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Abstract—Today, given data center networks’ sizes and bursty
workloads, it is likely that at any moment there is packet loss
due to some type of failure in the network. This paper focuses
on solving the two most common types of data center network
failures: congestion and routing failures. Recently, there has been
demand for lossless Ethernet (DCB) in data center networks as a
solution to congestion failures. However, DCB complicates fault
tolerance by introducing a new type of failure, deadlock. If DCB
is enabled, then all routing must be deadlock free. To the best
of our knowledge, this paper describes the first ever deadlock-
free approaches to local fast failover that can be combined
with DCB, DF-FI and DF-EDST resilience. Moreover, in the
evaluation, this paper shows that DF-EDST resilience, which
is the paper’s main contribution, can improve fault tolerance
without adversely impacting performance when compared to a
state-of-the-art approach to deadlock-free routing. If, however,
a small reduction in aggregate throughput is acceptable, then it
is possible to build routes such that only 0.00001% of the total
flows in the network are likely to fail given 16 edge failures on
networks with 1K-4K hosts.

I. INTRODUCTION

Given both the size of today’s data center networks and the
bursty traffic patterns of many data center applications, at any
point in time there is likely to be packet loss due to some kind
of network failure. This paper focuses on simultaneously ad-
dressing the two most common kinds of failures in data center
networks: congestion failures [1]-[3] and routing failures [4].
Congestion failures occur when the incoming load for a link
is greater than the outgoing capacity. Routing failures occur
when the physical network has a connection between two
endpoints but there does not exist an installed route between
them that does not use a failed link or switch, or, even worse,
when packets are forwarded in a loop.

Recent research has proposed enabling lossless Ethernet
(DCB) within data center networks [5]-[9]. Not only does
DCB prevent congestion failures due to traffic patterns such as
incast [6], [7], by enabling the elimination of TCP slow start,
it also promotes shorter completion times for the medium-
sized flows [6] that are common under many data center
applications [1], [3]. However, DCB does not address routing
failures. Concurrently, there is also much research on devel-
oping implementations of local fast failover to prevent routing
failures [10]-[20]. In part, this research is motivated by a
recent study finding that other existing failover approaches
still lead to significant packet loss [4]. Ideally, one of the
implementations of local fast failover could be combined with
DCB to protect against both routing and congestion failures.
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Unfortunately, enabling DCB makes a new kind of failure,
deadlock [21], possible, and no existing implementation of
local fast failover guarantees deadlock-free routing.

Because a single group of deadlocked switch ports can
render a data center network unusable, avoiding deadlocks is
essential. Current approaches to deadlock-free routing when
DCB is enabled either rely on minimal routing on fat tree
topologies [5] or restricting routes to the paths defined by
a set of edge disjoint spanning trees (EDSTs) [6]. Although
some implementations of local fast failover have utilized either
fat trees [16] or EDSTs [17], [20], this does not inherently
guarantee deadlock-free routing. For example, an implemen-
tation might use non-minimal routes on a fat tree [16]. And,
in fact, prior implementations using EDSTs to handle routing
failures [17], [20] are not deadlock free.

To enable the use of DCB with local fast failover, this
paper introduces the first ever approaches to local fast failover
that guarantee deadlock-free routing for arbitrary network
topologies. Our first approach takes the routes built by MPLS-
FRR [13], Plinko [10], or FCP [12], all of which implement
what we call failure identifying (FI) resilience, and assigns
these routes to the network’s virtual channels so as to prevent
deadlock. In order to implement this approach, which we
call DF-FI resilience, we modified an FI resilient routing
algorithm from Stephens et al. [6] so that it never routes
packets over a port more than once and adapted the virtual
channel assignment algorithm from Domke et al. [22] so
that it applies to backup routes. Although DF-FI resilience
is desirable because it does not impact performance, we
ultimately conclude that it has limited scalability because of
its virtual channel requirements. For example, tolerating two
arbitrary failures on some 1024-host topologies requires more
than 8 virtual channels, which is the total number of virtual
channels in DCB [23]. Moreover, this approach conflicts with
the use of virtual channels in DCB for prioritizing traffic.

