ETA

in order to avoid redundant solutions with the other
triangle that shares the edge. The edge test checks if

(

~LTATB
× ~NTA

)

·
(

~ETA
× ~LTATB

)

≥ 0. (7)

Solution line vectors that meet the range condition are
accepted for that edge.

3) Vertex Test: The spread of normals at a vertex
is a complicated shape dependent on the number and
orientations of the triangles that share the vertex. If the

Fig. 5. The vertex test maps each triangle’s portion of the vertex
normal spread to a triangle on the Gauss sphere, where the solution
line can be tested for inclusion.
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full vertex normal spread were tested, then each triangle
sharing that face could contribute a redundant solution.
We adopt the convention of only using the normal range
from the vertex average normal ~VTA

to the triangle face
normal ~NTA

to the counterclockwise neighbor triangle
face normal ~NxTA

.
The test to see if ~LTATB

lies within the Gauss map
triangle for a vertex first checks for degeneracy in any
of the boundary arcs. If any are degenerate, then the
test reduces to comparing the solution vector along the
remaining arc. If the triangle is non-degenerate, then
the test sees if ~LTATB

is on the same side of all the
consistently oriented edges of the Gauss map triangle,
as in

~LTATB
·
(

~NTA
× ~VTA

)

> 0

~LTATB
·
(

~VTA
× ~NxTA

)

> 0

~LTATB
·
(

~NxTA
× ~NTA

)

> 0. (8)

D. Discussion

The closest pairs of points for all leaf active pairs
that pass the exact leaf tests are returned as local
minima. Local maxima can be found in a similar manner,
although we will delay that discussion until a later
section. These local minima provide greater information
about the relationship of two models than just a global
minimum, and we will use this additional information to
develop 6-DOF haptic rendering for polygonal models.

V. HAPTIC RENDERING USING SNCH SEARCH

Rather than finding forces that move models apart
once they have collided, our haptic rendering algorithm
prevents collisions by applying repulsive forces as mod-
els approach each other. This technique is appropriate for
representing interactions between models since allowing
models to penetrate each other violates real-world con-
straints. Our test system uses a 6-DOF haptic interface
as the means of moving a model in the scene and for
reflecting the forces of model-model collision back to
the user.

A. Local Minimum Distances

Sets of local distance minima are used because while
a global minimum can be rapidly computed between
polygonal models it would only generate a single penalty
force at each time step. This force could rapidly change
direction, creating haptic instabilities. One could easily
imagine modifying a distance computation to return all

Fig. 6. A cutoff distance focuses the computation near potential
contacts.

pairs that are within a certain distance, rather than just
the global minimum. However, this could potentially
create very large numbers of penalty forces, which would
swamp the haptic computation

We argue that an appropriate solution is to compute
the local minimum distances (LMD) between models.
Imagine two models that have just collided. This colli-
sion can be represented at a single point on each surface
(even for manifold contacts, a single point encapsulates
that area of contact). If the models move apart, this
pair of points tracks the local minimum distance and
represents the potential future contact between entire
sections of these two models. Additional pairs of contact
points for those sections are redundant predictors of
future contacts for those regions, thus the local minimum
distance pairs are adequate. This formulation keeps a
manageable number of forces while maintaining cover-
age of potential contacts.

B. Cutoff Distance

The SNCH search returns all LMDs between two
models. Much of that computation is wasted for haptic
rendering, where we are only interested in potential
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contacts in the immediate vicinity of the moving model.
We introduce a cutoff distance to the SNCH search. All
active pairs with bounding spheres further apart than
the cutoff distance are pruned without further checking
(Figure 6). The cutoff distance is dynamically adjustable,
allowing for user control.

C. Computing Forces and Torques

At each time step in the haptic rendering loop, our
algorithm computes all the LMDs that are closer than
the cutoff distance between the model that is controlled
by the haptic interface and the rest of the models in the
scene. Each LMD is considered a virtual spring with a
rest length equal to the cutoff distance. Each spring is
attached to the models by the pairs of points that form
the LMD.

The center of mass and the first-order moments are ap-
proximated by the geometric extent of a PQP generated,
oriented swept sphere bounding box [3] surrounding and
approximating the shape of the model. More precise
values can be used easily when available.

The repulsive forces between models begin at zero
at the cutoff distance, so LMDs that are created and
destroyed as sections of the two models approach the
cutoff distance only modify the total force and torque a
small amount. Furthermore, since we are not attempting
to render the forces of hard contact, only guiding the
placement of models, the springs can be fairly soft,
smoothing the haptic rendering.

