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Abstract 
We present a robust search for distance extrema 

from a point to a curve or a surface. The robustness 
comes from using geometric operations rather than nu-
merical methods to find all local extrema. Tangent 
cones are used to search for regions where distance 
extrema conditions are satisfied and patch refinement 
hierarchically improves the search. Instead of preproc-
essing and storing a large hierarchy, elements are com-
puted as needed and retained only if useful. However, 
for spatially coherent queries, this provides a significant 
speedup.  

Key words:  Tangent cones, minimum distance, 
spline models. 

1 Introduction 
A distance query between a point and a model is a 

basic operation used in simulation [1], haptics [2], robot-
ics [3], model simplification [4], and distance volume 
computation [5]. In general, distance queries either have 
been for a global minimum or for a local solution in the 
neighborhood of an initial guess. Instead, in this paper, 
we describe a robust search for all distance extrema 
between a point and a spline model. This type of search 
provides more information about the distance field than 
the global minimum does (Figure 1), and yet is more 
robust than typical local searches.  

Our approach is based on hierarchical pruning of the 
spline model. This type of approach is commonly used 
to find a global minimum by bounding portions of the 
geometry with a conservative spatial primitive, such as 
a sphere or oriented bounding box. Instead of bounding 
just geometry, our approach also bounds tangent 
spreads on portions of the geometry and searches to 
satisfy the zeros of a distance extrema equation. 

 
Figure 1: Finding all local extrema better characterizes 
the distance space than a single global minimum. 

The resulting algorithm robustly finds all distance 
extrema to curves and surfaces. In addition, we develop 
acceleration techniques to take advantage of coherence 
in successive distance queries to surfaces. The acceler-
ated queries compute multiple extrema to surfaces in-
teractively. 

This work is motivated by two projects in particular. 
In one, a force-feedback interface is used to feel spline 
models [2]. Latency requirements mandate that fast lo-
cal distance methods are initialized by a global search 
prior to contact; however, a global minimum result may 
not detect multiple small local features that are potential 
contact locations. The second project is converting 
trimmed spline models to distance volumes [6]. In that 
case, a global minimum may lie in the trimmed off do-
main, so all local minima must be found, checked 
against the trimmed domain, and then the closest valid 
minima used.  

This robust extrema search should be useful in other 
applications as well. However, in this paper, we de-
scribe the underlying algorithmic approach and not the 
applications.  

2 Background 
Distance techniques have often been specialized for 

either polygonal models or sculptured models such as 
splines. Because our approach uses hierarchical prun-
ing, which is commonly associated with polygonal 
models, we include background on that model represen-
tation as well as on sculptured models.    

2.1 Distance Queries for Polygonal Models 
Polygonal models are typically composed of collec-

tions of triangles, and most distance algorithms for po-
lygonal models deal with triangle primitives. The model 
may contain topological connectivity information. 
Models without connectivity are known as a triangle 
cloud, and ones with are properly described as a trian-
gle mesh. 

Lin [7] and Gilbert, Johnson, and Keerthi [8] devel-
oped fast minimum distance methods for convex po-
lygonal models. Since local gradient search produces a 
global minimum for convex objects, their algorithms 
can converge quickly.  



Quinlan [3] developed a spherical bounding hierar-
chy for general triangle clouds. The bounding hierarchy 
was used to determine an upper bound on minimum 
distance between the two models, and then to prune 
away portions of each model with lower bounds on 
distance larger than the upper bound. The PQP package 

[9] uses swept sphere volumes as a bounding hierarchy 
for triangle clouds. These volumes can control their 
aspect ratio to more tightly bound contained geometry 
than sphere bounds, providing faster distance queries.  

More recently, the distance methods for convex 
model distance queries have been applied to convex 
decompositions of triangular models [10]. Essentially, 
this method reduces the number of leaf nodes by replac-
ing triangles with convex sets.   

For these general polygonal models, the predomi-
nant techniques create bounding volume hierarchies, 
and the advancements have come mostly from improv-
ing the tightness of the bounding volumes. This ap-
proach differs markedly from techniques used for 
sculptured models. 

2.2 Parametric Models 
Parametric models are composed of smooth surface 

patches, and typical models have fewer primitives than 
polygonal models. Thus, the emphasis in research has 
not been on efficient means of pruning large numbers 
of primitives. Instead, methods have explored various 
techniques for quickly and reliably solving systems of 
equations derived from setting up minimum distance 
conditions.  

The system of equations for distance extrema have 
been variously defined as sets of cross-products [11] or 
augmented with explicit normal collinearity conditions 

[12]. These extrema conditions have been solved by 
employing symbolic computation [11], interval methods 

[12], and Newton-Rapheson iteration [13]. Having the 
advantage of high speed and rapid convergence, the last 
has been a practical choice for many implementers. 

