Scalable Multi-Failure Fast Failover via Forwarding Table
Compression

Brent Stephens
UW-Madison

ABSTRACT

In datacenter networks, link and switch failures are a common oc-
currence. Although most of these failures do not disconnect the un-
derlying topology, they do cause routing failures, disrupting com-
munications between some hosts. Unfortunately, current 1:1 re-
dundancy groups are only partly effective at reducing the impact
of these routing failures. In principle, local fast failover schemes,
such as OpenFlow fast failover groups, could reduce the impact by
preinstalling backup routes that protect against multiple simulta-
neous failures. However, providing a sufficient number of backup
routes within the available space provided by the forwarding tables
of datacenter switches is challenging. To solve this problem, we
contribute a new forwarding table compression algorithm. Further,
we introduce the concept of compression-aware routing to improve
the achieved compression ratio. Lastly, we have created Plinko, a
new forwarding model that is designed to have more easily com-
pressible forwarding tables. All optimizations combined, we often
saw compression ratios ranging from 2.10x to 19.29x.

CCS Concepts

eNetworks — Routing protocols; Network reliability; Nerwork
simulations;

Keywords

Local Fast Failover; Forwarding Table Compression

1. INTRODUCTION

As datacenter networks continue to grow in size, so has the like-
lihood that at any instant in time one or more switches or links have
failed. Even though these failures may not disconnect the underly-
ing topology, they often lead to routing failures, stopping the flow
of traffic between some of the hosts. Ideally, datacenter networks
would instantly reroute the affected flows, but today’s datacenter
networks are, in fact, far from this ideal. For example, in a recent
study of datacenter networks, Gill et al. [11] reported that, even
though “current data center networks typically provide 1: 1 redun-
dancy to allow traffic to flow along an alternate route,” in the me-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SOSR 16, March 14 - 15, 2016, Santa Clara, CA, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4211-7/16/03. .. $15.00

DOI: http://dx.doi.org/10.1145/2890955.2890957

Alan L. Cox, Scott Rixner
Rice University

dian case the redundancy groups only forward 40% as many bytes
after a failure as they did before. In effect, even though the re-
dundancy groups help reduce the impact of failures, they are not
entirely effective.

Local fast failover schemes, such as OpenFlow fast failover
groups [25], could potentially bridge this effectiveness gap by al-
lowing for a controller to preinstall backup routes at switches that
provide high-throughput forwarding in the face of multiple simul-
taneous failures. Moreover, if a local fast failover scheme is im-
plemented at the hardware level, it can react near-instantaneously
to link failures, and if it allows for arbitrary backup routes, then it
could be able to build routes that outperform existing redundancy
groups. To the best of our knowledge, this paper contains the first
description of a method for implementing arbitrary fast failover
groups for Ethernet networks in hardware.

In particular, in this paper, we explore the use of local fast
failover with backup routes that are ¢-resilient, i.e., even given ¢
arbitrary link failures, the backup routes guarantee connectivity be-
tween all hosts that are connected in the underlying topology while
simultaneously ensuring that packets do not enter routing loops [9].
However, the principal challenge in closing the effectiveness gap is
providing a sufficient level of resilience within the forwarding ta-
ble size constraints of datacenter switches/routers, which currently
have between ~1-40Mb of TCAM state [4, 15, 14].

Unfortunately, increasing resilience in the local fast failover
schemes considered in this paper causes a rapid increase in the
amount of TCAM state consumed by forwarding table entries,
which limits the level of resilience that is practical today. Assum-
ing all-to-all routes and that all state is distributed evenly across
the switches V/, the additional number of forwarding table entries
required by these schemes to move from (¢t — 1) to t-resilience is
roughly |D|? % ap*™V) /|V|, where D is the set of destinations,
ap is the average path length, and |D|? * ap/|V| is an estimate of
the number of O-resilient (primary) forwarding table entries at each
switch. This is because 1) routes are, on average, ap hops long,
2) hop-by-hop forwarding uses a forwarding table entry per hop of
each route, and 3) these schemes build a new backup route for each
(t — 1)-resilient forwarding table entry to provide ¢-resilience.

To solve this problem, we explore different approaches to achiev-
ing forwarding table compression given resilient routing. First, we
contribute a new forwarding table compression algorithm. Most
existing forwarding table compression algorithms are designed for
prefix classifiers and firewalls [22], so they are either not applicable
to or not effective at compressing resilient forwarding tables.

Next, we observe that only forwarding table entries that share
both the same output and the same packet modification action can
be compressed, which implies that the achievable compression ra-
tio is limited by the number of unique (output, action) pairs in the

http://dx.doi.org/10.1145/2890955.2890957

Fast Failover || Arbitrary | Arbitrary | ¢-resilient

Scheme Paths Topos for any ¢
Fat Tire [27] Ve v X
Packet re-cycling [21] X v X
ADST-Res [7] X v X
EDST-Res [37, 7, 32] X v X
F10 [20] X X X
DDC [19] X v v
Borokhovich et al. [2] X v v
MPLS-FRR [26] v v vk
FCP [18] v v vk
Plinko [34] v v vk

Table 1: A comparison of local fast failover schemes. A x in-
dicates that the state required by the scheme is dependent on
topology size, so the resilience of the scheme is limited by for-
warding table state.

table. Thus, our next two contributions are explicitly conceived as
ways to increase the number of common outputs and actions. First,
we introduce the concept of compression-aware routing, which in-
creases the number of entries with common forwarding table out-
puts. Because only backup routes share existing outputs and only
a subset of the backup routes can be in use at the same time, ag-
gregate throughput is not impacted. Second, we introduce Plinko,
a new forwarding model in which all entries in the forwarding ta-
ble apply the same action. (A preliminary description of Plinko
appeared in a recent workshop [34].)

While many other local fast failover schemes have been in-
troduced, we only compare Plinko against MPLS Fast Re-route
(FRR) [26] and FCP [18] because these are the only schemes that
also allow for both arbitrary routes and levels of resilience', which
is shown by Table 1. We believe these properties are important to
allow a network to use OpenFlow fast failover groups to outperform
existing redundancy groups without conflicting with other network
policies. However, in order to provide these properties, forwarding
table entries in MPLS-FRR and FCP forwarding tables that pro-
tect against different failures need to add different labels to packets
to prevent forwarding loops. In contrast, we have deliberately de-
signed Plinko to apply the same action to every packet.

In summary, the contributions of this paper are as follows:

New forwarding table compression algorithm: In our exper-
iments, Plinko achieved compression ratios ranging from 2.10x to
19.29x for 4-resilient routes on the full bisection bandwidth fat
tree [24] topologies that we evaluated.

Compression-aware routing: By selecting backup routes that
are designed to be compressible, we show that it is possible to re-
duce forwarding table state without impacting resilience or perfor-
mance.

Plinko: We show that Plinko is often 6-8 x more scalable than
the other two forwarding models. With all optimizations combined,
4-resilient Plinko is able to scale to networks with about 10K hosts
while only requiring 1 Mbits of TCAM state.

Analysis of Resilience: There has been no prior analysis of how
the likelihood of routing failures changes given different levels of
resilience and topologies. In this paper, we present the first such
analysis. We find that even low levels of resilience are highly ef-
fective at preventing routing failures as linear increases in resilience
reduce the probability of a routing failure exponentially. This is be-

! Although they do not meet our requirements, some existing
schemes are complementary to our approach. For example, both
DDC [19] and Borokhovich er al. [2] can provide fast failover that
can tolerate any number of failures given a fixed amount of state,
so they may be useful for high-priority traffic where performance
is less important than availability.

cause analysing the resilience of forwarding tables is analogous to
analysing the time complexity of Quicksort. Although there exists
a set of failures or list of elements that can excite the worst-case
behavior, respectively, on average, we would expect ¢-resilience to
protect against more than ¢ failures when averaged over all possible
sets of failures just as the average-case time complexity of Quick-
sort is smaller than the worst case. For example, forwarding tables
that are 4-resilient to edge failures were able to provide four 9’s of
protection (99.99% of routes did not fail) against 16 random edge
failures on all of the topologies we evaluated. We provide insight
into this result by introducing a closed form approximation for the
probability of routing failures that only relies on a single topolog-
ical property. Lastly, we show that the ¢-resilient routing schemes
in this paper have minimal impact on stretch and throughput.

The remainder of this paper is organized as follows. Section 2
discusses resilience. Section 3 discusses forwarding table com-
pression, and Section 4 discusses the implementation of resilient
switches. Section 5 presents our methodology, and Section 6 eval-
uates the performance and state requirements of resilience given
realistic datacenter topologies. We tie up loose ends in Section 7
and discuss related work in Section 8. Finally, we conclude in Sec-
tion 9.