D. Acceleration with Local Search

We speed updates of LMDs by using a local gradient
search while waiting for new global solutions. The haptic
rendering system first computes all LMDs within the
cutoff distance using the global SNCH search. These
LMDs are fed to a local update thread, which performs
local gradient descent on the LMDs given new positions
of the models. The updated LMDs are used to compute
forces and torques repelling the models. The local update
works as fast as it can on the LMDs it knows about.
Concurrently, the global search computes new LMDs.
When it finishes a time step, it notifies the local search
that new LMDs are available. The local search then
updates these new LMDs to the current model positions
and continues local updates.

A pair of points, one on each model, forms each
LMD. After a model moves, the local search algorithm
looks at the neighborhood around each LMD point and
computes the distances between all the triangles in one
neighborhood and all the triangles in the other models
neighborhood. If any of these triangle pairs are closer

(a)

(b)

(c)

Fig. 7. The local crawl neighborhood depends on if the closest point
is on a face, edge, or vertex.

than the current LMD, then the search continues with
those triangles’ neighborhoods until the minimum dis-
tance converges. The points that form this new minimum
distance are the updated LMD.

If the last LMD point was on the face of a triangle,
then the local neighborhood is just that triangle again
(Figure 7). If the last point was on an edge, only the
two triangles that share that edge are part of the local
neighborhood. When the last point was at a vertex, all
triangles that share that vertex are searched for a new
LMD.

E. Search Efficiency

The number of neighborhoods that must be checked
varies with the model resolution and the movement of the
models. For models with low aspect ratio side lengths,
the number of triangles searched on one model grows
roughly as the

√
n , where n is the number of triangles.

In addition, for haptic rendering running near 1000 Hz,
temporal coherence is very high and the number of
triangles crossed is small.

The global search efficiency is dependent on the
number of LMDs as well as the complexity of the two
models. In the best case, the two models are of balanced
complexity and there is a single LMD, and the global
search takes log n time. In a more typical scenario,
there are multiple LMDs and the pruning cannot always
remove nodes that will not eventually yield minima,
increasing search time. In cases of manifold minima
solutions, such as two parallel planes, the search takes
n log n time. However, manifold solutions are rarely
encountered with human-guided model interactions. Ad-
ditionally, the global search is improved when the cutoff
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distance is small, so only close portions of the models
are searched for minima. This reduces the apparent
complexity of the model and the number of LMDs the
local update must process.

VI. SYSTEM ARCHITECTURE

Our virtual prototyping system is based on a Sensable
6-DOF PHANTOM haptic interface. The computations
run on a dual processor Pentium 4 2.4 GHz Linux
computer with a gigabyte of RAM and a GeForce 4 Ti
4400 graphics card.

This type of application would be difficult to write as a
single thread of computation. The application uses three
threads: a global search thread, a local update thread,
and a graphics thread. This architecture allows us to
restrict the computational load of the graphics and global
threads, and let the local update run as fast as possible.
On a two-processor system, this translates into the local
update getting one processor to itself and the other two
threads sharing the other processor.

VII. EXAMPLES AND TIMINGS

The local search algorithm computes updated forces
and torques at kilohertz rates. When model complexity
grows, the global search tends to slow down, but the
local update speed is mostly dependent on the num-
ber of LMDs, not the complexity of the model. The
global search is still the limiting factor in environment
complexity. We instrumented the local update thread to
record the time to compute the local update, the number
of triangle pairs searched during the local update, and
the time for the global search to compute the LMDs.
The following figures show these results for a variety
of model-model interactions. In all these examples, the
top graph represents the local update time, the middle
graph the number of triangle-pairs searched during the
local update, and the bottom graph the time for the
global LMD computation to update. The local update
and searched triangles graphs do not cover the full extent
of the global search graph since the data was stored in a
circular buffer and the fast updates of the first two graphs
filled the available space.

A. Gear-Crank

In this example, we moved a gear with 6,300 triangles
around a crankshaft part with 45,000 triangles, exploring
the concave regions (Figure 8). Even though the models
are high resolution, typically there were only a few
LMDs to track, and the local update was able to maintain
a high update rate.

Fig. 8. The gear model is able to explore regions of the crankshaft
model.
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Fig. 9. Update time for the force computation loop (top), number
of LMDs (middle), and global LMD update (bottom).