We examine the Newton-Rapheson approach in 
more detail for distance between a point and a curve 
and between a point and a surface in the following sec-
tions. 

Distance from a Point to a Curve 
The distance between a point in space P and a pla-

nar curve γ(t) can be expressed as a parametric func-
tion, 

( )Pγ −= )()( ttD , (1) 

and minimizing D(t) finds the minimum distance. The 
distance squared, 

 
Figure 2: The derivative E(t) (in red) of the distance 
squared function (in blue). Zero crossings correspond 
to extrema in distance (the dashed lines). 

( ) ( )PγPγ −⋅−= )()()(2 tttD , (2) 

shares common extrema parameters with D(t) and 
avoids the square root. 

The minimum of Eq. 2 can be found by computing 
all its extrema and choosing the smallest. Extrema oc-
cur where the derivative is zero, described by E(t), 
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Figure 2 shows this relationship between zeroes of E(t) 
and distance extrema. In the general case, extrema also 
occur at endpoints of the curve or at non-differentiable 
points. A curve with tangent discontinuities can be split 
into multiple curves, each of which is considered inde-
pendently. The endpoints of the curve can also be 
checked as a special case.  

E(t) can be interpreted as showing that distance ex-
trema occur at orthogonal projections of P onto the 
curve, which is where the projection vector is at right 
angles to the tangent at the projected point. This or-
thogonality condition is what will be used as a search 
condition for the distance extrema search developed 
later in this paper.  

Distance from a Point to a Surface 
The minimum distance between a point in space P  

and a bivariate parametric surface ),( vuS  is the mini-
mum of the distance function 

PS −= ),(),( vuvuD . (5)

Following the approach for computing the minimum 
distance between a point and a curve, we instead look at 
the distance squared to a surface 

( ) ( )PSPS −⋅−= ),(),(),(2 vuvuvuD . (6) 

t 
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In Figure 3, local distance minima between the green 
query point and the surface are visible in the visualiza-
tion of the distance squared function as two bumps, 
each corresponding to a local closest point on the origi-
nal surface to P.     

The partials of the distance squared generate a sys-
tem of equations that is satisfied at an extremum. 
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This system is analogous to the extrema equation for 
minimum distance to a curve (Eq. 4), as it shows that 
the closest point on the surface is also an orthogonal 
projection of the query point onto the surface. 

By mapping the partial derivatives as height fields 
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ings generically form curves in the uv plane (Figure 4), 
and the intersections between the zero sets are solutions 
to Equation 8. 

 

 
Figure 3: The squared distance between a point and 
surface (top) is visualized as a function mapping pa-
rameter value vs. squared distance (bottom). 

 

 
Figure 4: The zero crossings of each partial of the dis-
tance squared function generically form curves in the 
uv plane. The intersections between the two curves are 
local extrema of the distance squared function.  

2.3 Spatialized Normal Cone Hierarchies 
Prior work for triangular models has developed hi-

erarchical geometric search for zeros of the extrema 
equations [14], and that work has been applied to haptic 
prototyping of model accessibility [15]. In that work, 
pre-computed hierarchies of normal cones were used to 
search for collinearity conditions between normal 
ranges and the query point. This work differs in that our 
approach does not use pre-computed hierarchies, the 
means of computing the bounding cone differs for 
spline surfaces, the way of determining satisfaction of 
the extrema equations differs for spline models, and 
acceleration techniques are needed for the spline mod-
els. The spline model approach, as applied to B-spline 
curves and tensor product surfaces, is described in the 
following section. 

3 Tangent Cones for Distance Queries 
Approaches that prune hierarchies based purely on 

spatial bounds ignore the role tangents and orthogonal-
ity play in defining distance extrema. In this section, we 
develop techniques that satisfy the equations for dis-
tance extrema using robust geometric operations. Our 
approach uses tangent cones to conservatively bound 
the range of tangents on a portion of a model. 

4 Tangent Cones for Curve Distance Queries 
We start by describing the application of tangent 

cone hierarchies to curves. The outline of the tangent 
cone approach is 

1. Bound the range of tangents and the spatial ex-
tent of each interval of the curve. 

2. See if the orthogonality condition might be 
satisfied for the interval for a given query 
point. 

3. Subdivide intervals that meet the orthogonality 
condition. 

4. Repeat until the remaining curve intervals con-
tain small tangent ranges, and then compute 
exact local extrema using local methods.  