2. FORWARDING RESILIENCE

OpenFlow fast failover groups, which have been a part of the
OpenFlow standard since version 1.1 [25], enable a network con-
troller to preinstall backup routes at switches so that when a link lo-
cal to a switch fails, the switch can reroute packets using only infor-
mation known locally and contained in a packet’s headers. Ideally,
OpenFlow fast failover groups could be used to allow a network
controller to install routes in the network that not only satisfy the
currently specified high-level security, routing, and performance
policies but also allow network operators and applications to spec-
ify a desired level of routing fault tolerance as part of a high-level
policy. In this paper, we are concerned with how to feasibly build
(compile) a fault tolerant routing policy into fault tolerant routes
given the limited size of switch forwarding tables.

In particular, we are primarily interested in forwarding table re-
silience [9] because it is a promising metric for allowing for oper-
ators and applications to specify a level of fault tolerance. In this
section, we first define ¢-resilience, then we motivate our interest
in t-resilience by presenting an expected-case analysis of the ef-
fectiveness of edge resilience. In effect, we show that in addition
to providing easy to understand worst-case behavior, t-resilience
also provides good expected-case behavior. After that, we present
an algorithm for constructing ¢-resilient routes, and we conclude
by discussing three different forwarding functions that can support
t-resilient routing for arbitrary routes, which is important for pro-
viding backup routes than can satisfy a network’s bandwidth and
latency requirements despite failures.

2.1 Definition

If a network provides t-resilient routes for a tenant or traffic
class, then it guarantees the routes installed in the network satisfy
two properties [9]. First, it guarantees that, for any possible set of
failures F' of size |F'| = t, there exists a route from any node v to
any destination d in the forwarding function if there exists a path
in the underlying topology after removing F'. Second, a t-resilient
forwarding function guarantees that no packets can ever enter an
infinite forwarding loop, even if the network is partitioned.

Since the first property quantifies the level of fault tolerance, its
purpose is clear. However, the motivation for the second property,
which guarantees loop freedom, may not be so obvious. In datacen-

ter networks, high-throughput forwarding is important. The sec-
ond property is included because infinite forwarding loops can sig-
nificantly impair throughput, potentially leading to network-wide
packet loss and congestion, even if looping packets are dropped
from the network using a TTL mechanism [8, 5]. As an inter-
esting aside, without the inclusion of the second property, trivial
yet impractical solutions such as completely random routing would
qualify as oo-resilient.

While resilience is a metric that can be used to specify the fault
tolerance of different types of network elements, including links,
switches, and services, we focus on link/edge resilience. This is be-
cause we found that link resilience is effective at protecting against
switch failures, but switch resilience is not entirely effective given
link failures.

2.2 Expected-Case Analysis

Given a t-resilient network that has more than ¢ failures, our ex-
pectation is that the network shows a graceful degradation as the
number of failures increases because only routes that encounter
t 4+ 1 failures lose connectively, barring a partition. Further, we
also expect that increases in ¢ will exponentially decrease the prob-
ability of routing failure because they also exponentially increase
the number of backup routes. To support these claims, we introduce
a new approximation for the probability of a routing failure given a
topology, level of resilience, and a number of routing failures, and
we use simulations to both validate our approximation and further
motivate resilience.

2.2.1 Approximation

In our approximation, we refer to the forwarding pattern, the col-
lection of the forwarding tables of every switch in the network, as
fp, a path from a source v to a destination d as p?, the average
path length between destinations as ap, the set of edges as F, and
the set of edge failures as F.. The average path length between
destinations is the only topological property that we use. Addition-
ally, we assume that failures occur uniformly and that the routes are
uniformly spread over the edges and vertices. Also, if shortest path
routing is not used, ap should be replaced with the average length
of the routes.

Equation 1 presents our approximation:

0 if ‘Fel <t
i if |[E| — |Fe| < ap
Pr(pt ¢ fp) = 1211l ‘ M
(1 — =22 Z)t+1 otherwise

(o)

The idea behind our approximation is: if all edges are equally
likely to be in a route, then the probability there is not a routing
failure is the number of sets of ap edges that do not include a failed
edge divided by the number of possible sets of ap edges. This gives
the probability of routing failure. Given ¢-resilience, a total of ¢t + 1
(backup) routes must all encounter a failure, so the probability that
a route fails is raised to the power ¢t + 1. An interesting implica-
tion of this approximation is that the probability of a routing failure
decreases exponentially with respect to increases in ¢.

We have also approximated the probability of flow failures given
vertex failures instead of edge failures. However, this approxima-
tion is similar to Equation 1, so we omit it.

2.2.2 Simulations

To verify the accuracy of Equation 1, we simulated different
sizes and modes of routing failures according to the methodology
described in Section 5. Figure 1 presents the results of our experi-
ments on full bisection (B1) fat trees, with *-R and *-H represent-

0
“— o 10 RN ST (T w«— . 10
SN} -2 [T Al & (SN} 10‘1 E
c ot -3 il ® - == .
o JQaf p T102 kv Q
O 1051 SV e,
= 6| — 107 b .
G2 1R 8 210 .
8 B ke K
= o 183! L O1g50
= o[] =10 o
'-'—]: [P, L 106k
1 4 7
202122232%2°262728 2> 2°

Number of Failures Number of Failures

@ @0-R A=A 2-R (M) H@6-R
@ 90-R (M) € 4-R ©=@6-R (M)
V¥ ¥2-R B> 1p>4-R (M)

@ @256-H (M) A=A 512-H @ {@2048-H
@ 9256-H <€'41024-H (M) @=@ 2048-H
VsV 512-H (M) b>1>1024-H

(a) 1024-H EGFT (B1) (b) 4-R EGFT (B1)

Figure 1: Expected Effectiveness of Edge Resilience

1.0 G 1.0 '

0.8 Ve 0.8 -
Woe / g Wttt /
a8 f ale /

-

Q0.4 / N Q0.4 /

0.2 > 0.2

J s —
0.0 0.10 0.11 0.12 0.0 10° 10* 107

Fraction of Flows Failed

(a) 0-R Routes

Fraction of Flows Failed

(b) 4-R Routes

Figure 2: CDF of the fraction of failed routes given 64 edges
failures on a 1024 host EGFT (B1)

ing differing levels of resilience and numbers of hosts, respectively,
and (M) marking the output of our approximation. Figure la not
only shows that our approximation is accurate across a range of
levels of resilience on a generalized fat tree (EGFT) [24] with 1024
hosts, but also that linear increases in resilience provide orders of
magnitude decreases in the probability of routing failure.

To show the impact of topology size, Figure 1b presents the prob-
ability of routing failure given a varying number of failures and
4-resilience on EGFT topologies. Because the most simultaneous
link failures reported in Microsoft data centers was 180 [11], we
chose to use the same sizes of edge failures for each topology size.
Normalizing the failure sizes to the topology could lead to unreal-
istic failure sizes for large topologies. Because of this, the proba-
bility of routing failure decreases as topology size increases. This
figure illustrates the accuracy of our approximation across a range
of topology sizes. In the end, the accuracy of our approximation
in our experiments is always within an order of magnitude and fre-
quently within a factor of 2-3 x.

Correlated Failures.

In practice, we would expect that simultaneous failures are likely
to be physically related. To evaluate this case, we randomly se-
lected sets of connected edges for failure. Although we found that
correlated failures cause roughly an order of magnitude more host
pairs to experience a routing failure, we found that the probability
of failure is still low.

To illustrate the effect of correlated and non-correlated failures,
Figure 2 shows a CDF of the fraction of routes that failed with both
O-resilience (0-R) and 4-resilience (4-R) given correlated (C) and
non-correlated (NC) failures on a 1024 host EGFT topology. In-
terestingly, correlated failures have less impact than non-correlated
failures for the 0-R routes, although both still have a significant
number of failed routes. However, with 4-R routes, correlated fail-
ures cause more routes to fail than uniform random failures. This
is because 0-R routes fail if even a single edge on its path fails and

100 10° P 10° q
10° . &)
wo1a2l o S Lo10t - oqnl 3
021073 S @ 6 910
S50, 55107 SB_
ST wl0 , Cwn 3 O wnll
©2q107° © 210 o=
w oY / fragie) e 5
""107 I ""10-4 “-10
107 A
8 5 4
1 10 10
0 20 92 54 56 58 20 92 54 56 58 20 52

Number of Failures
@ 1@0-R ViV 4-R €' <4SP @ '@0-R ViV 4-R
@ @2-R A=h 6-R @ @2-R A= 6-R

Number of Failures
@®'@0-R V:V4-R
@ @2-R A= 6-R

(a) EGFT (B1) (b) EGFT (B6)
Figure 3: Resilience and Correlated Failures

Algorithm 1 — Routing for ¢-resilient forwarding

1. Build primary (non-resilient) routes:
2. Iteratively protect routes against any single additional failure each round:
For round ¢ in {1, ..., t}, do:
(a) Consider every edge e and switch sw that forwards out e in all the
paths p built in round ¢ — 1.
i. Build a backup path for p assuming that edge e failed, if one exists.
This path must not use either e or any edge that p assumes failed.
ii. Install a route at sw that uses p and modifies the packet to add e to
the set of failures identified by the packet.

correlated failures are likely to touch fewer routes. 4-R routes, on
the other hand, only fail given multiple failures, so about 70% of
all 64 edge failures do not even cause a single routes to fail, while
all correlated failures of 64 edges caused some routes to fail, albeit
at between two and four orders of magnitude fewer than without
resilient routes.