In contrast, our second approach, which is the main con-
tribution of this paper, overcomes the scalability limitations
of DF-FI resilience because it does not require the network
to provide virtual channels. Under this approach, which we
call DF-EDST resilience, packets transition between the paths
defined by different EDSTs on network failures. Although
transitioning packets arbitrarily between trees can lead to dead-
locks, we prove that if the graph of allowed tree transitions
is acyclic, then the resulting forwarding function is deadlock
free. In effect, DF-EDST resilience removes all of the tree



transitions that could cause cyclic dependencies from EDST
resilience. Nonetheless, if the network provides even a limited
number of virtual channels, DF-EDST resilience can exploit
them to improve performance.

Given that we prove that DF-EDST resilience is deadlock
free, the main questions that we will seek to answer are: What
is the performance of DF-EDST routing and how fault tolerant
are DF-EDST routes? However, the answers to these questions
are dependent on a trade-off made in the construction of the
tree-transition graph (TTG). Because the TTG must be acyclic,
a tree can be used as an initial tree to increase performance
through path diversity or as a backup tree to support fault
tolerance for all routes, but not as both. However, even if all
trees are used as initial trees, DF-EDST can still improve fault
tolerance. This is because the initial trees may be connected in
the TTG, and only traffic that is forwarded along the one initial
tree in the TTG that does not have a successor cannot tolerate
at least a single link failure. Moreover, if trees are set aside for
fault tolerance at the cost of a small reduction in performance,
each backup tree is guaranteed to protect all routes against any
additional link failure. Further, not all failures affect all routes.
Each backup tree also often reduces the expected probability
of routing failure by an order of magnitude.

All of these results apply to arbitrary topologies. If a tree
topology is used, then it is possible to do even better with
respect to throughput. With a tree topology, minimal routing
subject to any traffic engineering scheme may be used on one
virtual channel and still be guaranteed deadlock free. Then,
when a packet encounters a failure, it may transition to another
virtual channel and follow a set of backup routes defined by
DF-EDST resilience without any potential for deadlock. In
effect, the only limits on fault tolerance are the connectivity
of the network and the amount of forwarding table state.

In summary, the contributions of this paper are as follows:

Proving that DF-EDST resilience is deadlock free: In this
paper, we prove that DF-EDST resilience is deadlock free as
long as the graph of allowed tree transitions is acyclic.

Analyzing the fault tolerance of DF-EDST resilience: In
this paper, we analyze the worst and best case fault tolerance
of DF-EDST resilience. In the worst case, we show that if the
height of the TTG is h, then DF-EDST is (h — 1)-resilient. In
the best case, we show that DF-EDST resilience can tolerate
as many failures as the most number of trees reachable from
an initial tree.

Evaluating DF-EDST resilience: We evaluate the trade-
off between performance and fault tolerance for variants of
DF-EDST resilience with different TTGs. We find that even
on arbitrary topologies it is possible both to provide high
throughput lossless forwarding and to provide forwarding
where only 0.00001% of the routes in the network are likely
to fail given 16 arbitrary edge failures and topologies with
1K—4K hosts.

The rest of this paper is organized as follows. First, Sec-
tion II introduces background information on deadlock-free
routing and fault tolerant routing. Next, Section III introduces
DEF-FI resilience, and Section IV introduces DF-EDST re-

silience. Section V and Section VI present our methodology
and evaluation respectively. We discuss related work in Sec-
tion VIIL. Finally, we conclude in Section VIII.

II. BACKGROUND

This section provides background first on deadlock-free
routing and then on fault-tolerant routing, focusing on data
center networking. Although this paper is motivated by earlier
work that uses lossless Ethernet to improve TCP and appli-
cation performance [5], [6], [24], [25], we do not discuss
these projects in detail. The specifics of the congestion control
algorithm used in the network is independent of routing, so
any of these approaches are implementable as long as routing
is guaranteed to be deadlock free. Finally, there is a large
amount of research on fault-tolerant routing [10]-[20], so we
limit our discussion to the most closely related projects.

A. Deadlock-Free Routing

Instead of dropping packets when congestion occurs, loss-
less Ethernet, or DCB, provides pause frames, which allow
congested ports to apply back pressure on the upstream ports
causing the congestion. Before a buffer at an input port is
overrun, the NIC/switch port will send a pause frame to the
output port causing the congestion, which forces it to stop
sending packets for long enough for traffic to drain from
the network. As congestion occurs, these pause frames can
cascade through the network. Consequently, it is possible for
the network to reach a forwarding deadlock, which can render
the network incapable of forwarding traffic [21]. Because of
this, the forwarding function formed by all of the routes in the
network must be deadlock free if DCB is enabled. Deadlock
freedom can be thought of as an extension of loop freedom.
While loop freedom on a hop-by-hop routed network requires
that there is no cyclic dependency between the ports used to
route a single flow, deadlock freedom requires that there is no
cyclic dependency between the ports used to route all flows.

