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ABSTRACT

There is an emerging need for scalable high-performance in-network
rate-limiting because rate-limiters can be used to provide perfor-
mance isolation. However, existing approaches to in-network rate-
limiting are not scalable or TCP-friendly.

This paper presents the design of Nimble, a new approach to
in-network rate-limiting that is scalable, high performance, and
TCP-friendly. Nimble uses meters to scalably provide hardware rate-
limiting without any dedicated queuing or buffering resources, and
Nimble uses ECN-Shaping for TCP-friendly rate-limit enforcement.
Nimble also introduces the first algorithm for configuring in-network
rate-limiters to enforce network-wide isolation policies.

Through a P4 implementation and experiments with a 100Gbps
Barefoot Tofino switch, we find that Nimble is immediately usable
and can operate even with high bandwidth rate-limits without need-
ing to recirculate packets or rely on hardware packet generators to
generate token refill packets. This overcomes the scalability limi-
tations of prior approaches. Experiments with Apache and Redis
show that Nimble can reduce application-level latency by an order
of magnitude when compared to not using in-network rate-limiting,
and ns-3 simulations demonstrate that Nimble behaves well in larger
clusters. We find that Nimble can scale to 100K rate-limiters per-
switch when implemented on a Barefoot Tofino switch, and our new
rate allocation algorithm reduces rate-limiter updates by a factor of
10x—24x and improves network utilization by 24%.
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1 INTRODUCTION

Rate-limiting is becoming increasingly important in many different
types of networks, including data centers, IXPs, and WAN networks.
This is because it enables network operators to create bandwidth
reservations and subdivide network bandwidth across different com-
peting traffic classes (TCs) to avoid network congestion. The benefits
of using rate-limiters like this include lower latency, higher through-
put, and improved predictability [10, 35, 36, 38, 47, 49, 50, 61]. For
example, rate-limiters can ensure that latency-sensitive applications
experience predictably low network latency. Similarly, rate-limiters
can ensure that competing tenants cannot gain more than their fair
share of network bandwidth by opening more connections or running
non-standard TCP stacks.

The focus of this paper is on in-network rate-limiting, which is
needed in a variety of different types of networks, including IXP,
data center, and WAN networks. However, there are limitations to all
existing approaches to in-network rate-limiting. To address this, this
paper presents the design of Nimble, a new approach to in-network
rate-limiting that is high performance, scalable, TCP-friendly. Fur-
ther, Nimble addresses difficulties associated with updating rate-
limiters as flows start and stop, and Nimble is implementable on
today’s commodity programmable switches.

Nimble provides in-network rate-limiting because this avoids
the security and precision limitations of performing rate-limiting at
servers attached to the network edge. In networks like IXPs and tran-
sit WAN's where hosts are untrusted, edge-based rate-limiting cannot
prevent tenants from gaming the system by opening more connec-
tions or using non-standard TCP implementations, and in-network
rate-limiting overcomes this limitation. Additionally, edge-based
rate-limiting may require dynamic coordination across many differ-
ent rate-limiters as communication patterns shift [38]. In contrast,
enforcing rate-limits inside the network instead of at the edge can
be simpler and more precise.

Unfortunately, prior approaches to in-network rate-limiting have
limitations with respect to performance, scalability, and TCP-
friendliness. For example, software rate-limiters struggle to drive
100Gbps line-rates and incur tens of microseconds of latency, which
is not acceptable in data center networks [18, 21, 55]. In contrast,
hardware in-network rate-limiting that uses queues to perform shap-
ing may also suffer from scalability limitations. For example, most
modern data center switches only have a limited number of queues
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per port (e.g., 32 or fewer [25, 52]), while production networks
run orders of magnitude more applications and flows [41, 48, 55].
Many approaches to in-network rate-limiting drop packets, and this
is problematic in data center environments because it hurts TCP
performance [8, 67].

To overcome these limitations, Nimble utilizes mefers, a primitive
that assigns a color to a flow when it exceeds a configured rate and
burst allowance [29, 30]. Because meters do not perform queuing,
they have low resource overheads. However, meters as they are
traditionally used are not sufficient to implement a network-wide
rate-limiting scheme. Instead, there are challenges that must be
overcome with respect to using meters as a primitive to provide
rate-limiting, and there is also a need for a network controller that
can configure meters appropriately to enforce a high-level isolation
policy.

Nimble fundamentally rethinks how meters are implemented,
how meters are used to perform rate-limiting, and how network con-
trollers configure meters. We introduce a new design for implement-
ing meters on P4 switches (logical meters). We use ECN-shaping,
a TCP-friendly approach to enforcing rate-limiters that uses ECN
marking to enforce rate-limits without dropping packets or perform-
ing per-traffic class packet buffering. Additionally, we introduce a
new algorithm for computing in-network rate-limits according to
high-level policies that results in fewer rate-limit updates as flows
start and stop than edge-based rate-limiting.

There are three primary contributions of this paper:

First, Nimble introduces logical meters. Logical meters are a P4
implementation of meters, and this allows devices that do not have
hardware support for meters but do have hardware support for P4
(e.g., PISA switches [12]) to still be able to benefit from Nimble.
Switches that support P4 have counters that are used for monitoring,
and we show that these counters can be repurposed to implement
logical meters with low overheads on switches that support P4.

Second, Nimble keeps track of logical meter occupancy without
the need for recirculation, without the need to generate new packets
per meter using hardware clocks, and without the need for physical
queueing resources. This overcomes the limitations of previous
approaches that struggle keep up with the line rates or scalability
requirements [16, 19, 66]. Nimble achieves this by introducing a
novel way to perform approximate multiplication on PISA switches.

Third, Nimble introduces a new algorithm for computing in-
network rate-limits (meter configurations) for a network of switches
that enforce network-wide isolation policies. Nimble supports all of
the same types of policies as the DCB standard provides for individ-
ual devices [19] except that Nimble supports network-wide policies
with far many more traffic classes, priorities, and weights (100K).
Because of the potential asymmetries in topologies, routing, and
placement, naively configuring individual rate-limiters according to
the same policy is not sufficient to ensure the policy will be enforced.
This algorithm overcomes this by computing asymmetric rate-limiter
configurations that provide global policy enforcement.

Through experiments with real world applications, we find that
Nimble is scalable and can effectively enforce rate-limits with high
throughput and low latency. Experiments with a P4 implementation
of Nimble that runs on a Barefoot Tofino switch [11] and provides
ECN-Shaping, logical meters, and meters demonstrate that scalable
TCP-friendly hardware in-network rate-limiting is possible today.
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(a) Edge-based Rate-Limiting
Figure 1: Example of how in-network rate-limiters can provide more
precise rate-limiting and achieve higher network utilization than
edge-based rate-limiters.

(b) In-network Rate-Limiting

We find that Nimble can scale to a total of 100K meters per-switch.
Using ns-3 simulations, we show that Nimble is scalable and benefi-
cial across different topologies and protocols. Our experiments also
show that Nimble reduces rate-limiter updates by 10x—24x when
compared to edge-based rate-limiting, and our algorithm correctly
enforces network-wide isolation policies while improving network
utilization by 24% when compared to dynamic local policy enforce-
ment.

2 MOTIVATION

Across a variety of different types of networks, including Internet
eXchange Points (IXPs), data centers, Content Distribution Net-
works (CDNs), and Wide-Area Networks (WANSs), there is a need
for in-network rate-limiting. However, all existing approaches to in-
network rate-limiting suffer from key limitations, and it is difficult
to correctly configure rate-limiters in a multi-hop network.