Figure 3 illustrates this by showing the average and 99" per-
centile fraction of routes that failed given correlated failures for
varying levels of resilience (*-R) on the 1024-host topologies, with
B1 and B6 representing 1:1 and 1:6 bisection bandwidth ratio
topologies, respectively. Even though correlated failures impact
roughly an order of magnitude more routes, Figure 3a shows that
the probability of failure is still low. Although smaller topologies
are more likely to be impacted by failures, Figure 3b shows that
resilience is still effective on the B6 topology, and 6-resilience is
not all that far from reactive shortest path routing (SP). Lastly, Fig-
ure 3c, which looks at the 99™ percentile failures, shows that even
though the outlying failures impacted roughly an order of magni-
tude more routes than the average failures, low levels of resilience
still prevent far more routing failures than no resilience (0-R).

In conclusion, our approximation and simulations demonstrate
the effectiveness of even seemingly low-levels of resilience. Given
that we find low levels of resilience to be highly effective in pre-
venting routing failures, we are now primarily concerned with fea-
sibly implementing resilience.

2.3 Forwarding Table Construction

In order to build resilient forwarding tables, we assume a con-
ventional SDN environment that uses a (logically) centralized con-
troller to compute all routes and program each switch’s forwarding
tables. In addition to building and installing policy-based routes,
guaranteeing resilience can also require the controller to install
rules at switches that add opaque forwarding labels to packets so
that it can also install rules in downstream switches that match on
these labels in addition to the status of the ports local to the switch.

To build ¢-resilient forwarding tables, we use an SDN controller
that uses Algorithm 1. This algorithm uses a very simple approach

Number of Failures

(¢) 99%tile EGFT (B1)

O-R —==1R === 2R) (-

0-R = ==1-R -------2-19

(¢) II—DST 2-R (d) Full resilience for all sources

Figure 4: Example Resilient Routes

to route construction where the actual path selection is left up to an
arbitrary policy. At the start, Algorithm 1 establishes all-to-all com-
munication by installing a primary route for all source/destination
pairs of hosts. Unless one of the edges in the path fails, each switch
along the route will use a packet’s header to look up an output port
in its forwarding table, which is programmed by a controller. The
remainder of the routing algorithm iteratively increases resilience
by installing new backup routes to protect the paths built in the
previous round against the failure of any one additional edge. For
every edge in the routes built in the previous round, a backup route
that matches the header of packets following the route but requires
the original output port to be down is added to the switch local to
the edge. Because all possible failures of an additional edge are
considered in each round, by the end of round ¢, paths have been
built that are resilient to all possible failures of ¢ edges. While the
algorithm is presented in terms of edges, the algorithm can also be
used to protect against the failure of vertices, i.e. switches.

Figure 4 illustrates the routing algorithm by showing resilient
routes, focusing on //—Dst. In the figure, routes are represented
as arrows and the level of resilience is shown by the line style and
color, using 0-R, 1-R, and 2-R for forwarding patterns that are re-
silient to 0, 1, and 2 failures, respectively. Figure 4c is particularly
interesting because there are two 2-R entries. This is because fail-
ure information is only known locally by the forwarding hardware,
i.e., switches only learn of the failure of local links, and the 1-R
path [/I-1, I-Dst] can fail at either the /-] link or the /-Dst link when
there is still an operational path to Dst. Therefore, if links I/-Dst
and /-Dst have failed, switch /I will still attempt to forward packets
along the [/I-1, I-Dst] path based on its local information. Only af-
ter packets reach switch / will the failed link /-Dst be observed, at
which point the packet needs to be forwarded along the path [/-11,
II-111, I1I-Dst]. While this leads to path stretch, the stretch tends
to be minimal in practice and is unavoidable given that we want to
provide local fast failover without any a priori failure knowledge.

2.4 Forwarding Models

Because Algorithm 1 allows for arbitrary backup routes, it
should be able to build policy compliant routes that achieve high
throughput. Thus, the primary difficulty in outperforming exist-
ing redundancy groups is in providing a large enough level of re-

silience. In this section, we discuss three forwarding models that
are capable of implementing Algorithm 1 given arbitrary levels of
resilience, ignoring forwarding table size constraints.

The principal difficulty in forwarding packets along the routes
built by Algorithm 1 is in identifying which backup route a packet
is currently following and what failures the packet has already en-
countered so that infinite forwarding loops can be avoided. Two
features are sufficient to support ¢-resilient routing: 1) forwarding
tables that not only match on packet headers, but also on the local
port status, and 2) packets with a header that identifies the set of
failures already encountered by the packet.

Although no datacenter switches currently implement the first
feature in hardware, the motivation for it is clear: matching on
the current port status allows for near instantaneous use of backup
routes in the case of link failure. However, the reason for the sec-
ond feature may not be so clear. Although Feigenbaum et al. [9]
proved that it is always possible to protect against any single link
failure given a forwarding function that only matches on the desti-
nation, the input port, and the current port status, Gill e al. found
that 41% of failures involve multiple links [11]. Thus, we would
like a forwarding function that can protect against the failure of
more than one link. However, if an additional header is not used
to identify failures, Feigenbaum et al. also proved that there exists
a topology for which there exists a level of resilience that cannot
be provided. The intuition behind this result is that, if a packet
encounters multiple failures, a switch cannot determine the exact
set of failures encountered by the packet, which can cause backup
routes to form forwarding loops. With an additional packet header,
it becomes possible to build routes that protect against any possible
set of failures on any topology [18, 34].

In this paper, we consider three forwarding models that use ad-
ditional headers to identify failures. The first of these forwarding
models, FCP, accumulates the IDs of the failed links encountered
by a packet in a header [18]. More precisely, FCP can either ac-
cumulate edge IDs or use a label to identify a set of failed edges,
which can save space.

With MPLS-FRR [26], we use a unique ID for every new route
to provide t-resilience, with the ID assigned to a packet changing
when a failure is encountered. In fact, a given network path may
have multiple IDs because an ID also encodes the route that was
being used by the packet prior to each encountered failure. Thus,
the set of encountered failed edges can be inferred from the ID.

Finally, Plinko is a new model that retains the full path taken by a
packet to identify the set of failures encountered by that packet [34].
The failures can be identified because the retained path includes the
packet’s source at each hop, and, from a given source-be it the orig-
inal switch or the switch local to a failure—there is only one possible
path given the local failures. This is due to the resilient routing al-
gorithm. Because it is deterministic, it causes all forwarding table
entries for a packet (reverse path) at a switch to use different paths
and protect against a different set of failures. This implies that the
path a packet has taken can be used to infer the original source, the
forwarding table entries used to forward the packet, and thus the
exact set of failures the packet has encountered. (A more detailed
proof that Plinko is ¢-resilient can be found in a tech report [35].)

In Plinko, the full path taken by a packet is retained by having
every switch that the packet traverses push the packet’s input port
number onto a list contained in the packet header, which could even
be implemented with switches that support stacked VLAN tags.
The primary benefits of Plinko are that the same action is applied
to every packet and that packets with common reverse path prefixes
may have encountered the same failures and have the same output
path, which allows for rules to be compressed.

10GbE Switch || Release Year | TCAM | Exact Match
HP Procurve 5400z1 2006 285 Kbits 918 Kbits
Intel FlexPipe 2011 885 Kbits 5 Mbits
(FM6000)*

BNT G8264 2011 ~1.15 Mbits | ~5.6 Mbits
Metamorphosisx 2013 40 Mbits 370 Mbits

Table 2: 10 Gbps TOR Switch Table Sizes. A * indicates that
the switch is reconfigurable, and a } indicates that the switch is
academic work and not a full product.

Number of Hosts

m== Plinko i FCP 111 FCP (Lower Bound)
== MPLS-FRR == MPLS-FRR (Lower Bound) === Compressed Plinko

Figure 5: TCAM Sizes for 6-Resilience

3. FORWARDING TABLE COMPRESSION

We are now primarily concerned with implementing useful lev-
els of resilience given limited TCAM state for implementing for-
warding tables, which can be thought of as arrays of forwarding
table entries that match on the same packet headers (DMAC, DIP,
SIP, etc.) and local switch state (port status) and specify an output
port and/or packet modification actions to apply. First, this section
motivates the need for forwarding table compression for resilience.
Next, it describes our new forwarding table compression algorithm.
Lastly, it introduces compression-aware routing.