The top graph of Figure 9 shows the time the local
update took to update the LMDs and compute forces.
The local update was able to maintain near kilohertz rates
even during complex interactions. The middle graph
counts the number of triangle pairs searched during each
local update. The local update time correlates well with
the number of triangles searched. The bottom graph
shows the computation time for the global search to find
the LMDs. Without the local update, haptic interaction
would have been highly unstable and slow.

B. Horse-Bunny

Non-mechanical models, such as the horse and bunny
(Figure 10), provide additional challenges to our haptic
rendering system, as the finely detailed surfaces can
produce nearly redundant local minima. In this example,
we are still able to update the LMDs and forces at around
1 kilohertz (Figure 11).
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Fig. 10. More detailed models, such as the bunny and horse models,
still provide haptic rate performance.
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Fig. 11. Update time for the force computation loop (top), number
of LMDs (middle), and global LMD update (bottom) during bunny-
horse haptic rendering.

The forces of interaction feel smooth. Figure 12 shows
the magnitude of the translational forces during haptic
interaction between the horse model and the bunny. The
large-scale bumps are from moving the bunny model
around the horse and bumping against it. Smoother re-
sponses are possible when continuously pressing the two
models together. However, the lack of high-frequency
fluctuations shows good haptic rendering stability.

VIII. AN ACCESSIBILITY APPLICATION

Since we compute LMDs while the moving model is
still some distance from the environment models, haptic
forces are used to guide the moving model away from
collision with the environment. The onset distance for
forces is adjustable, so the user can decide how much
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Fig. 12. This graph shows the magnitude of the translation forces
for the bunny-horse interaction. While the overall magnitude varies
widely, the changes are relatively smooth, indicating stable haptic
response.

Fig. 13. Forces push the moving model toward a safe path.

clearance between models is desired during testing. In
general, the LMDs tend to approximate the local distance
field between the models, and the forces tend to push
the moving model toward the medial axis between the
models (Figure 13). Since the medial axis is the surface
of maximum clearance between models, these forces
tend to guide the moving model toward the safest path.

A. Collision-Free Path

While the test object is being moved by the haptic
interface, its position and orientation are stored in a
buffer. This buffer allows the motion of the test ob-
ject to be played back for review, analysis, or further
modification. If the moving model is forced to penetrate
an environment model by the user, the simulation is
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Fig. 14. A user is able to find a path through the cockpit using
haptic feedback.

no longer valid. A collision state is detected and the
simulation is rolled back, using the stored positions and
orientations in the buffer, until the model state is valid.
The simulation can then resume, and the user can try new
approaches for finding a collision-free path. This means
that the path stored by our accessibility application is
always valid, and if the moving model can reach its goal,
the problem has been solved.

B. Detecting Collisions

Collisions are detected when the smallest LMD falls
below an adjustable parameter. This parameter can rep-
resent error in the fit of the polygonal model to an
original CAD model, or it can represent a desired mini-
mum clearance between models. Detecting collisions in
this fashion, instead of with actual model intersection,
provides more control over simulation accuracy.

C. Path Visualization

Since we store model positions and orientations during
the simulation, a sampling of the path of the model can
be visualized, as in Figure 14. Drawing a copy of the
moving model at each sampled location (or some subset),
allows the user to check the validity of the collision-free
path, and to examine any unusual maneuvering needed
to safely guide the model. One drawback is that if many
positions are visualized simultaneously, the frame rate of
the display can slow.

D. Examples

Figures 14 and 15 show two challenging examples
of trying to find a collision-free path. In Figure 14, a

Fig. 15. In this example, the desired path was originally visually
occluded, so haptic response provided key cues for moving past the
teapot.

mechanical model with 40,000 triangles is maneuvered
through the open cockpit of a 113,000 triangle helicopter
model. In Figure 15, the user had to manipulate the
crankshaft model through the holes and past a visually
occluding teapot model using the haptic interface. The
rotated path visualization view shows the forces guided
the moving model away from contact.

IX. PENETRATION ESTIMATION USING SNCH
SEARCH

The minimum translational distance (MTD) is the
smallest movement needed to separate two convex mod-
els. This measure has been used for 6-DOF haptic
rendering in [18]. Decompositions of general models
into convex surface patches, and subsequent clustering
of MTDs for force computation is developed in [19]
and [20]. An alternative approach is to find the extremal
distance [24], which has been applied to haptic rendering
of spline models in [5].