2.1 The Need for In-Network Rate-Limiting

In-network rate-limiting can be used to enforce network-wide
(global) performance isolation policies, and it is more secure, more
precise, and results in fewer updates when compared with edge-
based rate-limiting.

Ideally, it would be possible to ensure that competing tenants and

applications are isolated and share network resources like bandwidth
and buffer space fairly. Unfortunately, congestion control algorithms
do not provide performance isolation because they converge to per-
flow fairness. Similarly, relying on TCP for isolation is not secure.
If one application opens more connections than another or uses a
non-standard TCP implementation, it will consume more than its fair
share of switch buffer space and bandwidth, causing packet losses,
reduced throughput, and increased latency for other applications [10,
35, 36, 41, 46, 53, 61, 67, 68].
In-network rate-limiting versus edge-based rate-limiting: Al-
though prior work has established the benefits of edge-based rate-
limiting [10, 35, 36, 38, 47, 49, 50, 53, 61], there is also a need for
rate-limiters inside the network to enable performance isolation in
scenarios where edge-based rate-limiting is either not possible or is
inefficient.

For example, in an IXP, the end-hosts attached to the network are
untrusted because they are owned and operated by the clients of the
IXP. Because the edge is untrusted, these networks need in-network
rate-limiters.

However, even in networks where the edge is also controlled by
the network operators, which includes networks like data center
networks, private WAN networks, and CDNs [31, 32, 34, 38, 49, 50,
63], in-network rate-limiting can enable more precise rate-limiting
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(b) Global Policy Enforcement
Figure 2: Example of how strictly local enforcement can fail to
enforce a global network sharing policy that the red and blue TCs
should have a 1:1 share of total network bandwidth.
and more efficient utilization of available network bandwidth. For
example, it is often better to use a single in-network rate-limiter than

many edge-based rate-limiters.

Figure 1 illustrates this by comparing using multiple edge-based

rate-limiters and using a single in-network rate-limiter to implement
a policy where the traffic from three servers traversing an uplink must
not exceed 75Gbps and the demands of servers 1, 2, and 3 are all
different. As Figure 1a shows, naively using edge-based rate-limiters
to enforce a 25Gbps rate limit at each server leads to underutilization
as only 55Gbps of traffic is sent. In contrast, Figure 1b shows that
in-network rate-limiting can precisely enforce this policy with a
single rate-limiter placed on the output port of the shared uplink.
Although it is possible to overcome the limitations of edge-based
rate-limiting by measuring network demand and dynamically adjust-
ing rate-limiters, this approach is worse than in-network rate-limiting
given dynamically changing traffic because edge-based rate-limiting
would potentially require more number of rate-limiter updates than
in-network rate-limiter would. In Section 4 we elaborate on further
reducing the number of updates in our network controller.
Local versus global enforcement: DCB allows operators to config-
ure per-port rate-limiters for eight total TCs [19]. This is too few
TCs for many scenarios. Additionally, this requires network opera-
tors to configure rate-limiters by hand, and this can become arduous
error-prone in large networks.

However, it is not immediately straightforward to automate the
process of configuring in-network rate-limiters. Given a global net-
work isolation policy, naively configuring every port at every switch
to locally enforce this policy may not lead to accurate enforcement.
To help this, Figure 2 shows a scenario where local enforcement of
a policy that a red and blue TC should equally share the total capac-
ity of the network is not accurate. Because routing is asymmetric,
the blue TC gets more throughput with strictly local enforcement.
Instead, to globally enforce the policy, it is necessary to install asym-
metric rate-limits. As such, there is a need for creating a network
controller that can enforce network-wide (global) isolation policies
by dynamically computing asymmetric in-network rate-limits for a
network of switches.

(a) Local Policy Enforcement

2.2 Limitations of In-Network Rate-Limiting

In-network rate-limiting can be implemented with software or hard-
ware, and both approaches have key limitations.

2.2.1 Software Rate-Limiters. Through the use of software mid-
dleboxes, it is possible to perform in-network rate-limiting [18, 24].
However, this approach is often not viable because of limitations
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(a) Aggregate throughput for
policing and shaping.

(b) Queue size evolution for
policing and shaping.

Figure 3: Results from an experiment that shows that policing leads
to poor TCP throughput because of packet loss and that shaping
requires an excessive amount of switch buffering capacity to avoid
dropping packets.

related to low throughput, low precision, high latency, high CPU
overhead, poor locality, and wasted network bandwidth. While the
first four limitations are obvious, poor locality and wasted bandwidth
result from routing traffic from inside the network back to the edge
(server). For example, prior work has found that software-based
rate-limiters struggle or fail to drive 100Gbps line-rates, incur tens
of microseconds of latency, and do not provide enough precision
over inter-packet spacing to avoid microbursts [18, 21, 35, 49, 50].

2.2.2 Hardware Rate-Limiters. Hardware rate-limiters are high
performance and typically operate at line-rate without incurring ad-
ditional processing latency. However, today’s hardware rate-limiters
are not scalable, and they do not interact well with TCP.
Scalability: Switches typically use virtual queues to perform rate-
limiting [16, 19, 47] by dedicated queuing and buffering resources
to each TC. Switches that implement the Data Center Bridging
(DCB) standard only support 8 different TCs per port [19, 62], and
prior work has reported that currently available commodity Ethernet
switches support at most 32 virtual queues per-port [25]. Further,
even the state-of-the-art approaches that are not yet available in
practice only provide thousands of different TCs [54, 58].

Today’s networks need many more traffic classes. For example,

Google reports that their data center network hosts thousands of
different services [55], and Microsoft reports that over 90K servers
are used to host both Bing and batch analytics [33]. Kumar et al.
report that a link in Google’s WAN can be used by 400K different
job-level flow groups [38].
TCP-Friendliness: Existing approaches to in-network rate-limiting
are not TCP-friendly. There are two ways to react when an in-
network rate-limit is exceeded: policing, which drops packets, and
shaping, which buffers packets then releases packets at the appropri-
ate time.

Policing is harmful to TCP performance, especially when con-
sidered at the tail [16, 22, 27, 64, 67]. This is because dropping a
single packet can cause TCP to suffer from a retransmission timeout
(RTO). Additionally, Flach et al. recently found that traffic polic-
ing is particularly harmful to video streaming playback quality of
experience [22].

Although shaping avoids dropping packets, shaping can cause
unacceptable increases in network latency because the number of
buffered packets can grow large. Congestion can be persistent be-
cause this approach does not restrict the rate at which end-hosts
inject packets into the network.



To demonstrate the pitfalls of policing and shaping, we ran ns-
3 simulations with 10 source servers sending to one sink server,
creating a 10-to-1 incast. The servers are connected to one switch
via 100 Gbps links, and there is a 50 Gbps rate-limit on the output
port that connects to the sink; the servers use DCTCP. Figure 3a
shows aggregate throughput over time and Figure 3b shows the
queue size on the output port that connects to the sink for both
policing and shaping.

First, we observe that policing cannot achieve full throughput. It
achieves about ~41Gbps instead of the full S0Gbps. This is because
policing relies on packet drops to enforce the rate limit, and packet
drops cause end-hosts to suffer from TCP timeouts and reduced
congestion windows. In contrast, while shaping achieves closer to
the expected throughput of 50Gbps, it incurs substantial queuing.
The queue lengths in this experiment vary in the range of 2MB—
8MB, and this amount of queuing can lead to significant latency. For
example, 4MB of queuing at a 100Gbps line-rate adds 336us.

2.2.3 Hardware Meters. Meters are another hardware primitive
supported by some switches that can monitor the rates and burst
allowances of different packet streams and mark the packets ei-
ther green, yellow, or red depending on if these allowances are
exceeded [29, 30]. Although meters are scalable because they can
be implemented with counters, they have problems with respect to
isolation and TCP-friendliness.