3.1 Motivation

Prior work assumes that state explosion would limit hardware
local fast failover to all but the smallest networks or uninterest-
ing levels of resilience [18]. Here, we explore the validity of this
assumption. We built 6-resilient routes between all host-pairs on
different sized full bisection bandwidth fat tree topologies to under-
stand the exact state requirements of resilience (see Section 5 for
the details of our methodology). To see if the state requirements are
prohibitive, we compare the results against the TCAM sizes found
in existing and proposed datacenter switches, which we present in
Table 2. The results of this experiment, shown in Figure 5, confirm
the assumptions of previous work. Providing 6-resilience requires
over 40 Mbit of TCAM state on a network with just two thousand
hosts, more state than is available in any switch. This result clearly
motivates forwarding table compression.

Unfortunately, forwarding table compression is challenging be-
cause, as was previously mentioned, modifying packets in transit
may be necessary for t-resilience. Only forwarding table rules
that share the same output and packet modification action can be
compressed, which is problematic for FCP and MPLS-FRR, which
identify sets of failed edges and routes with a unique id, respec-
tively. Even when looking at only the modifying entries after ap-
plying previous work that uses network virtualization to reduce for-
warding table state [23], which is shown in the “(Lower Bound)”
lines in Figure 5, the total state required can be limiting.

On the other hand, Plinko applies the same modification to each
packet—pushing the input port onto a list in the packet—so there is
no such limitation. Surprisingly, this subtle architectural difference

is crucial to enabling forwarding table compression. We frequently
saw compression reduce state by over 95%, which is shown in Fig-
ure 5 as the line “Compressed Plinko.”

Although MPLS-FRR uses unique IDs for each route, it may
seem reasonable to try to adapt FCP so that it applies the same ac-
tion to each packet. One way to do this would be to have a switch
mark a packet with all local failures instead of just the failures spe-
cific to forwarding the packet, i.e., the specific set of local failures
the forwarding table entry protects against. However, ¢-resilient
routes must now be built to match on any of many possible differ-
ent failures marked in a packet’s headers by the switches the packet
traverses, causing an explosion in the number of entries. While
it is reasonable to try to compress these entries, allowing for each
switch to independently mark the failures of all of its edges leads
to prohibitively large packet headers.

3.2 Forwarding Table Compression

Compression can be used to reduce the TCAM state consumed
by a forwarding table. As long as two forwarding table entries
have the same output and packet modification operations, wildcard
matching can be used to combine multiple forwarding table entries
into a single TCAM entry by masking off the bits in which the en-
tries differ. Such forwarding table compression is particularly pow-
erful as TCAMs allow for overlapping entries, with the priority of
an entry determining which entry actually matches a packet. This
introduces an optimization problem: given a set of forwarding table
entries, find a smaller set of potentially overlapping TCAM entries
and priorities that are functionally equivalent. If the state reduc-
tion from compressing a resilient forwarding table is greater than
the increase in TCAM state from matching on the resilient tag (or
reverse path), then it is better to perform matching with a TCAM.

Our work is not the first to discuss this use of TCAMs, and
this optimization problem has been well studied in the context of
packet classifiers. However, most of the existing work is not ap-
plicable to resilient forwarding, because it is designed for prefix
classifiers [22], and resilient forwarding table entries do not use
prefix rules to match on the local port status. Similarly, XPath [13]
requires being able to assign labels to each path, which does not fit
with matching on a path in Plinko because assigning a label to each
route simply devolves into MPLS-FRR if applied to Plinko. To
the best of our knowledge, Bit weaving [22] is the only compres-
sion algorithm applicable to Plinko. Unfortunately, we found that
it did not result in significant compression when applied to resilient
forwarding tables, most likely because Bit weaving was designed
for packet classifiers, whose table entries are different than those
for resilience. Thus, we developed a new TCAM packing heuris-
tic, which performs well in our experiments. While other effective
compression algorithms potentially exist, their existence would fur-
ther enable resilient forwarding tables.

Specifically, our new TCAM packing heuristic is based on four
observations. First, not all reverse paths are possible, and a con-
troller knows all of the possible reverse paths if it knows all of the
installed routes. This reduces the restrictions on which forwarding
table entries can be safely merged. Second, no entries in an uncom-
pressed resilient forwarding table overlap, so they can be reordered.
This is because they all either match on different tags used to iden-
tify failures or require the output port of another entry to be failed.
The third observation is that higher priority entries in a compressed
table have to be finer in granularity so as to avoid matching packets
intended for a lower priority entry. Fourth, there is a greater chance
for state reduction by choosing to aggregate the largest set of rules
that share a common output path first. Based on these observations,
our algorithm first sorts the rules in descending order based on the

Dst Rev Port
Path | Status || OP
D [1,-1,-1,-1] #0* 1 4
D [1,2,-1,-1] #0*] 4
D [-1,-1,-1,-1] 00*1 4
D [-1,-1,-1,-1] 10%* 1
D [2,-1,-1,-1] 10%* 1
D | 3,-L-1,-1] | 10 1
D | [1,-1,-1,-1] | #% 2
D [2,-1,-1,-1]] 2
D [2,4,2,-1]] 2 Rev Port
D 2.4,4,-1] | "% 2 Dst Path | Status ” oP
D [3,-1,-1,-1]]k 2 D L% -1-1 NG a1
D | [L-1,-1-1] | *I** 2 D | [-1,-1,-1,-1] | 00%1 4
D [1,2,-1,-1] w]k 2 D -1, -1,-1] 10** 1
D [F, %] ESES 7

Table 3: Part of a Plinko for-
warding table Table 4: Table 3 compressed
size of the set of rules that share the same output path and action. In
other words, for each (output, action) pair in the old table, the algo-
rithm builds the set of entries that use the pair, then considers each
entry in each set, starting with the largest set. This order helps en-
sure that the entries with a larger potential for reducing forwarding
table size are considered first.

Given this processing order, our algorithm then greedily attempts
to merge entries, i.e. masking off the bits in which they differ, into
rules in a new TCAM, which we initialize as empty. To do so,
we maintain a working set of new TCAM entries for each (output,
action) pair, which we also initialize as empty. For each old TCAM
entry in order, the working set is greedily searched for an entry in
the working set to merge with the old entry such that the resulting
merged entry does not overlap with any committed TCAM entry.
In other words, if any of the already considered forwarding table
entries with different (output, action) pairs would match the new
entry, then the merge is not performed, but, if there is no conflict,
then the merge is performed, updating the entry in the working set.
If there are multiple entries in the working set that the old entry
can be merged with, we pick the one with the minimum Hamming
distance from the old entry. However, if all entries in the working
set cause conflicts, then the current old entry is added as-is to the
working set. Lastly, once all entries for an (output, action) pair
are considered, the entries in the working set are committed to the
new TCAM at a priority higher than that of any entry currently
committed to the new TCAM.

To help illustrate this algorithm, Table 3 and Table 4 show part
of a Plinko forwarding table before and after compression. The
forwarding tables are for hop-by-hop routing on a four port switch,
output ports are labeled as (OP), and reverse paths that are shorter
than the longest reverse path are padded with “-17, even though
this padding may not be necessary in hardware. Table 3 shows
that, although only two entries do not share a reverse path, none of
uncompressed entries overlap due to their port status.

When compressing Table 3, our algorithm would first consider
all of the entries that use output port 2. Because no rules have
been added to the forwarding table yet, all of these entries can be
compressed into a single entry. Similarly, none of the entries that
use port 1 overlap with the first rule in the table, so they can also
be compressed into a single entry. However, if all of the entries for
output port 4 were compressed into a single entry, the compressed
entry would match some of the packets intended for output port 1,
which would lead to an incorrect forwarding table. Instead, only
two of the entries for output port 4 can be merged.

3.3 Compression-Aware Routing

Forwarding table compression will always be constrained by the

Table Input Fields Match Modified Fields Explanation
| Actions |
Island In Table InPort Drop 1% Distinguish between packets based on whether the input port is internal or not
Security Table * Drop Security Tag Perform arbitrary packet matching to either drop packets or add a security tag
Encap/MPath Dst %] VDst, ECMP ID, Add the necessary default packet headers to external packets. Optionally
Table ResTag, RevHopCount converts overlay/end-host addresses into underlay addresses, selecting among
RevHops multiple possible paths if applicable
SrcFwd/Local ((Dst X VDst) | FwdHop[0]) OutPort FwdHopCount, Source routing: checks to see if the current next hop is operational. If not,
Table X bm FwdHops discard the forward source route
Network Virtualization: Checks to see if the virtual destination is local and
the port of the physical destination is up
ResFwd Table (VDst | Dst) x (RevHops | OutPort, FwdHopCount, Choose an output edge or path as a function of the destination, the resilience
ResTag) X bm X SecTag Drop FwdHops, ResTag tag or reverse path, and the port status bitmask
SrcUpdate Table %) 1% Fwd/Rev Source Route Pop off the current FwdHop and Push on the new RevHop
Island Out Table OutPort 1% Entire new header Decapsulate packets that leave the island

Table 5: Description of the tables in Figure 7.