4.1 Bounding the Range of Tangents with Cones 
The derivative of a spline curve is a vector-valued 

spline curve. Thus, the properties of spline curves, such 
as the convex hull property, also apply to the derivative 
curve. This can be used to bound the range of normals 
for that curve. 

The curve subdivision process turns pieces of spline 
curves into Bézier curves, which are a subset of splines. 
For a Bézier curve )(tB  of degree d, with control 
points iP , and basis functions )(, tdiβ , 



∑=
i

dii tPtB )()( ,β , (8) 

and its derivative is 

∑ −+ −=′
i

diii tPPdtB )()()( 1,1 β . (9) 

The derivative curve is also known as the hodo-
graph, and is readily computed as scaled differences of 
adjacent control points of the original curve. Since the 
convex hull property holds for the derivative curve, the 
range of tangent directions is bounded by the convex 
hull of the derivative curve control points. 

We compute a 2D cone to encapsulate the range of 
tangent directions by averaging the normalized tangent 
control points and then finding the maximum angle 
between the average tangent and the tangent curve con-
trol points. 

Since the orthogonality condition depends not only 
on the curve tangent, but also on the vector between the 
query point and the solution point, the tangent cone 
alone is insufficient to determine whether the orthogo-
nality condition is satisfied. The range of vectors be-
tween the query point and possible solution points must 
also be taken into consideration. Those vectors are 
bounded by first bounding the possible locations of the 
solution point on the curve with a circle. The range of 
vectors between the query point and bounding circle 
then forms a cone, called the solution line cone (Figure 
5). 

4.2 Checking the Orthogonality Condition 
Given the tangent cone and the solution line cone, 

the orthogonality check determines if any vector in the 
tangent cone can be orthogonal to a vector in the solu-
tion line cone. For cone axes, TA and SA, with spreads 
Tα and Sα, this is tested by seeing if 

°≥++⋅
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(a)   (b)  (c)  
Figure 5: Building the bounds on tangent and solution 
vectors. (a) The query point and curve interval, with its 
control polygon. (b) The tangent cone computed from 
differences of control points.  (c) The solution line cone 
encompasses a bounding circle around the interval. 

 

 
 

Figure 6: Two consecutive levels of subdivision are 
shown. The triangle fans are the tangent cones com-
puted from the derivative curve and the circles provide 
the basis for the solution line cones. Intervals in green 
are subdivided and ones in red are removed from fur-
ther computation. 

Intervals passing the orthogonality test are subdi-
vided. These subdivided curves have tighter bounds on 
their spatial extent, which produces tighter solution line 
cones and tighter bounds on their tangent cone. These 
tighter bounds are better able to prune intervals during 
the next iteration (Figure 6). 

4.3 Computing an Exact Solution 
The subdivision terminates when the tangent cone 

spread angle falls below a user specified epsilon. Exact 
local minima are computed from these intervals using 
local numerical methods. An interval accepted for exact 
tests performs nodal mapping between the query point 
and interval, followed by Newton’s method.  

Not all intervals will contain a valid local minimum 
because of the conservative nature of the bounding cone 
and bounding circle tests. Solutions that leave the inter-
val during Newton’s method can be removed, or con-
verged solutions can be checked for redundancies. The 
latter approach is preferred since it potentially provides 
multiple initial guesses to Newton’s method for each 
local minimum, improving robustness when computing 
the exact solution. 

5 Tangent Cones for Surface Distance Queries 
The tangent cone approach for point-curve distance 

extrema extends naturally to point-surface distance que-
ries. In the curve case, a cone bounded the range of 
tangents for a curve interval. In the surface case, the 
same approach applies, except to surface patches in-
stead of curve intervals.  

 



 
Figure 7: Two surface patches with their sample tan-
gent cones. The spheres bound the spatial extent of the 
patch and help to form the solution line cone from the 
query point. 

 Surfaces have two tangent directions, one for each 
parameter. The orthogonality test computes bounding 
cones for each of the tangent directions (Figure 7) and a 
solution line cone from the query point to a bounding 
sphere around the patch. Patches are pruned by check-
ing each tangent cone for perpendicularity with the so-
lution line cone. A failure to find potential orthogonal-
ity between a vector in the solution line cone and vec-
tors in either of the tangent cones means that surface 
patch cannot contain a local solution. 

Tangent cones are computed by finding differences 
of control points over all the rows or columns of the 
control mesh, depending on the tangent direction. Simi-
larly, the patch bounding sphere is computed from the 
average and extent of the patch control points. For Bé-
zier surfaces, the number of rows or column is equal to 
the parametric order, so for low order surfaces the com-
putation is not too costly. 