The recommended use-case for meters is to discard all red packets
(policing), forward all yellow packets as best effort, and forward
green packets with a low drop probability. In this scenario, dropping
all red packets is policing, which is not TCP-friendly. Additionally,
because all yellow packets are treated the same with respect to
queuing, it is not possible to guarantee performance isolation across
competing TCs.

3 NIMBLE OVERVIEW

Nimble is a new system that utilizes scalable hardware in-network
rate-limiting to dynamically enforce network-wide performance
isolation policies. There are three primary components to Nimble.
First, switches provide rate-limiting by using meters with ECN-
shaping or policing. Second, network operators specify local and
global isolation policies. Third, a network controller monitors traffic
patterns and dynamically configures rate-limiters for the active TCs
on the appropriate switch ports to enforce the policy. The rest of this
section discusses these components in more detail.

3.1 Rate-Limiting Primitives

Nimble utilizes meters to scalably monitor TC rates inside the net-
work, and Nimble utilizes both policing and ECN-shaping to enforce
in-network rate-limits. Because meters can be implemented in hard-
ware with only SRAM and ALUs, they are more scalable than virtual
queues.

3.1.1 Meters. Switches in Nimble support one rate three color
meters [29] and the two rate three color meters [30]. A controller
configures a single rate meter by specifying a three tuple of a
rate and two burst sizes ((R, Byeiiow, Bred)). A controller config-
ures a two rate meter by specifying two rate and burst size tuples
((Ryettow, Byetiow), and (Rred, Brea)). With both the single and

two rate meters the meter internally maintains a token bucket for
each colors’ rate and burst allowance. If the red bucket is empty, the
packet is colored red. If the red bucket is not empty but the yellow is,
the packet is colored yellow. Otherwise, the packet is colored green.

Nimble supports two types of meters: native meters (NM), and
logical meters (LM). When Nimble is used with switches with native
support for meters, NM should be used because it likely has lower
overheads. However, LM is useful because it provides support for
meters on devices that support P4.

3.1.2 ECN-Shaping. ECN-Shaping performs ECN marking
based on the color of a meter. This enables TCP-friendly rate-
limiting, avoids packet buffer overflows, and overcomes the lim-
itations of both shaping and policing. DCTCP and DCQCN both use
ECN marking to cause end-hosts reduce their transmission rate to
avoid buffer overflow. With these algorithms, switch queue buffer
occupancy converges to the ECN marking threshold [8, 69, 70]. In
effect, ECN-Shaping causes end-hosts to modify their congestion
windows to converge to the rate determined by an in-network me-
ter. This makes it possible to enforce rate-limits without dropping
packets or using queuing resources.

To understand why it is possible to enforce rate-limits without
either dedicated queuing resources or packet pacing, it is useful to
revisit the equation that is used to update congestion windows in
DCTCP: cwnd <— cwnd X (1 — «/2) where « is the fraction of
bytes that were ECN marked. Importantly, this equation is indepen-
dent of the network RTT. As long as the same packets are marked
by the switch, the end-hosts will reduce their congestion windows in
the same way regardless of how packets are queued or paced.

3.2 Policies

Network operators use Nimble to specify performance isolation poli-
cies. Nimble uses a controller to dynamically compute appropriate
rate-limits to provide work-conserving policies. Policies in Nimble
allow for different TCs to be assigned different priorities, weights,
and rate-limits. Because Nimble supports many more traffic classes
(100K), it can implement policies not possible with DCB.

Nimble supports both local and global policies. Local policies
allow operators to exert expert control over specific links like WAN
uplinks. Global policies allow operators to specify policies that are
enforced across a network. This ensures that the entire network is
shared according to high-level policies without requiring operators
to configure rate-limiters for every switch port in the network, which
would be arduous and error-prone.

Policies in Nimble are specified at the granularity of the TC. To
specify a policy for a TC in Nimble operators specify two things: 1)
a packet classifier, and 2) the isolation policy.

Packet classification: To configure Nimble, a network operator
starts by providing a mechanism to assign a packet to a traffic
class. Since Nimble is designed to be used with P4 switches,
any packet header fields can be used. However, for simplic-
ity and compatibility with existing protocols, our current design
uses a packet’s 7-tuple to find the TC for a packet. The 7-tuple
lookup maps (SMAC, DMAC, SIP, DIP, PROTO, SPORT,
DPORT) — (TC), where SMAC, SIP, and SPORT and DMAC, DIP,
DPORT are the source and destination MAC addresses, IP addresses,
and ports, respectively, PROTO is the IP protocol field, and TC is the



traffic class. For flexibility, any of the input fields may be a wildcard.
This also enables 5-tuple (no MAC addresses) and 2-tuple (either
only MAC or IP addresses) lookups. Also, traffic classification can
be combined with routing for efficiencies sake so that one lookup
table can be used to find both the output port and traffic class for a
packet at the same time.
Isolation Policies: For each TC, operators must configure a global
priority and weight, and they can also configure a rate-limit. When
applied together, these per-TC configurations are used by the con-
troller to dynamically configure rate-limits across the network. Ad-
ditionally, the operator may also optionally configure local policies
with respect to specific input and output ports on switches for a TC,
and these policies are applied before global policies.

Global and local policies are specified as follows:

GBL_Policy(TC, Weight, Priority, RL, ETYPE)
LCL_Policy(LOC, TC, Weight, Priority, RL, QTYPE,
ETYPE)

TC,Priority,and Weight are all integers. TC is a number previ-
ously associated with a packet classifier. Priority and Weight
configure how this TC is treated when it is competing for bandwidth
with another TC. When allocating the network bandwidth, the con-
troller will allocate bandwidth to the highest priority TCs first, and
TCs of the same priority will receive a share of available bandwidth
proportional to their relative weights. Because TCs with a higher pri-
ority will be strictly allocated bandwidth before lower priorities, this
intentionally can lead to starvation. If this is undesirable, rate-limits
can be applied to high priority flows.

RL is a 3-tuple that defines a rate-limit: (Rate, Burst,
RLType), where Rate is a rate in bits per second, Burst is a
burst tolerance in bytes, and RLType is either soft, which means
that the TC can receive less than the limit or hard, which means that
a rate-limit for the TC will be configured exactly at the specified rate.
To help avoid overallocation, the controller generates a warning if
the sum total of rate-limits exceeds the available bandwidth for any
port.

For local policies, LOC specifics a location in terms of a switch
and either one or both of an input port and output port on that switch.
QTYPE defines how the rate-limit will be enforced. The options for
QTYPE are virtual queue (VQ), native meters (NM), and logical
meters (LM). Although VQ is not scalable, this allows operators to
utilize them when they are available. This also allows for hierarchical
policies where a group of TCs using meters are also in another TC
sharing a single VQ. Finally, ETYPE specifies if the rate-limit should
be enforced with policing, ECN-shaping, or shaping. However, as
Table 1 shows, not all queuing and enforcement types can be used
together because shaping is not possible with NM or LM. Even
though policing can lead to poor TCP performance at the per-flow
level, it is included because it is still useful in environments where
ECN marking is not possible and per-flow performance is not critical,
e.g., ISPs.

3.3 Controller

The controller in Nimble dynamically monitors traffic patterns and
then uses this information to compute and install rate-limits at the
appropriate switches in the network. This controller utilizes the same
general control loop to monitoring traffic patterns as controllers in

Queuing and Rate Enforcement Type
Detection Type Shaping [ Policing [ ECN-Shaping

Virtual Queues v v v
Logical Queues X v v
Meters X v v

Table 1: The different configurations supported by Nimble.

similar systems that perform edge-based rate-limiting [9, 10, 35, 36,
38, 46, 53].