We adapt the SNCH search to extremal distance and
use the resulting polygonal model-model local extrema
as a penetration measure (Figure 16). While the pruning
test for local minima compared the solution line cone
and node normal cones looking for normals that pointed
in toward each other, for extremal distance we just need
the normal cones to point away from each other. This is
accomplished by switching the π and 0 in Eq. 5.

However, the leaf test is not as simple to adapt, since
the first step of that test is to find the closest pair of
points on the leaf triangles. An extremal distance test
would require that we instead find all overlaps of normal
ranges and then determine the geometry that fulfills the
collinearity requirement.



10

Fig. 16. The penetration depth is approximated by sets of surviving
active pairs.

Fig. 17. The normals associated with the faces and edges of a model
overlap on the interior of a convex object. These overlaps create
multiple solutions for extremal distance on triangulated models.

Furthermore, the generic case of two convex portions
of a model overlap produces many local extrema for
polygonal models. Since a polygonal model has multiple
overlapping normal ranges on the concave side of a
model (Figure 17), the interplay of two concave sides
produces numerous valid local extrema solutions.

We use the approach of accepting leafs based just on
the normal cone tests, rather than doing extra computa-
tion that may not yield much additional pruning. Points
on each triangle are still needed to find an actual solution
line. We use the closest pairs of points on the triangles
to form the solution line even in the extremal case.

The main reasons using the closest points are
• For high-resolution models, the penetration depth

is larger than the triangle size, so shrinking the
solution line by some percentage of the triangle
size does not affect the overall penetration length

substantially.
• During tangential model contact, using the closest

points keeps the solution line zero length, while
other heuristics such as connecting triangle centers
would introduce spurious torques.

A. Adaptive Cutoff Distance

We introduce adaptive cutoff distances to increase
the computational efficiency of the penetration depth
search. In prior sections, the cutoff distance was fixed
based on where the onset of forces was desired for the
LMD scenarios or based on the estimated maximum
penetration depth in the penetration case. However, given
a set of penetration depths at one instance, the maximum
penetration depth cannot grow by more than the relative
movement of the interpenetrating models. The relative
movement is bounded by the incremental translation of
the moving model plus the translation of a corner of an
oriented bounding box surrounding the model after going
through the incremental rotation for that time step.

Therefore, at each time step, the maximum penetration
depth from the last time step is added to the bounded
relative movement of the models, and this value is used
as the distance cutoff for the new time step. This ap-
proach has two advantages. It provides a faster response
after initial contact, when the penetration depth is small,
which improves the quality of the haptic interaction.
It also allows the penetration depth to be unbounded,
whereas for a fixed cutoff distance, forces will disappear
if the models penetrate too far.

B. Results and Examples

The penetration depth approach cannot handle as high-
resolution models as the LMD approach because it lacks
the local search updates and because more active pairs
are typically retained than for minimum distance (Figure
18). Figure 19 shows that the penetration depth approach
typically runs at a few hundred Hertz. In practice, it
provides stable and solid-feeling haptic rendering of the
model-model interaction.

The adaptive cutoff distance technique improves the
search time for penetration depth estimation. In Figure
20, the search time is recorded as two sphere models
were slowly pushed together and then pulled apart,
corresponding to a rise in computation time and then
a fall. Note that at initial contact, the computation times
indicate kilohertz rate feedback. Without the adaptive
cutoff distance, the time would have stayed nearer the
worst-case time for all penetration depths.
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Fig. 18. The sphere is able to explore a hole in the model with
penetration forces generated all along the boundary. In the lower
figure, the handle of the teapot is kept from penetrating far by the
haptic interface. In both cases, more active pairs are used for force
computation than typically are used in minimum distance scenarios.

X. CONCLUSION

We demonstrate an algorithm for six DOF haptic
rendering of arbitrary polygonal models. The underlying
distance search computes local minimum distances be-
tween models and derives repulsive forces and torques
to maintain collision-free status. This technique is ap-
propriate as a foundation for an accessibility application
for complex models. In addition, a variation in the local
minimum search estimates the extremal distance between
models, and these extrema are used to compute forces
for interpenetrating models. The combined approaches
provide powerful tools for adding haptic cues to complex
virtual environments.
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Fig. 19. The penetration depth search for the sphere/3-hole-torus
example runs at a few hundred Hertz. The sphere has 8192 triangles
and the torus has 11,776 triangles. The spikes in the time are during
sphere-hole contact, where many more active pairs are retained.
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Fig. 20. Timings were collected as two sphere models were pushed
together and then pulled apart. The adaptive distance cutoff produces
higher computation rates when the penetration depth is small.
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