In addition to introducing the first deadlock-free routing
algorithms, Dally and Sietz [21] also proved a sufficient
condition for a forwarding function to be deadlock free. In
general, they showed that deadlocks can arise whenever there
exists a cycle in the network’s channel dependency graph.
To formally describe this concept, let G = (V,E) be a
bi-directional graph, where V' = {1,...,n} is the set of
vertices, {u,v} € E is the set of bi-directional edges, and
C = {(u,v), (v,u)V{u,v} € E} is the set of unidirectional
channels (ports/buffers), two for each edge. Let (cy,...,cs) €
R be the set of all routes installed in the network, with each
route being represented as the sequence of channels that it
uses. Let D = (C, K) be the network’s channel dependency
graph, where C' again is the set of network channels and
K = {(ci,ciy1)Vi € {1,...,8s — 1}¥(cy,...,c5) € R} is
a set of directed edges representing the channel dependencies
created by R. Under this model, Dally and Seitz proved that
a network is deadlock free if D is acyclic.

While there is a significant amount of research on deadlock-
free routing algorithms, those that are applicable to Eth-



ernet use two techniques, either independently or in com-
bination [26]. The first technique is to restrict routing to
avoid channel dependency cycles. The second technique is
to divide each channel into multiple deadlock-independent
virtual channels that share the same physical channel and
then assign routes to virtual channels so that the forwarding
function is deadlock free. However, this second technique is
only feasible if the required number of virtual channels is
less than or equal to the number of virtual channels provided
by the underlying hardware. In DCB, there are 8 virtual
channels [23]. In Infiniband, there may be up to 16, although
recent hardware has only supported 8§ [22].

A relevant deadlock-free routing algorithm that uses the
first technique is Up*/Down* [27] and its many variants [26].
Essentially, Up*/Down* builds a spanning tree of the network
and assigns one direction of each link as up and the other
as down based on this spanning tree. Because routes are only
allowed to traverse up channels followed by down channels, in
other words, a route cannot transition from a down channel to
an up channel, there can never be a channel dependency cycle.
This ensures that routing is deadlock free. Further, proving
that minimal routing on fat trees is deadlock free is similar to
proving that Up*/Down* routing is deadlock free [28].

To improve the performance of deadlock-free routing on
well-connected data center topologies, recent research [6]
has proposed using EDSTs, of which there are k/2 in a k-
connected topology. While Up*/Down* builds a single tree and
assigns directions to all links based on this tree, this approach
builds multiple disjoint trees and assigns directions to links
based on the tree that the links are a member of. Further, the
performance of using EDSTs for deadlock-free routing can be
improved by installing routes derived from different sets of
EDSTs on different virtual channels. This increases the total
number of available paths while still remaining deadlock free.

The most relevant deadlock-free routing algorithms that
use virtual channels are LASH [29] and DFSSSP [22]. Both
build paths between all sources and destinations oblivious
to deadlocks and then use a heuristic to break any cyclic
dependencies by assigning paths to virtual channels. While this
approach allows for high performance routing, the major draw-
back is that the number of required virtual channels increases
with topology size. Because the expected time complexity of
DFSSSP is smaller than that of LASH, we focus on DFSSSP.
Another relevant approach assigns IDs to switches, requiring
that packets change virtual channels when they are forwarded
to a switch with a lower ID than the current switch [30].

B. Fault Tolerant Routing

A routing failure occurs when there exists a path in the
underlying network topology for a flow, but there does not
exist an installed route that does not use a failed link or
switch. Routing failures are often addressed by computing
and installing a new end-to-end route, and this can be done
with either distributed or centralized protocols. However, it is
becoming increasingly important to handle routing failures at

the switch local to the failure so as to avoid dropping packets
while computing a new end-to-end route.