First, the controller learns about the active tenants, applications,
and flows using the network either through network monitoring
or coordination with cluster management systems. Although the
exact specifics of this monitoring is outside the scope of this paper
because prior work has already demonstrated its feasibility, it is
straightforward to perform through integration with either virtual
switches [42] or In-Network Telemetry (INT) [12, 40, 45, 59].

Next, the controller combines the operator specified policies with
knowledge of traffic patterns to compute appropriate meter config-
urations. As long as the aggregate sum of all of the rate-limits of
the TCs using a link in the network are below the network line-rate,
this approach can guarantee that packets are not dropped due to con-
gestion and that competing traffic classes are isolated. Additionally,
the controller in Nimble is designed to reduce the total number of
rate-limiters that need to be configured. This increases scalability,
and, when combined with a new approach for consistently updating
multiple meters on a single switch, this can lead to more precise
policy enforcement during updates.

4 NIMBLE DESIGN

Nimble introduces a new switch program design to support meters
and a new algorithm for configuring these meters. This section
discusses these components of Nimble in more detail.

4.1 Switch Program Designs

The switch programs in Nimble use a pipelined design. The modules
that compose the pipeline only feed information forward because
this enables Nimble to be expressible in P4 [4] without requiring
any recirculation. This is important to ensure that Nimble operates
at full line-rate.

Nimble is also designed to be integrated into other P4 programs,
e.g., dc.p4 [57]. Because P4 does not support libraries [60], Nimble
is implemented as separate micro-pipelines that can be manually
integrated into other programs. Figure 4 shows the switch micro-
pipelines that can be used to perform in-network rate-limiting with
either NM or LM. The different modules in these pipelines behave
as follows:

Routing/Traffic Classification: This module determines the out-
put port and traffic class for each packet (OUTP, TC). Although
routing is modular and can be changed as needed to integrate with
another switch program, our current design uses a packet’s 7-tuple
to find this information.

Native Meters: This module maps the current TC, update epoch,
input port, and output port passed forward from the routing module to
a meter, which then outputs a color. The control plane is responsible
for programming the appropriate rates for the meter. Also, because
this module uses a controller configured epoch to find the appropriate
meter, this allows rates for multiple TCs to be consistently updated.
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Figure 4: Designs for different ways of performing rate-limiting in
Nimble.

Congestion Manager: The congestion manager provides per-TC
decisions on how to mark and drop packets after they has been
assigned a color. To support DCTCP and TCP with ECN support,
this module ECN marks all yellow packets. Because DCQCN re-
quires that switches perform probabilistic marking, this module uses
RED [23] to probabilistically mark yellow packets. Because strict
policing is harmful to tail TCP flow performance, this module uses
RED to drop yellow packets from TCs using TCP without ECN
support. To ensure isolation, all red packets are dropped by default.
Discussion centered around deployment can be found in 4.3.
Policy Manager: To support LM, this module looks up the appro-
priate rate-limiter index, rate, and burst tolerances given the current
packet’s TC, input port, and output port. With LM, the rate that is
looked up by the policy manager may be configured from either the
control plane or the data plane, which can lead to lower and more
predictable latency. Programming a rate limiter from the data plane
is accomplished by using a lookup table to save the rate received
from data in special control packets to a register in an array.
Logical Meters: Logical Meters emulate virtual queues by using
counters (registers) to track the number of bytes that would be
enqueued in a virtual queue that drains at a rate R. When a packet
arrives for a logical meter(LM), the length of the current packet
is added to the register unless the packet will be dropped, and the
number of bytes that would have been drained from a virtual queue
in the amount of time since the last queue update are subtracted
from the register (LM = LM + PktLen — DrainB). Given a
rate R from the policy manager, the drain bytes is computed as
R times the amount of time since the last packet using this rate-
limiter (DrainB = R * AT), where AT is computed by taking
the difference of the current timestamp and the timestamp that was
saved in a register the last time this rate-limiter was used.

Algorithm 1: Multiply Table Population Algorithm

Input: (s,b) // Significant bit and number of bits

Result: table T

V = {ili € [2°,2b%1 — 1]]}

T = {ili € [0,2° — 1]}

while Vi € V do

for j=1;s < j;j++ do

i<zl Left shift with don’t care (x) as input
T.add(7)

Since most programmable switches do not support multiplica-
tion [12, 56], we use a TCAM lookup table to approximately com-
pute the result of this operation by matching only on the b most

significant bits of AT'. Specifically, Algorithm 1 shows how to pop-
ulate the table. For a variable I with ¢ bits and b, significant bits, this
algorithm generates e; = (i — b; + 2)21’1"1 entries. The average of
the numbers in a group is used for the output of the table to minimize
error. This algorithm creates entries that cover ranges all with the
same expected percent error.

4.2 Network-Wide Policy Enforcement

Nimble introduces a new algorithm that allows a network con-
troller to dynamically enforce isolation policies across a network of
switches. By dynamically configuring in-network rate-limiters, this
allows Nimble to achieve isolation across TCs, and Nimble supports
policies that provide priorities, weighted fair sharing, and rate-limits.

Nimble performs dynamic network-wide rate-limiter configura-
tion because this overcomes the limitations of naively enforcing
policies locally at each switch. Due to potential asymmetries in
topology, routing, and job placement, local enforcement cannot ac-
curately enforce policies. Locally policy compliant configurations
can still waste bandwidth if a traffic class is limited to a lower rate
at another switch.

To ensure that Nimble is compatible with existing networks and
routing algorithms, the controller in Nimble does not interfere with
routing and instead takes the current set of active routes as an input.
For example, this is necessary to support networks that use ECMP
for routing.

The input to the algorithm is the network policy, the network
topology, and the set of routing paths for each TC. This algorithm
considers traffic patterns at the coarsest possible granularity. Specifi-
cally, a routing path is a list of switch output ports used by any flow
belonging to a TC. Finer granularities like the TCP flow would lead
to more churn. The output of this algorithm is a set of rate-limiter
configurations for all of the switches in the network.

Algorithm 2 shows our complete algorithm. Our insight is that
TCs only need be rate-limited at the most bottlenecked switch on
the paths they use, so the core loop of this algorithm operates
by iteratively finding the most congested output port in the net-
work and allocating bandwidth according to the policy (Function
find_bottleneck).

Determining which switch port is the bottleneck depends on the
network policy. To support priorities, this algorithm assigns band-
width to the current highest unassigned priority for every bottleneck
port in the network before considering the TCs in the next priority.
Weights are supported by allocating the unassigned bandwidth of a
bottleneck port in proportion to the relative weights of the active TCs
at the current priority level. Rate-limits are supported by capping the
maximum rate that will be allocated to a TC per-port.

Because this algorithm does not overallocate the bandwidth of a
port, it ensures that congestion cannot overload any port. Addition-
ally, by configuring the burst allowances of a one rate three color
meter, the amount of buffered packets can be bounded. By default,
Nimble sets a low yellow threshold (e.g. 16KB) because this thresh-
old is used to perform ECN-shaping or random dropping (RED). To
set the red threshold for a meter, the operator configures a maximum
per-port buffer allocation, Nimble uses weights to subdivide this
across TCs.