(Fwd Hop Count | Fwd Hops | Rev Hop Count | Rev Hops || Version (Dst | MPath IDXRes Tag) Sec Tag | Eth Frame | CRC |

(Source Routing Plinko

) (Routing VirtX FCP and MPLS-FRR)

Figure 6: A Packet Header for Resilient Forwarding

fSrchd/}
| Local -
\
Island In |_Table rcUpdate__|lsland Ou]
Table Jy————=\ ("Encap/) | ResFwd _Izi)f_,' Table
| Security |
I Table MPath |
(i J _Table)

————— Optional

Figure 7: An Example Resilient Forwarding Pipeline

number of unique output paths in the forwarding table. However,
our resilient routing algorithm allows for arbitrary paths, and, on
datacenter topologies, the algorithm frequently chooses between
multiple equivalent paths. To exploit this property to improve
compressibility, we propose compression-aware routing, which at-
tempts to choose routes that increase the compressibility of the for-
warding tables.

The compression-aware routing heuristic first checks if any of
the existing routes for the current destination avoid the failures
that the current route being built protects against. If so, the most
common of such paths is chosen. If no such path exists, non-
compression-aware routing continues and chooses a new path that
avoids the necessary failures.

Because each backup route depends on the paths used by previ-
ous routes, the order in which the routes are chosen can have an
impact on compression. There are two reasonable orderings, which
are akin to bread-first search (BFS) and depth-first search (DFS)
graph traversal: the BFS ordering builds all possible ¢-resilient
routes before building any (¢ + 1)-resilient routes, while the DFS
ordering recursively protects the first unprotected hop of the most
recent route until the desired level of resilience is achieved.

We chose to use the BFS ordering for two reasons. First, lower-
level resilient routes are more important for performance. Given, ¢
failures, there are likely to be more routes that hit ¢ < ¢ failures than
those that hit exactly ¢ failures. Further, the O-resilient routes are
especially important to network performance because these are the
primary routes. Second, there are likely to be more (¢+ 1)-resilient
routes than there are ¢-resilient routes, so considering them later
may open up more opportunities for reusing existing routes.

4. IMPLEMENTATION

Because implementing resilience may require new packet for-

mats and the ability to match on the local port status in hardware,
we now discuss how to implement our resilient forwarding mod-
els. First, we describe the implementation of a simple ¢-resilient
switch for the MPLS-FRR and FCP forwarding models. Next, we
discuss a resilient forwarding pipeline that includes more features
and then discuss the implementation of source routing and network
virtualization, network features that, as a side effect, reduce for-
warding state [23]. To the best of our knowledge, this section is the
first description of a method for implementing arbitrary fast failover
groups for Ethernet networks in hardware.

4.1 A Simple Resilient Switch

As discussed in Section 2, to implement local fast failover at the
hardware level requires a forwarding table that can match on the
current port status of the local switch. However, we are not aware
of a switch that currently allows for matching on the port status as
a p-bit value, given a p-port switch. Fortunately, we believe that
this change is easily implementable. In particular, this port bitfield
would be maintained based on PHY information and used as an
input to the forwarding table pipeline, where it is then best suited
for matching with a TCAM.

While matching on the current port status could also use exact
match memory, doing so would cause a prohibitive explosion in
state. Most forwarding table entries protect against a handful of
failures and do so regardless of the state of the other ports on the
switch. If we have a single 1-resilient backup route that requires
one edge to be up and one to be down on a 64-port switch, ignor-
ing the other 62 ports, using a bitmask with wildcards can specify
this match in a single TCAM entry, while using exact match would
require 252 separate entries to cover all possibilities.

Given a port bitmask for matching, it is simple to implement re-
silient FCP and MPLS-FRR. In its basic form, the switch pipeline
would consists of a single table that uses exact match memory to
match on the destination and resilience tag and a TCAM for match-
ing on the port bitfield. Each entry would then specify an output
port and, if a failure was encountered, write the new resilience tag
to the packet. Similarly, Plinko could be implemented in the same
way, except that instead of writing a new resilience tag over the old
one, the input port would be pushed onto the packet header similar
to how VLAN stacking is done on switches today.

4.2 Resilient Logical Forwarding Pipeline

Additional switch features can reduce forwarding table state. To
illustrate this, Figure 6 presents an example packet header, Fig-
ure 7 presents an example resilient packet processing pipeline, and
Table 5 describes the functionality of each table in the pipeline, ref-
erencing fields in the packet header, a packet’s input port InPort, its
output port OutPort, and the port bitmask of the switch bm. To-
gether, Figure 7 and Table 5 are similar to P4’s Table Dependency
Graphs (TDGs) [3].

Although all of these features may not be currently available,
recent developments have led to switches with both reconfigurable
packet parsers and reconfigurable match tables that support a multi-
tude of generic packet matching and modification actions (RMT [4]
and FlexPipe [15]). Given such switches, adding these features
should be simple. However, these features are not limited to recon-
figurable switches and could also be implemented on an FPGA or
ASIC.

4.3 Source Routing

Source routing, where packets contain a full path in a header,
reduces forwarding table state in proportion to the average path
length of the network topology because forwarding table state is
no longer stored at the intermediate switches along a packet’s path.
However, this reduction in state comes at the cost of increased
packet header overhead. To reduce this overhead, we reuse an ex-
isting architecture for source-routed Ethernet that only uses a single
byte per hop of a source route. Typically, this only incurs an over-
head of 1-2% or less [30]. Specifically, an Axon source route is a
list of switch port numbers, one for each switch along the path. Be-
cause Plinko matches on the reverse path of a packet to provide re-
silience, Plinko benefits from the Axon’s compact source route not
just from reduced packet header overhead but also from reduced
forwarding table state.

Although Axons were originally implemented in an FPGA, im-
plementing the Axon protocol with a reconfigurable switch is pos-
sible by using two small additional logical tables, which are labeled
as the SrcFwd and SrcUpdate tables in Figure 7. These tables at-
tempt to forward via the source route and update the source route,
respectively. The SrcFwd table matches on the next forward hop
in the source route and the current port status. This table is small,
containing just one entry per switch port. Each entry simply checks
to see if the output port specified by the source route is operational.
If it is, then it is used. Otherwise, the forward source route is dis-
carded, and packet matching continues in the resilient forwarding
table to find an alternate route. The SrcUpdate table is even simpler
as it applies the same increment, decrement, push, and pop opera-
tions required to modify the forward and reverse source routes to
all packets.

4.4 Network Virtualization

Lastly, network virtualization can also be used to reduce
state [23]. Most hosts are only attached to one or two switches,
while top-of-rack (TOR) switches connect to many hosts and many
switches. This leads to the switch level topology being smaller than
the host level topology. However, using multiple paths is especially
important when forwarding on the switch topology so as to prevent
all hosts on a switch from using the same path. Thus, encapsu-
lating packets from (virtual) end-hosts and routing on the switch
topology reduces state proportional to the number of (virtual) hosts
per switch divided by the degree of multipathing.

The forwarding table pipeline in Figure 7 includes two tables to
support network virtualization: the Encap/MPath table and the Lo-
cal table. The Local table is responsible for checking whether the
virtual destination (VDst) is the local address and, if it is, forward-
ing the packet to the correct local port. The Encap/MPath table is

responsible for the other half of virtualization, encapsulation. The
table matches on an unencapsulated packet’s physical destination
and converts it into a virtual destination (VDst), optionally adding
a tag for multipathing (MPath Tag). Although this table can be
implemented as part of the TOR switch, we expect that it would
commonly be implemented as part of a virtual switch.

Although we have added a table and tag for multipathing, this
table could do more than simply perform ECMP. For example, this
table would be most effective if used in conjunction with edge-
based load balancing like Presto [12], which could maintain well-
balanced traffic given failures that cause some resilient paths to be
longer but not others.

5. METHODOLOGY

In evaluating resilience, we are primarily concerned with two key
properties: the state required to implement the routes and the effec-
tiveness of the resilient routes, both in terms of preventing routing
failures and the performance of the routes. To understand these
properties, we simulated routing on realistic datacenter topologies.
First, the simulations compute all-to-all routes for each destination,
building the forwarding tables for each switch, and, in the case of
e-way multipathing, this is repeated e times. These forwarding ta-
bles identify the state requirements. Further, we use the forwarding
tables in conjunction with a workload to compute three metrics: the
fraction of active routes that experienced failure given the level of
resilient routing, the stretch of active routes that avoided failures,
and the throughput achieved by all of the flows, which is computed
using Algorithm 2 from DevoFlow [6].