We consider two different approaches to providing local
fast failover that can protect against multiple link failures
on arbitrary topologies. The first approach, which we call
failure identifying (FI) resilience, includes Plinko [10], MPLS-
FRR [13], and a variant of FCP [12]. These approaches
allow for arbitrary routing, even for backup routes, as well as
arbitrary levels of resilience. This is because these approaches
all mark packets so that the set of failures a packet has already
encountered may be identified from its headers. This then
enables a routing algorithm that can recursively build backup
routes that protect against the failure of any link in any of the
currently considered routes, if the routes exist. This process
starts with the default routes and continues to build backup
routes for the previous round of backup routes until the desired
level of resilience is achieved. Because failures are explicitly
marked in packet headers and are never removed, it is possible
to guarantee that a packet in FI resilience will eventually reach
the destination or be dropped because no path exists.

Yener et al. [20] introduced the concept of routing along
edge-disjoint spanning trees (EDSTs) to provide fault toler-
ance. Because EDSTs are spanning trees, an alternate tree can
be selected regardless of which switch needs to route around a
failure. Because EDSTs do not have any edges in common, an
alternate tree is guaranteed to avoid the edge that caused the
previous tree to fail. In a k-connected topology, there exist
k/2 EDSTs, and these k/2 EDSTs can be used to protect
against the failure of k/2 — 1 arbitrary edges [17]. To ensure
that packets are dropped in the event of a partition, a k/2
bit wide bitfield is added to the packet headers, and when a
failed edge is encountered, the appropriate bit in the bitfield
is set to represent that the tree the edge is a member of has
failed. However, if the trees are arranged in a line and traversed
in order, then tracking failed trees in a packet header is not
necessary, a fact noted by Elhourani et al. [17].

Lastly, Feigenbaum er al. [11] introduced some important
theory on routing failures. First, they define the concept of a
t-resilient forwarding pattern, which is a forwarding pattern
that, even given t arbitrary failures, defines a forwarding
path between any two hosts as long as there exists a path
between them in the underlying topology. Further, a ¢-resilient
forwarding pattern never defines any infinitely long forwarding
paths, i.e., forwarding loops. Given this definition, Feigenbaum
et al. proved that, even if packets are not modified to identify
failures, then there always exists a 1-resilient forwarding
function, but there does not always exist an oco-resilient one.

III. DF-FI RESILIENCE

This section discusses the implementation of DF-FI re-
silience, a deadlock-free variant of FI resilience [10], [12],
[13]. Because FI resilience does not consider cyclic channel
dependencies when building routes, a set of resilient routes
could easily form a cyclic channel dependency, which can
lead to deadlock. However, FI resilience can made deadlock
free with a few simple changes, although doing so has



the drawback that it requires a variable number of virtual
channels. Specifically, implementing DF-FI resilience involves
modifying the FI resilient routing algorithm so that it never
has a packet use the same arc twice, and modifying the
virtual channel assignment algorithm of Domke et al. [22]
so that it assigns route branchings to virtual channels instead
of individual routes.

The need for the first change is clear. In FI resilience, a route
could be deadlocked on itself if it ever traverses the same link
in the same direction twice. However, in FI resilience, packets
may be in flight following multiple different routes for a single
source and destination immediately after a failure, and any
route with in-flight packets can cause a deadlock. To handle
this, we assign route branchings to different virtual channels
instead of routes. A route branching is the graph of routes that
a packet can follow after it has been forwarded by a top-of-
rack (TOR) switch across a port. Because packets may be in
flight down any of the routes in a branching and packets are
not allowed to change virtual channels to avoid dependencies
across multiple virtual channels, a route branching is the
smallest unit that is assignable to a virtual channel.

IV. DF-EDST RESILIENCE

On the other hand, if routing is restricted, then it should be
possible to provide deadlock-free local fast failover without
the use of virtual channels. However, the principle difficulty
in doing so is in providing a useful level of fault tolerance as
well as high throughput forwarding.

EDSTs have previously been used to provide both deadlock-
free routing [6] and fault tolerant routing [17], [20]. However,
allowing packets to transition arbitrarily between trees prevents
EDST resilience from being deadlock free.

To solve this problem, we introduce DF-EDST resilience.
In DF-EDST resilience, routing is not only restricted to use
paths defined by the EDSTs, but the graph of allowed tree
transitions is restricted to be acyclic. This paper proves that
this is sufficient to guarantee deadlock freedom.