Algorithm 2: Rate Allocation to Traffic Classes

Inputs:
Set of paths: W = {w1, wa...}
Set of traffic classes: C' = {c1, c2...}
Set of ports: P = {p1,p2, ...}
Output:
r(c,p) Ve € C,p € P;initially r(c,p) = 0
r(w) Y w € W;initially r(w) = 0
Definitions:
p.rate: line rate of the output port p
C = set of classes whose rates have been assigned
p.classes() = set of active classes in port p
p.paths(c) = set of active paths in port p and class ¢
used(p, c) = capacity already used in port p for class
c = Zw&ppaths(c) T(w)
used-total(p) = total capacity already used in port
p = EcEpAclasses()ﬂCa used(p, C)
p.unassigned_classes() := set of traffic classes in port p whose
rates have not been assigned := p.classes() — Cy
c.assigned_paths() := set of paths in traffic class ¢ whose rates
have been assigned
p.unassigned_paths(c) = set of paths in traffic class ¢ in port p
whose rates have not been assigned
= p.paths(c) — c.assigned_paths()
Initialization:
Co=2¢
Ve,p:r(c,p) =0, c.assigned_paths() = ¢
Vw :r(w) =0
Function main () :
while P # ¢ do
find_bottleneck(bottleneck_rate, bottleneck_p, bottleneck_c)
for Vw €
bottleneck_p.unassigned_paths(bottleneck_c) do
r(w) = bottleneck_rate
r(e,p)+ = r(w)
c.assigned_paths().add(w)
if |c.assigned_paths()| == |c.paths()| then
‘ Co =Cq U{c}
if p.unassigned_paths(c) == ¢ then
‘ P.remove(p)

Function find_-bottleneck ():
for Vp € P, ¢ € p.unassigned_classes() do
Calculate “class_rate” by divvying the unallocated rate
(p.rate — used_total(p)) as per policy using priorities,
weights, and rate limits
for Vw € p.unassigned_paths(c) do
Calculate “path_rate” by divvying the “class_rate
among p.unassigned_paths(c)
if path_rate < bottleneck_rate then
bottleneck_rate = path_rate

»

bottleneck_p = p
bottleneck-c = ¢

return bottleneck_rate, bottleneck_p, bottleneck_c

Operators of large networks design high-level network policies
in order to balance the needs of different applications. For instance,
operators typically prioritize traffic classes from latency-sensitive
applications ahead of classes from bandwidth-hungry applications
but set rate limits for the former to avoid starving the latter. It is
also common for operators to share the network capacity among
some set of applications in a weighted-fair manner based on many
factors (e.g., price tier, business considerations). While designing
such policies is beyond the scope of this paper, we argue that using
a combination of strict priorities, weighted fair-share policies, and
rate limits, we can support a broad range of typical policies. Our
goal is two fold: (1) Policy compliance: To allocate rates to traffic
classes such that the allocation is policy-compliant (i.e., at each
bottleneck link, the link capacity is shared in accordance with the
global policy). (2) Utilization: To allocate rates to traffic classes
using global knowledge of bottleneck links so that no traffic class is
allocated more capacity than its bottleneck rate. We evaluate these
two aspects of our design in Section 6.3.2 and compare our allocation
to a purely switch-local allocation for a policy that combines priority
and weights.

To minimize the overhead, Nimble invokes this algorithm only
when rates have to be recomputed, which happens when: (1) net-
work policy changes. (2) links/switches fail, (3) tenants are added/re-
moved, and (4) tenant routing paths are added/removed. Additionally,
this algorithm results in fewer rate-limit updates than a comparable
system that performs edge-based rate-limiting (e.g., BWE [38]). Be-
cause Nimble places rate-limits at the switch that has a bottleneck
port, there are times when in-network rate-limits do not need to be
updated while edge-based rate-limiters would (Figure 1).

Additionally, this algorithm supports incremental rate-limiter up-
dates. For correctness, we rerun the entire algorithm on updates.
However, because this algorithm is deterministic, the configura-
tion of many rate-limiters will be unchanged after an update. The
controller takes advantage of this by tracking the delta between con-
figuration epochs and only issuing updates for rate-limiters that have
changed. Further, when updating rate-limiters, Nimble consistently
updates all of the rate-limiters on the same switch at once by using
versioning in the switch program to find the appropriate meter.

4.3 Discussion

Logical meters enable ECN shaping, which works efficiently with
TCP and achieves superior performance than both policing and
shaping (Figure 3). However, not all TCP stacks support ECN marks
and the congestion response of ECN-supported TCP stacks vary.
Recall from Section 4 that logical meters ECN mark all yellow
packets and drop all red packets. To support TCP stacks that do
not react to ECN marks, Nimble emulates Random Early Detection
(RED) by probabilistically dropping yellow packets. Therefore, log-
ical meters enable TCP stacks that do not support ECN to perform
better than both naive policing and shaping. If stacks require prob-
abilistic ECN marking (e.g., DCQCN), we can configure logical
meters to probablisitically mark yellow packets as well (Section 4.1).
Because logical meters fall back to policing (i.e., dropping all red
packets) when everything else fails, malicious/buggy TCP or UDP
senders cannot exceed their policy-compliant allocation (Figure 6
demonstrates our stronger isolation between UDP and DCTCP). This



serves as a fail-safe mechanism and enforces a stronger isolation
between traffic classes than existing mechanisms.

In addition to enforcing rates, the controller in Nimble also bounds
the amount of packet buffering at switches by configuring burst sizes.
Thus, Nimble is compatible with delay-based congestion control
algorithms such as TCP Vegas and QUIC. Because traffic from one
traffic class does not lead to increased queuing, Nimble enables
delay-based TCP variants to safely co-exist with more aggressive
loss-based algorithms like TCP Cubic, which is not possible without
the stronger isolation provided by logical meters. Fortunately, this
stronger isolation also enables TCP stacks that respond differently
to ECN marks (e.g., DCTCP vs. legacy ECN) to co-exist without
exceeding their allocations. Additionally, the congestion manager in
Nimble can also be easily modified to support rate-based congestion
control algorithms like RCP [20] or PERC [37].

Unlike datacenters where fine-grained information about routing
paths and traffic classes are available, WANSs may only expose coarse-
grain information per policy (i.e., peering agreements between ISPs).
Nevertheless, Nimble would still calculate policy-compliant alloca-
tions and enforce them efficiently in WANSs. Operators could use
monitoring systems such as UnivMon [40] to identify traffic classes
and feed this information to our rate allocation algorithm. While
designing such mechanisms for WANSs is beyond the scope of this
paper, we think it is possible to deploy Nimble outside datacenters
by tracking traffic classes and routing paths at a coarser granularity
and by using network monitoring systems.

5 METHODOLOGY

Nimble is implemented in P4 [4] and in the ns-3 simulator [7].
This allows us to perform two different types of experiments to
evaluate Nimble: Experiments on a local cluster with a commercially
available PISA switch and experiments with large scale simulations.

In the cluster experiments, P4 programs are compiled and run on
a Barefoot Tofino [11] Wedge 100BF-32X Ethernet switch with a
line-rate of 100Gbps. The cluster also contains four servers each
with an 8-core/16-thread Intel Xeon 1.80GHz CPU and 64 GB of
memory. These servers run Ubuntu 18.04, and they use a 100Gbps
Mellanox ConnectX-5 [43] NIC to connect to one port of the switch.
We developed a gRPC-based control plane client to dynamically
program various rate limiters on the switch. We also developed
Thrift client programs to interact with the switch.

We assess Nimble using a variety of real-world applications in
the cluster experiments. To demonstrate the correctness of Nimble,
we use network benchmarking tools like iPerf [3] and sockperf [6]
because they provide precise controlled network traffic. We also use
a number of significant data center applications like Apache [1] and
Redis [5] to profile Nimble’s behavior with real throughput-sensitive
and latency-sensitive applications competing in the network. We use
ab and redis-benchmark to evaluate these applications.