We assume that all-to-all routes are installed in the network be-
cause this provides the worst case state for routing. In networks
where not all hosts are allowed to communicate or routes are in-
stalled reactively, we expect that the state would be reduced pro-
portional to the number of routes that are actually installed.

Additionally, we make assumptions about packet header fields
and forwarding table state. We assume that Plinko, MPLS, and FCP
all require a 72-bit wide exact match entry (MAC + VXLAN). Be-
cause we assume 64-port switches and we do not restrict the ports
that may be used for backup routes, each MPLS and FCP entry re-
quires 64 bits of TCAM state for the port bitmask, and each Plinko
entry requires 64 bits for the port bitmask plus 8 bits (> log, 64)
per hop in the reverse path. As part of future work, we are investi-
gating relaxing these assumptions to reduce the number of TCAM
bits used per entry for the port bitmask. Further, to remain indepen-
dent from a single specific switch implementation, we assume that
forwarding table entries require no overhead. In practice, internal
fragmentation leads to additional state overhead, but prior work has
pointed out that the additional cost is small [4].

When considering state, we report only the maximum state re-
quired by any switch in the network. Current datacenter topologies,
including the two that we consider, are designed to be implemented
with (close to) identical TOR switches, and reporting the maximum
captures the required state given identical switches.

In the performance evaluation, we repeat the computation of our
metrics 300 times for each number of failed edges. Also, we only
present the stretch of the routes that encountered a failed network
element yet still had a valid forwarding pattern route because routes
that did not avoid a failure are guaranteed to have a stretch of 1.0
and would unfairly bias the results. The throughput results that
we present are normalized to the maximum aggregate load on the
topology, which is the number of hosts multiplied by the line rate.

>The simulation environment may be found at https://github.com/
bestephe/res-sim

https://github.com/bestephe/res-sim
https://github.com/bestephe/res-sim

1---------'
)

PERFYRLL LAY N4

ATt

y il

Percent
State Reduction

210 211 212 5
Number of Hosts

mmmm \V-Src-CR 1151 NV-Sr¢ === HBH-CR ==' HBH-C

== NV-Src-C === Src-CR == Src-C v Sre

Figure 8: 4-R Jellyfish (B6) Compression Ratio

Multiple simultaneous network failures may be correlated, so we
have implemented two different ways of selecting the set of failed
network elements. The first way randomly chooses edges or ver-
tices to fail. The second model, which attempts to mimic corre-
lated failure, builds a set of failed edges or vertices by first select-
ing a single random element and then choosing elements that are
neighbors of the already selected edges or vertices.

During the performance evaluation, we use a uniform random
(uRand) workload to select the set of active flows. When comput-
ing the effect of failure, we use a uRand workload of degree 36,
which is where each host connects as a source to 36 random des-
tinations, to match the median degree of communication measured
in a production datacenter [1]. Not all of the connections between
servers carry bulk data, so we change the degree of communication
to four when computing the throughput results.

We use two topologies in our evaluation to demonstrate that
the results hold across different realistic datacenter topologies: the
EGFT (extended generalized fat tree) [24] and the Jellyfish [31].
Although some network operators do not consider Jellyfish topolo-
gies to be practical due to their randomness, we use Jellyfish
topologies to illustrate that our approach is truely topology inde-
pendent. All of the topologies are built using 64-port switches and
are sized for eithera 1 : 1 (B1) or a more realistic 1 : 6 (B6) bisection
bandwidth ratio, and we utilize prior work to minimize the number
of switches in the network [33].

6. EVALUATION

There are a three important questions regarding the resilient
forwarding models that we intend to answer. What is the cost
of resilience? How effective are the optimizations (source rout-
ing, network virtualization, forwarding table compression, and
compression-aware routing) at reducing the cost of resilience? Do
any of the optimizations hurt performance, either by reducing
throughput or increasing the probability of routing failure?

We find that the cost of naively implementing resilience, e.g.
hop-by-hop routed FCP, may be prohibitively high. For example,
providing 4-resilience on a 2048-host EGFT or a 4096-host Jelly-
fish given this model requires roughly 10Mbits of TCAM state. On
the other hand, the optimizations to reduce forwarding table state
for MPLS and FCP are effective, achieving an 84% or greater re-
duction in forwarding table state. However, Plinko significantly
outperforms both of them due to the added benefits of forward-
ing table compression and compression-aware routing. With all
optimizations combined, Plinko frequently achieves over a 95% re-
duction in forwarding table state, requiring only 1Mbits of TCAM
state to implement 4-resilience on all of the 8192-host topologies.
We discuss this further in Section 6.1.

|| 512-H | 1024-H | 2048-H | 4096-H | 8192-H

(S/H) (S/H) (S/H) (S/H) (S/H)
0-R [1.00/1.25 | 1.00/1.63 1.0072.32 1.00/1.25 1.00/1.16
IR || 1.17/1.56 | 1.11/1.95 1.19/3.85 1.0872.14 1.052.21
2-R || 2257200 | 214277 2.83/6.34 3.09/4.16 3.28/4.51
4R || 2677210 | 4.60/7.14 | 12.08/22.07 | 17.08/16.21 | 15.78/19.29
6-R || 3.13/3.33 | 10.32/16.38 | 34.94/73.75 | 56.47/63.23
Table 6: EGFT (B1) Compression Ratio
512-H 1024-H 2048-H 4096-H 8192-H
(S/H) (S/H) (S/H) (S/H) (S/H)
0-R [[1.02/1.02 | 1.00/1.27 1.00/1.94 1.0072.02 1.0072.12
T-R || 1.02/1.39 | 1.15/1.93 1417275 1.53/3.15 1.56/3.41
2R || 1.22/1.84 | 1.60/3.03 2.01/4.36 2.24/4774 2.34/4.95
4R || 2.03/345 | 3.59/7.03 | 4.99/10.26 | 5.32/11.67 | 5.58/12.09
6-R || 3.70/6.10 | 7.69/16.42 | 11.21/24.98 | 13.38/28.86 14.18/

Table 7: Jellyfish (B1) Compression Ratio

We also found that none of the optimizations had any notice-
able impact on the probability of routing failure or stretch. Further,
only network virtualization impacted forwarding throughput, and
this impact disappeared as long as 8-way or larger multipathing
was used, which we discuss in Section 6.2. This implies that
compression-aware routing significantly reduces forwarding table
state without compromising on the goals of effectively protecting
against failures and maintaining high network throughput.

As part of this project, we have also evaluated protecting against
both edge failures (edge-resilience) and vertex failures (vertex-
resilience). However, we only present the results from edge-
resilience given edge failures for two reasons. First, Gill et al.
found that multiple switches failing at the same time in a datacen-
ter is “extremely rare” [11], so providing edge-resilience is more
desirable than vertex-resilience. Second, we found that low lev-
els of both edge and vertex resilience (2-R) were as effective as
reactive routing given vertex failures, but vertex-resilience did not
provide any significant protection against edge failures. This result
is particularly interesting because it challenges assumptions made
in previous work on fault tolerance [20].

6.1 State

While we have seen the effectiveness of resilience in Section 2.2,
if the state necessary to implement the forwarding tables is too
large, the applicability of these results is limited. First we present
results on the proportional usefulness of the different optimizations
for reducing state, then we focus specifically on forwarding table
compression. Lastly, we present the specific state requirements of
the different forwarding models.

Figure 8 presents the percent reduction in forwarding table state
over naive hop-by-hop routing (HBH) achieved by the different im-
plementation variants, including 8-way multipathing network vir-
tualization (NV), source routing (Src), and forwarding table com-
pression with (CR) and without (C) compression-aware routing.
Although source routing reduces state without compression, HBH
routing surprisingly matches the performance of source routing
with compression due to a proportional increase in compression
for HBH routing. Another interesting point is that network virtual-
ization and source routing on their own achieve a compression ratio
between 84% and 92%. However, the addition of compression and
compression-aware routing achieves up to a 99% reduction in state.

Although source routing and network virtualization are largely
independent of the level of resilience, forwarding table compres-
sion is dependent on the level of resilience, a dynamic that is not
captured in Figure 8. To illustrate this effect, we present Tables 6
and 7, which show the compression ratio achieved given Plinko
with compression-aware routing and varying levels of resilience
(*-R) on EGFT and Jellyfish topologies with a varying number of

TCAM Size (Kb)
TCAM Size (Kb)

IS
»
i

0

=
o
T
.
.
.
.