Surface patches that may contain a solution are split 
into four smaller patches (Figure 8), while patches that 
fail the normal cone test are removed. Exact closest 
points are found on patches with both tangent cone 
spread angles smaller than an epsilon. A combination of 
nodal mapping followed by Newton’s method computes 
these exact local closest points (Figure 1). Because leaf 
nodes may not contain a local solution, solutions that 
leave the leaf node domain need to be discarded, or 
checked against existing solutions to see if they are 
redundant, similar to the curve case.  

Tests indicate that the subdivision hierarchy man-
ages to stay fairly sparse during typical distance que-
ries, which shows the subdivision and pruning test is 
effective.  

Figure 9 shows the number of patches checked at 
each iteration of the algorithm for two different query 
points, one yielding five solutions and the other three. 
The chart does show that for the tested queries, little 
pruning occurs during the first few levels of subdivi-
sion, and that further on, the algorithm creates and de-
stroys a lot of patches that do not yield a solution.  

 

 
Figure 8: Surface patches that are accepted split into 
four smaller patches. These new patches have tighter 
bounds on tangent cones and spatial location. 
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Figure 9: The chart shows the number of active surface 
patches during each iteration. The query that returned 
five local minima had to create and search many more 
patches than the query that returned three. 

6 Coherency with the Dynamic Subdivision Tree 
Since the subdivision process always splits patches 

in the middle of its domain, a tested child patch is iden-
tical from one query to the next, even when the query 
point moves. Surface patches and their associated cones 
could then be stored for use in following queries. How-
ever, retaining all surface patches can be costly in terms 
of computer memory. 



 
Figure 10: The query point moves along the test path, 
in green. Lines between the query points and local solu-
tions are drawn to show multiple extrema. This type of 
test is sped using a dynamic subdivision tree  

Instead, we adopt the approach of retaining portions 
of the subdivision tree over multiple queries, but re-
moving portions that are no longer currently used. 
Patches are stored as computed in a tree data structure, 
a dynamic subdivision tree, with each node having four 
children. Patches (and their children) are deleted only 
when a query tests a patch’s tangent cones and deter-
mines there is no local solution in that patch. This has 
the effect of retaining patches during sets of temporally 
and spatially coherent queries. The patch may need to 
be recomputed later, but this approach balances mem-
ory usage with computational efficiency. 

The dynamic subdivision tree approach dramatically 
improves computational speed when query points are 
closely spaced. The dynamic subdivision tree approach 
was tested by creating a sample path above a surface, 
moving along the path in small increments, and per-
forming a distance query at each step (Figure 10). 
Without coherence, 1000 distance queries took 24 sec-
onds; with coherence, the same test took 4 seconds, 6 
times faster. Testing was done on a Pentium III 1GHz 
laptop. 

7 Robustness 
The subdivision step that provides the basis for im-

proving the search is a very robust operation, as are the 
bounding operations that prune the hierarchy. However, 
at a user specified angle tolerance, multi-dimensional 
Newton’s method is used to improve the final solution. 
This improvement step is initialized by nodal mapping 
between the point and the patch. If that initial guess is 
poor, the numerical method may not converge. There-
fore, the tolerance provides a balance between robust-
ness and speed that must be decided by the needs of the 

user and the type of model. In our tests, we used a tol-
erance of 0.001 radians, which generally provides a 
very good initial guess. 

The numerical methods may still not converge in 
concave regions which form singularities in the matrix 
inversion step of the numerical method. If convergence 
is not detected, then the nodal mapping estimate can be 
used as a solution, although we did not use this fallback 
in any of our tests. 

8 Discussion 
A more complex example demonstrating our ex-

trema search is shown in Figure 11, where we find local 
extrema to a collection of surfaces that form a trimmed 
teapot. Our technique was successful in extracting ex-
trema from the high curvature lips around the teapot lid 
and spout as well as less challenging areas on the lid 
and top.  

We are working to adapt this approach to computing 
distance volumes on such trimmed models. An advan-
tage of this approach over other robust geometric sub-
division approaches is that we work directly on the 
original model. Because the extrema equation changes 
for each new query point, the symbolic approaches are 
not able to retain subdivision information over coherent 
queries, an important speedup in our approach.  

 

 
Figure 11:Distance extrema between a point and col-
lection of surfaces are shown at top. Below, we show 
remaining surfaces after several steps of subdivision 
and pruning. 



9 Conclusion 
We have developed a robust search for local ex-

trema in distance between a point and a curve or a sur-
face. By bounding tangent ranges rather than spatial 
location, the algorithm searches for portions of the sur-
face that satisfy an extrema equation rather than an up-
per bound on global distance. Because the refinement 
hierarchy retains useful information from one query to 
the next, retaining portions of the hierarchy provides 
several times speedups.  
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