Next, we perform ns-3 simulations [7] to demonstrate that Nimble
works on larger topologies as well as to perform a deep-dive into
the workings of our system. We implemented Nimble in the ns-3
switch model and our implementation captures all aspects from
Figure 4, including approximate multiplication using Algorithm 1.
Further, we also implemented the controller that programs rate limit
values in switches (Algorithm 2). In our simulations, the hosts are

connected by 100 Gbps links with a link delay of 1 pus. We set the
per-port buffering capacity to be 400 K B. The ECN threshold is
set at 20% of the buffer size, as recommended by the DCTCP [8]
paper for physical queues as well as logical queues. Experiment-
specific aspects (workload, topology, TCP versions) are described in
Section 6.

6 EVALUATION

This section presents results from experiments and a scalability anal-
ysis performed on a local testbed with a Barefoot Tofino switch [11]
(Section 6.1 and Section 6.2). Finally, it presents results from experi-
ments with the ns-3 simulator (Section 6.3).

6.1 Testbed Experiments

Through testbed experiments, we demonstrate that Nimble is fea-
sible on today’s hardware, accurate, and TCP-friendly. To do this,
we perform experiments where there is only a single active TC to
demonstrate accuracy, and we perform experiments with multiple
TCs to demonstrate that Nimble effectively isolates different com-
peting applications and supports a variety of different congestion
control algorithms.

6.1.1 One TC Experiments. We start by evaluating Nimble
given a workload where all traffic belongs to a single TC and is
between two machines. In these experiments, we use iperf3 to
generate traffic from a client to a server at full line-rate, and we
enabled DCTCP on both the client and server. These experiments
use 16 parallel iperf3 clients each with 8 parallel connections.

Then, we program the switch to provide a range of different
in-network rate-limits from 1Gbps—80Gbps for four different ap-
proaches to rate-limiting that are supported by Nimble: shaping with
virtual queues (VQ), ECN-shaping with virtual queues (VQ(ECN)),
ECN-shaping with native meters (NM), and ECN-shaping with logi-
cal meters (LM).

Figure 5 shows the result from this experiment. As expected, VQ
accurately enforces rate-limits despite having problems related to
latency and scalability. From the VQ(ECN) results, we find that ECN-
Shaping is able to improve enforcement accuracy over traditional
shaping. While the VQ and the VQ(ECN) primitives administer the
assigned rates more smoothly, they are not scalable to a large number
of flows. They are a very scarce resource on the Tofino ASIC. The
Nimble primitives achieve similar performance as VQ and VQ(ECN)
without the associated overhead of dedicated queues.

Next, Figure 5¢ and 5d show the performance of NM and LM.
These figures show that both logical and native meters can enforce
a wide range of different rate-limits. Also, this experiment use a
multiply table that groups entries based on the first four significant
bits, and a total of 764 multiplication entries were used for all the
rates in Figure 5d.

6.1.2 Application Behavior. To demonstrate that Nimble is able
to provide bandwidth reservations for competing programs without
any dedicated queuing resources, we performed experiments where
the 100Gbps line-rate is subdivided amongst competing applications:
the Apache httpd web server [1], Redis [5], and iperf [3]. End-hosts
run DCTCP, and switches perform ECN-shaping.
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Figure 5: A comparison of the accuracy of four different rate-limiting approaches.

Latency Percentile(ms)
Program Apache 50th,99th  Redis 50th,99th

DCTCP || 450 2032 1352 | 20.54
LM || 40 238 137 | 492
vQ || 40 239 25 9.32
VQ(ECN) || 45 74 215 | 779
NM || 35 281 114 | 1569

Table 2: Latency Distribution

To generate congestion, there is a 2:1 incast to a single server.
One of the clients is a malicious UDP client, and the other is web
server sending data to the same destination. We assign a 49Gbps rate
for the iperf tenant and a 49 Gbps for the Apache tenant. There are
16 UDP clients with 8 parallel connections, and there are 6 instances
of ab with 10 parallel connections requesting data from the web
server.

Figure 6 shows the results of this experiment. With the DCTCP
baseline we observed a large number of request timeouts, and the
throughput of the Apache webserver achieves significantly less
throughput than its fair share as it is starved by the competing UDP
flows. In contrast, all four of the different Nimble configurations
provide performance isolation.

Next, we perform an experiment with Redis, and iperf to evaluate
if Nimble can provide low latency without any dedicated queuing
resources. To generate load, we run redis-benchmark with 50 clients.
The results are shown in Table 2. DCTCP does not provide per-
formance isolation, and therefore, suffers from high tail latency, in
both Redis and iperf. In contrast, all the other schemes (LM, VQ,
VQ(ECN), NM) provide provide performance isolation and achieve
about an order of magnitude reduction in tail latency. We perform
a deeper analysis of their queuing behavior in Section 6.3. The key
takeaway here is that Nimble achieves similar performance as virtual
queues without requiring dedicated queues. Thus, Nimble has the
potential to scale to a large number of TCs.

6.1.3 Multiple Congestion Control Algorithms. Networks like
IXPs and ISPs may carry traffic from various transports and conges-
tion control algorithms. To evaluate this, we generate traffic from
three nodes. Each node is assigned its own TC. Node 1 uses TCP
Cubic (disabled ECN marking), node 2 uses an RDMA NIC to use
DCQCN, and node 3 uses DCTCP. The RDMA traffic has a 40
Gbps rate limit, and the other two transports are each subject to 25
Gbps rate-limits. For DCQCN and TCP Cubic traffic, we perform
probabilistic ECN marking and dropping, respectively.

The results from this experiment are presented in Figure 7. With-
out Nimble, there is not a stable point of sharing between DCTCP
and Cubic, and RDMA traffic receives significantly worse than its

Figure 6: Data center applications
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Figure 7: Experiment with Different Congestion Control Algorithms

Program 7-Tuple 5-Tuple 2-Tuple No Class
# Limiters 100K/4K 100K/4K 100K/4K 100K/4K
NM || 9/4 8/4 7/4 42
LM || -8 9/8 9/8 17

Table 3: Switch Program Overheads (# Stages)

fair share. In contrast, with Nimble, the different congestion control
algorithms achieve a more stable throughput, and each TC achieves
the appropriate rate-limit.

6.2 Scalability Analysis

To demonstrate Nimble is scalable, we analyze the overheads of
supporting 100K and 4K rate-limiters per-switch, and we perform
testbed experiments with S0K rate-limiters.

6.2.1 Switch Stage Overheads. To demonstrate scalability, we
created programs for the Tofino switch that provide 100K and 4K
per-switch rate-limiters for both native and logical meters. Because
these programs compile, they are guaranteed to run at line-rate [12],
so this demonstrates that Nimble is able to scale.

To understand the overheads of Nimble, we analyzed the number
of stages required to implement NM and LM switch programs. Ta-
ble 3 presents the resource allocation in terms of number of RMT
stages for different variants of Nimble. Because supporting a larger
number of rate-limiters may require additional stages, this table
shows results for programs that provide both 100K and 4K rate-
limiters. Similarly, because different approaches to network clas-
sification have different overheads, this table shows the overheads
of using a different number of inputs to the lookup tables used for
routing and classifying packets into TCs.

In Table 3, the overheads of meters range from 2-9 stages. The
only program that did not compile was 100K rate-limiters with a
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Figure 8: Large number of traffic classes

7-tuple lookup. Also, the final column shows the overhead of just
doing rate-limiting without any traffic class assignment per packet.
Additionally, these results are for using LM with a single rate meter.