TCAM Size (Kb)

9 10 2 513 9

10

12 13

28 2% 10 it K12 5 28 2% 0 Lt K12 28 2% pl0 Hit Hl2 513
Number of Hosts Number of Hosts Number of Hosts
== 6-RMPLS == 2-RMPLS -+ 1-RFCP ++ 6-RFCP = 4-R Plinko == 1-R MPLS == 6-R MPLS = 4-R Plinko == 1-R MPLS
<+ 6-RFCP == 4-R Plinko = 1-R Plinko| | ==' 6-R MPLS == 2-R MPLS = 1-R Plinko ++ 6-RFCP == 2-RMPLS = 1-R Plinko
== 4-RMPLS «+ 2-RFCP == 0-R MPLS = 6-R Plinko '+ 2-R FCP © 1-R FCP == 4-RMPLS - 2-R FCP - 1-R FCP
©+ 4-RFCP == 1-RMPLS = O-RPlinko| |+ 4-RFCP = 2-RPlinko = 0-R —— 6-R Plinko = 2-R Plinko = 0-R
—— 6-R Plinko = 2-R Plinko *':' 0-R FCP == 4-R MPLS < 4-R FCP

(a) Hop-by-hop Routing (B6)
Figure 9: Jellyfish TCAM Sizes

hosts (*-H). Besides showing that forwarding table compression is
effective, these tables show two important trends: forwarding table
compression increases with both increases in resilience and topol-
ogy size. These trends are important because state is more likely
to be a limiting factor given either larger networks or applications
that desire increased resilience.

Figures 9 and 10 present the total state required to implement
the three forwarding models for varying levels of resilience (*-R)
on EGFT and Jellyfish topologies of differing size, respectively.
Although these figures have many lines, we maintain two invari-
ants to simplify interpretation. First, only Plinko results use solid
lines, while FCP and MPLS, which perform very similarly, both
use different styles of dashed lines. Second, the legend is sorted in
decreasing order of the state required by each variant. Further, we
omit the results from the Jellyfish (B1) and EGFT (B6) topologies
because, surprisingly, the state requirements were almost the same
as the other bisection bandwidth variant of the topology. Although
we would expect state to increase due to the increase in the average
path lengths of the B1 topologies, this increase in state is balanced
by an increase in the number of switches in the network over which
the state is distributed.

The most important trend that is visible in Figures 9 and 10 is
that Plinko requires significantly less forwarding table state than
FCP and MPLS, which require roughly similar forwarding table
state, although FCP tends to perform better than MPLS as topology
size increases. For example, 6-R Plinko consistently required less
state than 4-R FCP or MPLS, and 4-R Plinko requires roughly the
same amount of state as 2-R FCP and MPLS. We have previously
seen that increasing resilience significantly reduces the probability
of a routing failure (Figure 1), so this implies that Plinko is ei-
ther able to provide significantly more routing protection given the
same amount of state or the same level of protection on far larger
topologies. Combining all optimizations, we expect that Plinko
would be able to easily support 4-R routing on networks with tens
of thousands of hosts within the 40 Mbits of TCAM available in
Metamorphosis [4].

6.2 Performance Impact

Because compression-aware routing and network virtualization

(b) Source Routing with Virtualization (B6)

Figure 10: Source Routing with
Virtualization (EGFT B1)

0.80,

o
N N
o _ul

n

Normalized
Throughput

Normalized
© o o o o
[e)]
Ul O U

50—
2°21222%2%2°2°272°
Number of Failures
o=0 SP vV 8-FE @== 2-E
=0 NO-E aa 4-E

PIPLPAPIPY 2:6 272’

Number of Failures
e==e SP vi:v 2-R amna Q-R
®=04-R

(a) Resilience (b) NV Multipathing
Figure 11: EGFT (B1) Throughput Impact

can potentially hurt performance, we look at two metrics to eval-
uate the performance of resilient routes: stretch and throughput.
Note that this section elides performance results for source routing
and forwarding table compression because they do not impact path
choice.

First, we found that compression-aware routing did not have any
significant impact on throughput or resilience, despite significantly
improving compression. Because of this, we omit figures on the
impact of compression-aware routing.

Next, we found that resilience incurs little stretch. In all of the
cases we evaluated, the median stretch was 1.0, and the tail of
the stretch distribution is similarly small. This implies that most
backup routes are the exact same length as the minimal length
primary routes. Further, even when we considered the 99.9™ per-
centile stretch given both random and correlated failures, the stretch
only ranged from 1.0-2.5, with stretch increasing with topology
size and resilience.

Because of these stretch results, we would expect that the
throughput impact of resilience is also small. Figure 11a shows the
normalized aggregate throughput given a uniform random work-
load on a 1024 host EGFT for both no-latency reactive shortest
path routing (SP) and varying levels of hardware resilience (*-R).
This figure validates our expectation. We see that even low lev-
els of resilience achieve almost the same throughput as no-latency
reactive routing.

However, unlike varying levels of resilience, moving to vary-
ing degrees of multipathing between endpoints given switch-level
network virtualization can have a noticeable impact on throughput.
Figure 11b shows the effect of varying degrees of random multipath
(*-E) routing on the normalized throughput of a 1024 host EGFT
topology, with the results holding for all of the forwarding models.
In this figure, SP stands for reactive shortest path routing, and No-
E refers to routing independently for each host as was performed
in Figure 11a. From the throughput results, we see that 8-way
ECMP reduces throughput by just under 5%, 4-way ECMP reduces
throughput by under 10%, and 2-way ECMP reduces throughput by
about 15%.

7. DISCUSSION

Although our resilient routing may appear to be an offline algo-
rithm, implementing an online algorithm is simple. When a host
joins the network, a controller only needs to compute and install
O-resilient routes for the host before connectivity is established,
after which the routes for additional resilience can be computed
and installed lazily. Computing O-resilient routes is fundamental
to all networks, so resilient routing does not incur unnecessary la-
tency. Further, handling changes in the switch topology can be
done safely and efficiently without the need for packet loss during
updates through the addition a version field to packet headers (Fig-
ure 6), which can be used for consistent network updates [28]. We
expect that, as soon as a controller detects a failure, it would use
consistent updates to compute and install new routes that replace
the existing operational but potentially non-optimal backup routes.

So far, we have only discussed forwarding table resilience as-
suming a single Ethernet segment, but it is also reasonable to im-
plement resilience at each layer of a hierarchical network, e.g., Eth-
ernet segments connected by IP routers. In such a scenario, differ-
ent forwarding functions could be used at each layer, e.g., source-
routed Plinko on the Ethernet network and hop-by-hop FCP at the
IP layer.

Although most link-flapping events do not impact network con-
nectivity [11], link-flapping can complicate resilience. A link that
is persistently and constantly flapping could cause packet loss as
routing also flaps between a usable backup route and the flaky link.
Although this problem is beyond the scope of this work, which
builds a system on top of the ability to correctly detect the exis-
tence of a failure in hardware, we do not believe this problem to be
intractible. At a small cost to detection latency, the PHY or a hard-
ware layer between the PHY and the forwarding table could add
hysteresis when reporting a link as failed. Similarly, bidirectional
failure detection [16] could also fix this problem. Regardless of the
specific implementation, we believe that accurate and fast hardware
failure detection is an important topic for future research.

8. RELATED WORK

While we have mainly discussed MPLS-FRR, FCP, and the work
of Feigenbaum er al. [9] that formalized resilience, there is other
significant work that should be discussed.

First, XPath [13] introduces a new forwarding table compression
algorithm so as to allow for all desired paths to be preinstalled in
a network. XPath’s algorithm operates by first grouping paths into
path sets, then it assigns labels to path sets so that, considering all
forwarding tables, entries that share outputs at switches have labels
that share prefixes so they can be compressed. Because MPLS-
FRR and FCP have assignable labels, XPath can compress them,
subject to the previously discussed lower bound. Because Plinko
uses a path instead of a label, XPath is not applicable to Plinko.

Next, we have yet to consider some related work on routing fail-
ures for a variety for reasons. For example, ECMP, IP Fast Re-
route [10], and Fat Tire [27] offer limited resilience. Packet re-
cycling [21] and Borokhovich et al. [2] use inefficient paths. R-
BGP [17] and F10 [20] rely on graph-specific properties. DDC [19]
guarantees connectivity but at least temporarily incurs significant
stretch and can suffer from forwarding loops, although an IP TTL
may terminate packet forwarding. KF [36] also allows loops.

Although these projects do not meet of our goal of implementing
efficient OpenFlow fast failover, many of them are complementary.
For example, DDC [19], or data-driven connectivity, is a comple-
mentary project that provides ideal forwarding-connectivity, which
guarantees that a packet will reach its destination as long as the
network remains physically connected. DDC achieves this by per-
forming provably safe link-reversals until the forwarding DAG con-
verges, which, for n switches, is guaranteed to occur after O(n2)
reversal operations. On one hand, DDC can temporarily incur
significant stretch, and, in the case of a partition, packets will be
looped until a TTL expires, so Plinko is preferable for routing fail-
ures it can prevent. On the other hand, DDC will always converge
to a route given the destination is not partitioned, so if Plinko ex-
periences a routing failure, it may be desirable to fall back on DDC
for important traffic.