In the rest of this section, we first present a proof that
DF-EDST resilience is deadlock-free and then analyze its
resilience and state requirements. After that, we discuss the
inherent trade-off between performance and resilience that is
introduced by restricting tree transitions and introduce several
different tree transition graphs (TTGs).

A. DF-EDST Analysis

In DF-EDST resilience, all routes follow the paths defined
by a set of EDSTs until a failure is encountered. Once a
failure is encountered, a packet may only transition to the
paths defined by the trees that are successors of the current
tree in a tree transition graph (TTG). Given this forwarding
model, we would like to prove the following theorem.

Theorem 1 DF-EDST resilience is deadlock free if the TTG
is acyclic.

In order to prove this theorem, we use two properties. The
first is that, if there exists a total ordering of channel requests,

then the forwarding function is deadlock free. This follows
from Dally and Seitz [21]. If there exists a total ordering
of channel requests, then the channel dependency graph is
acyclic, and thus the forwarding function is deadlock free.

The second property that we use is that there exists a
total ordering of channel dependencies within an EDST. This
follows from the proofs that Up*/Down* routing and routing
on trees is deadlock free [27], [28]. The channels in an
EDST can be divided into two groups, up channels and down
channels. There exists a topological ordering of both the up
and down channels, and the set of up channels is ordered
before the down channels. Thus, there exists a total ordering of
channel requests c,1 < ... < Ccyp—1) < Ca1 < ... < Cg(n_1)
in a spanning tree of a network with n vertices.

Given these two properties, proving Theorem 1 is straight-
forward. Given a set of EDSTs T, every channel ¢ € C
is guaranteed to be a member of at most one tree. Let C;
be the set of all channels for a given tree ¢ € T. Because
packet transitions between trees are restricted by a TTG, which
is a DAG, there exists a topological ordering of the trees.
This implies that there is a topological sorting of the set of
the channels that belong to trees on a k-connected topology,
C1 < ... < Cy/p. Thus, there must exist a total ordering of
channel requests c1u1 < ... < Crgm-1) < -+ < Cr/2)ur <
... < C(k/2)d(n—1) ON a k-connected topology with n vertices.
Thus, the forwarding function must be deadlock-free.

Further, DF-EDST resilience does not need to modify
packet headers, either to mark the current tree or tree failures
in a packet header. Because each input edge only belongs to a
single EDST, the input edge of a packet identifies the current
EDST. Because the TTG is acyclic, a packet is guaranteed
to either reach its destination or be dropped as it transitions
between trees as it will eventually reach a leaf tree that does
not have a valid transition to any other EDST.

Theorem 2 If a network uses the forwarding function
fo(d, ey, bm) — e, where d € D is a destination, e, € E, is
the input port of a packet, and bm is a bitmask of the local port
status, then DF-EDST resilience can always build a |k/2—1]-
resilient forwarding pattern on a k-connected topology.

To understand this theorem, consider a TTG that is a line.
Because a k-connected topology contains |k/2]| EDSTs, there
are |k/2] nodes in the TTG. Because EDSTs are spanning
trees, regardless of which link in the tree fails, it will always
be possible to transition to another tree. Because a packet
starts forwarding on t; and only transitions from EDST ¢;
to ¢; when it encounters a single edge failure, a packet must
encounter | k/2— 1] failures before it is forwarded along TTG
111 /2)- If a packet encounters a failure when forwarding along
TTG ¢|1/2), then it will be dropped because there are no more
subsequent trees. Thus, DF-EDST resilience with a line TTG
provides |k/2 — 1|-resilience. This result implies that there is
always a max(1, | k/2—1])-resilient forwarding function given
a k-connected topology even if packets are not modified.

At initial consideration, this result may not seem practical
as it provides poor forwarding throughput when implemented



for deadlock-free routing as all initial forwarding paths use
the same tree, like Ethernet with RSTP. However, this result
is useful even in deadlock-free routing if this level of fault
tolerance were to be only applied to mission critical data.
Moreover, this result also has further implications given non-
deadlock-free routing, where each destination may use a
different TTG. This implies that existing networks that allow
for fault-tolerant forwarding but do not allow for introducing
new packet formats, such as IP-FRR [31] and OpenFlow [32],
can build a forwarding function that is |k/2 — 1|-resilient.