All the results in Table 3 use exact key matches for classification.
We also explored the corresponding overheads of using ternary key
matches. We were able to build a switch program that supports 40K
and 20K rate-limiters when using a 4-tuple ternary match with NM
and LM, respectively.

6.2.2 50K Active Traffic Classes. To demonstrate that Nimble
can accurately enforce rate-limits even while supporting a large
number of TCs, we performed an experiment where a single server
generates packets from 50K different TCs and each TC is subject to a
rate-limit of 1 Mbps. We use BESS [2, 26] to generate UDP packets
using 10 cores each in a round robin fashion, and we use 9KB jumbo
frames because the server is otherwise not able to generate packets
at 100 Gbps. In this experiment, each TC should ideally receive
1 Mbps of throughput after rate-limiting. Without rate-limiting, each
TCs fair share is 2 Mbps, although some TCs may send faster.

The results from this experiment are presented in Figure 8. Fig-
ure 8a plots the average throughput of 4 random TCs, and Figure 8b
is a CDF of all of the throughputs of the 50K TCs. These figures
show that meters can effectively enforce rate-limits even at a large
number of flows and low rate-limits.

6.3 Simulation

We utilize simulation to evaluate performance at scale, to isolate the
performance improvement of our centralized controller, to analyze
the effect of updating rate limiters, and to understand the trade-offs
in multiplication tables.

6.3.1 At-scale performance. To study performance at large
scales, we simulate a 128-node 3-tier fat-tree with two TCs and
closed-loop tenants generating randomized all-to-all traffic where
tenant A generates eight times more flows than tenant B. We ran-
domize senders and receivers every 1 ms and periodically introduce
short flows from tenant B to measure network delay. We use a fair-
share network policy between TCs. Our simulation settings (e.g.,
ECN thresholds) are as specified in Section 5. We compare four sys-
tems: TCP and DCTCP (without in-network rate limiters), Virtual
Queues (VQ(ECN)), and Nimble with NM and ECN-shaping. In our
implementation, we do not limit the number of virtual queues.
Figure 9 shows the throughput of tenants (normalized per server)
and the CDF of network delay (from short flows). From Fig-
ures 9(a)(b), we see that TCP and DCTCP suffer from unfairness.
Tenant A generates more flows and gets more throughput. Virtual
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Figure 10: Realistic workload with varying loads at scale

Queues and Nimble achieve close to a fair share. Figure 9(c) shows
the CDF of short flow completion times. Here, we see that Virtual
Queues and Nimble achieve a much tighter distribution (i.e., lower
queuing delays) by isolating tenant B from the aggressive tenant A.

Next, we show an open-loop experiment with a fair-share policy
between two tenants. Tenant A generates short (16 KB) and long
flows (64 MB) with a skewed distribution. Figure 10 shows the
tail latency and throughput for four systems: TCP, DCTCP, Virtual
Queues, and Nimble. We clearly see that while TCP and DCTCP
suffer from high latency and low throughput, Nimble performs as
well as virtual queues without the associated hardware costs of
virtual queues. Figure 13 shows the CDF of queue lengths of a port
over time for the four systems when running preceding workload
at 70% load. We clearly see that Nimble isolates the tenants and
achieves much shorter queue lengths as compared to other systems
including virtual queues without requiring physically distinct queues
for each tenant.

6.3.2 Global vs. Local Policy Enforcement. In this section,
we isolate the effect of using global knowledge in a centralized
controller to compute rates as opposed to computing rates locally in
switches based on the presence of paths. For this study, we simulate
a simple leaf-spine topology consisting of three leaf switches that
each connect to two servers on downlinks and two spine switches
on uplinks; all the links operate at 100 Gbps. We simulate three
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tenants (T'enant 1-3). Network policy is set such that T'enant 1 is
high priority, whereas T'enant 2 and T'enant 3 are lower in priority
than T'enant 1, but their weights are 2 and 3, respectively (see
Figure 11a). The tenants generate a new set of random paths every
50 ms. Tenant 1 has two paths and T'enant 2 and Tenant 3 have
one path each.

Figure 12 shows the throughput of three tenants with (1) local rate
computation that honors network policy but it is agnostic to paths
being bottlenecked in other switches (Figure 12a), and (2) global rate
computation based on our algorithm (Figure 12b). The plot shows
four 50 ms intervals that capture a diverse set of traffic contentions.

In the first 50 ms (shown in Figure 11b), one path from Tenant 1
competes with T'enant 2 and T'enant 3 at the switch L2; the
other path from T'enant 1 has no contention. The two paths from
Tenant 1 are bottlenecked at the source , and cannot individually
fully utilize the link capacity. Since the local assignment at switch
L2 and switch L3 is agnostic to other bottlenecked paths, it assigns
100% of line rate for each of the two paths of the high priority tenant
Tenant 1 and throttles Tenant 2 and Tenant 3 to 0%. However,
because the two T'enant 1 paths contend at the source, they can
only use 100% together (50% each). Thus, the local assignment
wastes bandwidth as Tenants 2 and 3 are fully throttled even though
there is spare bandwidth of 50% at switch L2. In contrast, our global
allocation finds out that the two T'enant 1 paths are each bottle-
necked to 50% of line rate and assigns the remaining 50% of line
rate to T'enant 2 and T'enant 3 in the ratio 2 (% X 50Gbps) and 3
(% x 50Gbps) respectively.

In the second interval, T'enant 2 and T'enant 3 compete at the
same port but they do not share any port with T'enant 1. In this case,
the local and global allocations are identical the tenants share the
capacity proportional to their weights. In third and fourth intervals,
one path of T'enantl competes with T'enant 3 and Tenant 2,
respectively. As before, T'enant 1 is limited at the source to 50% of
line rate. The local allocation being agnostic of global bottlenecks
assigns the full line rate to T'enant 1 and throttles the other tenant,
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which is clearly sub-optimal. On average, we found that global
rate allocation achieves 24% higher network utilization than local
allocation.

6.3.3 Updating Rate-Limiters. To study path churn, we use a
leaf-spine topology with 10 leaf switches, 5 spine switches, and
10 servers per rack (100 servers). On this topology, the worst case
total number of rate limiters that could need to be updated in edge-
based scheme and Nimble are 9900 and 400, respectively, which is
a 24x reduction. Additionally, to study the average case reduction
in updates, we generate random traffic with the same open-loop
workload as before at 70% load and count the number of rate-limiters
updated in every 10 ms interval. Figure 14 shows the number of rate-
limiters updates for both the schemes. Nimble reduces the number
of such updates by about a factor of 10x. By reducing the number of
updates, Nimble reduces the bandwidth loss during transition.

We now study the performance and scalability of edge-based
and in-network rate limiters (Nimble). Figure 15(a) shows how
long it takes for the throughput to converge as we reduce/increase
rate limiter values for a leaf-spine topology with 256 servers using
random all-to-all traffic. We model the delay to program rate limiters
as a normal distribution with a mean of 1 ms and variance of 10 ms.
At about 50 ms, we reduce the rate limiter values to 50% and
at about 80 ms, we restore the values to 100%. We see a clear
difference in the performance of the two designs. Because edge-
based designs require more updates, which would likely take longer
time, they converge slowly. Slower convergence ultimately would
lead to under-utilization of capacity and/or congestion. Figure 15(b)
shows the worst case convergence time to complete updating all the
rate limiters as we vary the network size. For worse case, we generate
a full mesh traffic as opposed to Figure 15(a), which uses a random
all-to-all traffic. In an edge-based design, there is one rate limiter for
every combination of send-receive pairs (per tenant/traffic class). So,
in the worst case, all of them may need to be updated, which is O(n2)
for n servers. In contrast, Nimble requires rate limiters only at the
output ports of switches (per tenant/traffic class) and so the update
complexity is O(n). Our results are in line with this observation
and we see that the time to finish updating the rate limiters grows
at a much faster rate in an edge-based design whereas it remains
fairly low for Nimble. Thus, Nimble achieves better scalability than
edge-based designs.