Similarly, Borokhovich et al. [2] describe an OpenFlow fast
failover algorithm that guarantees delivery without looping packets
by treating failover as a maze traversal problem. However, paths in
their algorithm can be inefficient. Like DDC, their algorithm would
also be effective as a secondary failover scheme if Plinko fails.

Fat Tire [27] introduces a new language for specifying fault tol-
erant routing that would be useful for programming a resilient net-
work. However, as described, Fat Tire cannot provide ¢-resilience
for all values of ¢, so Fat Tire benefits from our work.

Some recent work relies on disjoint spanning trees to provide
resilience. For example, Elhourani et al. [7] introduced an algo-
rithm that uses arc-disjoint spanning trees to provide up to (k — 1)-
resilient forwarding in a network that is k-connected. Similarly,
Stephens and Cox [32] introduced DF-EDST resilience, which uses
edge-disjoint spanning trees to provide deadlock-free local fast
failover. While these approaches are promising, we did not con-
sider them because they do not allow for arbitrary routes.

Lastly, Schiff et al. [29] have introduced a number of useful func-
tions that rely on hardware fast failover groups and are complemen-
tary to the forwarding functions in this paper.

9. CONCLUSIONS

In this paper, we explore the feasibility of implementing local
fast failover groups in hardware, even though prior work assumes
that state explosion would limit hardware resilience to all but the
smallest networks or uninteresting levels of resilience [18]. Specif-
ically, this paper presents a number of practical advances that in-
crease the applicability of hardware resilience. First, we have in-
troduced a new forwarding table compression algorithm. Because
forwarding table compression is limited by the number of unique
(output, action) pairs in the table, we also introduced two ways
to lower this bound. In order to increase the number of common
output paths in a forwarding table, we introduce the concept of
compression-aware routing, and we find that it is highly effective
when combined with our compression algorithm, achieving com-
pression ratios ranging from 2.10x to 19.29x given 4-resilient
routes on EGFT topologies. In order to reduce the number of
unique actions, which limits compression in both MPLS-FRR and
FCP, we introduce Plinko, a new forwarding model that applies the
same action to every packet. Finally, we have also considered us-

ing source routing and network virtualization to reduce forwarding
table state. While source routing and network virtualization are ef-
fective on their own, reducing forwarding table state by as much
as 92% on one topology, adding in forwarding table compression
and compression-aware routing leads to a reduction of up to 99%
on the same topology (i.e., with forwarding table compression, the
state required is over 8 smaller). Putting this all together, we ex-
pect that 4-resilient and 6-resilient Plinko will easily scale to net-
works with tens of thousands of hosts. In contrast, we expect that
fully optimized FCP and MPLS-FRR could provide 4-resilience
for topologies with 8192 hosts. Lastly, we find that even seemingly
low-levels of resilience are highly effective at preventing routing
failures, with 4-resilience providing four 9’s of protection against
16 random edge failures on all of the evaluated topologies.

10. REFERENCES

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[2] M. Borokhovich, L. Schiff, and S. Schmid. Provable data
plane connectivity with local fast failover: Introducing
OpenFlow graph algorithms. In HotSDN, 2014.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 2014.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. A. Mujica, and M. Horowitz. Forwarding
metamorphosis: fast programmable match-action processing
in hardware for SDN. In SIGCOMM, 2013.

[5] S. Casner. A fine-grained view of high-performance
networking. In Presented at NANOG22, 2001.

[6] A.R. Curtis, J. C. Mogul, J. Tourrilhes, and P. Yalagandula.
DevoFlow: Scaling flow management for high-performance
networks. In SIGCOMM, 2011.

[7] T. Elhourani, A. Gopalan, and S. Ramasubramanian. IP fast
rerouting for multi-link failures. In INFOCOM, 2014.

[8] K. Elmeleegy, A. L. Cox, and T. S. E. Ng. Etherfuse: An
ethernet watchdog. In SIGCOMM, 2007.

[9] J. Feigenbaum, P. B. Godfrey, A. Panda, M. Schapira,

S. Shenker, and A. Singla. On the resilience of routing tables.
In Brief announcement, 31st Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing
(PODC), July 2012.

[10] P. Francois and O. Bonaventure. An evaluation of IP-based
fast reroute techniques. In CoNext, 2005.

[11] P. Gill, N. Jain, and N. Nagappan. Understanding network
failures in data centers: measurement, analysis, and
implications. In SIGCOMM, 2011.

[12] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella. Presto: Edge-based load balancing for fast
datacenter networks. In SIGCOMM. ACM, 2015.

[13] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao,
and C. Guo. Explicit path control in commodity data centers:
Design and applications. In NSDI. USENIX Association,
2015.

[14] IBM BNT RackSwitch G8264.
http://www.redbooks.ibm.com/abstracts/tips0815.html.

[15] Intel Ethernet Switch FM6000 Series - Software Defined
Networking. http:

/Iwww.intel.com/content/dam/www/public/us/en/documents/
white-papers/ethernet-switch-fm6000-sdn-paper.pdf.

[16] D. Katz and D. Ward. RFC 5880 Bidirectional Forwarding
Detection (BFD), June 2010.

[17] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs.
R-BGP: staying connected in a connected world. In NSDI,
2007.

[18] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free
routing using failure-carrying packets. In SIGCOMM, 2007.

[19] J. Liu, A. Panda, A. Singla, P. B. Godfrey, M. Schapira, and
S. Shenker. Ensuring connectivity via data plane
mechanisms. In NSDI, April 2013.

[20] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A fault-tolerant engineered network. In NSDI, 2013.

[21] S.S. Lor, R. Landa, and M. Rio. Packet re-cycling:
eliminating packet losses due to network failures. In
HotNets, 2010.

[22] C.R. Meiners, A. X. Liu, and E. Torng. Bit weaving: a
non-prefix approach to compressing packet classifiers in
TCAMs. IEEE/ACM Trans. Netw., 20(2), Apr. 2012.

[23] J. Mudigonda, P. Yalagandula, J. C. Mogul, B. Stiekes, and
Y. Pouffary. NetLord: a scalable multi-tenant network
architecture for virtualized datacenters. In SIGCOMM, 2011.

[24] S. Ohring, M. Ibel, S. Das, and M. Kumar. On generalized
fat trees. Parallel Processing Symposium, International,
0:37, 1995.

[25] OpenFlow switch specification, version 1.1.0. http:
/Iwww.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[26] P. Pan, G. Swallow, and A. Atlas. RFC 4090 Fast Reroute
Extensions to RSVP-TE for LSP Tunnels, May 2005.

[27] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire:
Declarative fault tolerance for software defined networks. In
HotSDN, 2013.

[28] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. SIGCOMM,
2012.

[29] L. Schiff, M. Borokhovich, and S. Schmid. Reclaiming the
brain: Useful OpenFlow functions in the data plane. In
HotNets, 2014.

[30] J. Shafer, B. Stephens, M. Foss, S. Rixner, and A. L. Cox.
Axon: A flexible substrate for source-routed Ethernet. In
ANCS, 2010.

[31] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking data centers randomly. In NSDI, April 2012.

[32] B. Stephens and A. L. Cox. Deadlock-free local fast failover
for arbitrary data center networks. In INFOCOM, 2016.

[33] B. Stephens, A. L. Cox, W. Felter, C. Dixon, and J. Carter.
PAST: Scalable ethernet for data centers. In CoNext, 2012.

[34] B. Stephens, A. L. Cox, and S. Rixner. Plinko: building
provably resilient forwarding tables. In HotNets, 2013.

[35] B. Stephens, A. L. Cox, and S. Rixner. Plinko: Building
provably resilient forwarding tables. Technical Report
TR13-06, Department of Computer Science, Rice University,
October 2013.

[36] B. Yang, J. Liu, S. Shenker, J. Li, and K. Zheng. Keep
forwarding: Towards k-link failure resilient routing. In
INFOCOM, 2014.

[37] B. Yener, Y. Ofek, and M. Yung. Convergence routing on
disjoint spanning trees. Computer Networks, 31(5):429 —
443, 1999.

http://www.redbooks.ibm.com/abstracts/tips0815.html
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ethernet-switch-fm6000-sdn-paper.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

	Introduction
	Forwarding Resilience
	Definition
	Expected-Case Analysis
	Approximation
	Simulations

	Forwarding Table Construction
	Forwarding Models

	Forwarding Table Compression
	Motivation
	Forwarding Table Compression
	Compression-Aware Routing

	Implementation
	A Simple Resilient Switch
	Resilient Logical Forwarding Pipeline
	Source Routing
	Network Virtualization

	Methodology
	Evaluation
	State
	Performance Impact

	Discussion
	Related Work
	Conclusions
	References