We study the effect of dynamic control loop update latency on
performance with a dumbbell topology and two tenants. Tenant A
sends data between the top two servers, and Tenant B sends data
between the bottom two servers. The rate-limiters are set to share
the 100 Gbps bottleneck link equally between the two tenants. At
the start, the servers on the left send data to the servers on the
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right. At 0.04 seconds, the second server belonging to tenant A
stops. Ideally, the rate-limits should be updated to 33 Gbps for
Tenant A and 67 Gbps for Tenant B. We compare three systems: (1)
Rate-limiters are not updated (Static), (2) Rate-limiters are updated
instantaneously (Dynamic (Ideal)), and (3) Rate-limiters are updated
after 10 ms (Dynamic w/ delay).

Figure 16 shows the aggregate throughput and queue size of the
port in the leftmost switch that connects to the other switch for the
three systems. From Figure 16(a), we see that Static fails to achieve
100% throughput, whereas Dynamic w/ delay quickly catches up
with Dynamic (Ideal) after 10 ms of delay. From Figure 16(b), we
see that Static and Dynamic w/ delay underflow at around 0.04 s,
which causes loss of throughput. After 0.05 s, all the three systems
converge to their desired rates and queue size becomes close to zero.

6.3.4 Overhead of precision in multiplication. There is a trade-
off between the number of table entries and the error in rate calcula-
tion for NM. We characterize the maximum error and state overhead
as a function of the number of significant bits in Figure 17. We ob-
serve that the error drops significantly after 5 bits and the overhead
remains minimal until 25 bits, giving a large operating range for
Nimble.

To quantify the effect of limited precision, we simulated a dumb-
bell topology and set rate-limits to be 50% of line rate and compare
three systems: perfect multiplication and two other systems that
approximate multiply tables with number of significant bits (see
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Algorithm 1) being 15 and 20, respectively. Figure 18 shows the
throughput of flows over time for the three systems. We observe that
the system with 15 bits varies in throughput more than the others
due to errors in rate calculation. Fortunately, the error is small and
all of these three systems perform with 5% of each other on average.

6.3.5 TCP-Friendliness. We want to ensure that (1) Nimble en-
forces the rate correctly, (2) the rate converges to the desired value
and does not oscillate, and (3) the packet losses happen only during
the rate transition. We conducted an experiment with a dumbbell
topology and traffic flowing from left to right. We start the experi-
ment without any rate limits. At 50 ms, we set the rate limit to be
50% of line rate; at 100 ms, we remove the rate limit; at 150 ms,
we set a lower rate limit of 20%. Figure 19 shows the throughput
and number of packet drops over time for two TCP variants: DCTCP
and TCP New Reno. Both variants converge to desired rates and
remain stable.

7 RELATED WORK

Wang et al. created a P4 implementation of rate-limiting that uses
meters and ECN marking [65]. However, their implementation uses
a timer to refill tokens, and this approach is not scalable to a large
number of rate-limiters or fast rates. Moreover, because conges-
tion is a common occurrence in many of the real world networks,
there is high likelihood of the refill tokens being dropped before
processing, which would cause sub-optimal performance. Further,
the number of hardware timers and traffic classes are limited, so
there are challenges to scaling their idea to a large number of traffic
classes.

Brown et al. [13] discuss the problems with congestion control on
the Internet, and Nimble provides new mechanisms that can support
the types of isolation they argue for.

Nimble is complementary to improvements to programmable
virtual queuing like PIFO [58] and PIEO [54]. Nimble can rate-limit
leaf TCs while policies that aggregate TCs can be implemented with
scheduling queues.

Nimble is also complementary to advances in rate-limiting at end
hosts like Carousel [49] and Eiffel [50]. Similarly, Loom [61] and
SENIC [47] are new NIC designs that offload the rate-limiting to
the hardware. However, these systems do not eliminate the need for
in-network rate-limiting.

AC/DCTCP [28] and VirtTCP [17] are both complementary to
Nimble. In virtualized cloud environments, these systems can be
used to ensure that flows from non-compliant tenants and tenants
that do not implement DCTCP can still be forced to use a policy-
compliant congestion window.



Similarly, TIMELY [44] and Swift [39] are a new delay-based
congestion control algorithms that are also complementary to Nim-
ble. With shaping, queue build up can lead to unacceptable increases
in latency, and TIMELY and Swift can detect this buildup and react
at end hosts.

Nimble is related to systems that use rate-limiting as a primitive
to compute policy-compliant rates. For example, BWE is used in
Google’s B4 to allocate bandwidth [31, 38]. However, the algorithm
used for computing rate-limits is not applicable to Nimble because
their algorithm is designed only for edge-based rate-limiters and
does not consider the placement of in-network rate-limiters. Accu-
racy could be improved and rate limiter update frequency could be
reduced if Nimble was used to enforce rate-limits inside the network.

Nimble is also complementary to Silo [35]. Nimble can be used to
improve upon its end-host based rate-limiting scheme, and Nimble’s
algorithm could be adapted to provide bandwidth reservations as
in Silo. Additionally, EyeQ [36] and Hull [9] are two additional
systems that compute rate-limits that can be enforced inside the
network by Nimble.

Chen et al. propose a fine-grained way to measure queue occu-
pancy [15] but it’s not straightforward to infer the rate of a particular
flow from the queue length(or queueing delay). Inferring rate is a key
component in providing performance isolation. This further shows
the need for a system like Nimble.

Finally, there is existing work on creating building blocks in
programmable switches for some congestion control and load bal-
ancing protocols [51]. Nimble uses logical meters as primitives
which is more generally applicable. We leverage logical meters and
ECN shaping for global network policy enforcement and present
an algorithm for computing policy-compliant rates. This [51] work
also introduces approximate multiplication, a fair comparison of
TCAM and SRAM resources to determine the efficacy between
the two approaches is not possible as they use a Cavium Xpliant
CNX880xx [14] switch.

8 CONCLUSIONS

A significant problem facing today’s networks is that there is no
scalable, accurate, and TCP-friendly approach for in-network rate-
limiting to enforce network policies. To address this deficiency,
this paper introduces the design of Nimble, a new system that pro-
vides new configurable mechanisms for accurate, scalable, and TCP-
friendly in-network rate-limiting. As networks continue to grow in
scale and speed and as multi-tenancy becomes more common, flex-
ible in-network rate-limiters such as Nimble will be necessary to
meet the stringent service demands of applications.

The contributions of Nimble are introducing logical meters (LM),
and a new algorithm for enforcing complex network-wide isola-
tion policies. To evaluate Nimble, we perform experiments with a
100Gbps Barefoot Tofino switch and the ns-3 simulator. We demon-
strate that native meters (NM) and logical meters (LM) are imple-
mentable on commodity switches and scale to 100K independent
rate-limiters. ECN-shaping overcomes the limitations of shaping
and policing and enables end-hosts to converge to policy-compliant
rates. When compared with edge-based rate-limiting, Nimble re-
sults in 10x—24x fewer rate-limiter updates. When compared with

local per-switch enforcement, Nimble results in more accurate policy
enforcement and higher network utilization (24%).
Acknowledgments: We would like to thank our shepherd Eric
Rozner and the SOSR reviewers for their comments that helped
in improving our paper. This work was supported by NSF award
CNS-2008273.
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