However, if a line TTG is not used, then DF-EDST may not
be as resilient. Specifically, if h(t) is the height of an EDST
in the TTG, and IT is the set of initial trees that a packet may
start forwarding over, then DF-EDST is (minsec;rh(t) — 1)-
resilient. This implies that, if packets may start forwarding
over any tree in the TTG (IT = Vrrg) then DF-EDST
resilience is O-resilient.

On the other hand, t-resilience is a conservative metric for
characterizing fault tolerance. Given ¢-resilience, many routes
will survive more than ¢ failures. For example, given a set of
failures, many packets will not even encounter a single failure,
let alone all of the failures. Further, in DF-EDST resilience,
a packet may be able to encounter mazierrareachable(t)
failures and still have a valid route, where reachable(t) is
a function that returns the total number of EDSTs reachable
from a tree. Because of this, we evaluate both the resilience
and average expected probability of routing failure of DF-
EDST resilience.

B. DF-EDST Implementation

In this section, we describe how to actually implement DF-
EDST resilience. First, we describe a number of different
TTGs. Then, we compare and contrast them. After that, we
discuss the routing algorithm needed for DF-EDST resilience.
Lastly, this section finishes with a discussion.

1) TTGs: The proof in Section IV-A that DF-EDST re-
silience is deadlock free hints at the reason why implementing
routes that provide both high throughput forwarding and a
useful level of resilience can be difficult. If I7T, the set of
trees that a packet may initially be forwarded over, is too large,
then not enough resilience may be guaranteed. However, if IT
is too small, then the default routes may not provide enough
path diversity to provide high throughput forwarding. Thus,
the choice of TTG for use in a network presents a trade-off
between performance and resilience. To explore this trade-off,
we consider variants of 5 different TTGs.

The first two TTGs we consider are NoRes and NoDFR.
These are the TTGs that result from prior work on using
EDSTs for deadlock-free routing and fast failover, respectively.
Although these TTGs are either not fault tolerant or not dead-
lock free, we consider them because they provide a baseline
from which to compare the performance impact of DF-EDST
resilience and a lower and upper bound on fault tolerance,
respectively. Figures 1a and 1b illustrate these TTGs, with the
initial trees being represented with double circles.

(@) A Non- (b) A Non- (c) A Line (d) A Rand (¢) A Max
Resilient Deadlock- TTG 2-resilient  2-resilient

TTG Free TTG TTG TTG
Fig. 1: Different TTGs for DF-EDST

Algorithm 1 — DF-EDST Routing

Input: network topology G = (V, E) where V. = {1,...,n}, and a set of edge-
disjoint trees ET'.

Output: a forwarding pattern f = (f1,..., fn). Vv € V, fi,(d,ip,e, Fy) — e,
where d € D is the destination, ip € E,, is the input port, e € E,, is an edge that
must not be failed that is also used as the output edge, and F, C Ev is a set of
edges that must be failed.

1) Build non-backup routes at each vertex for each destination for each input port
tree: Vv € V,Vd € D, and Vip € E,, do:
e Lett € ET be the tree that ip is a member of, i.e., ip € t. If ¢ does not exist,
continue.
e Let e € t be the output edge on ¢’s route to d.
e Set fu(d,ip,e, @) :=e
e Build backup routes that transition to all trees reachable from ¢:
- Let F,, := {e} be the set of edges that must be failed.
- For each tree reachable from ¢: Vat € reachable(t)
* Let ae € at be the output edge on at’s route to d.
* Set fy(d,ip, ae, Fy) := ae
* Let Fy, := Fy, U {ae}

The first TTG that we consider that is both fault tolerant
and deadlock free is the Line TTG (Figure 1c). However, this
TTG is still not practical. Because all forwarding starts off
on a single spanning tree, performance will be as limited as
traditional Ethernet with a single spanning tree that is built
by RSTP. We consider this TTG because it bounds the fault
tolerance achievable given DF-EDST resilience.

Lastly, we also consider two practical TTGs, the Rand and
Max TTGs, which are presented in Figures 1d and le. These
TTGs have many initial trees and guaranteed resilience for
all routes. Further, they improve average fault tolerance by
allowing packets to transition between initial trees. In the Rand
TTG, the initial trees start out in a fully connected TTG, then
cycles are randomly broken until the TTG is a DAG similar to
how cycles are broken in the deadlock-free routing algorithm
of Domke ef al. [22]. To guarantee resilience, the non-initial
trees are connected to a line. The Max TTG also arranges the
non-initial trees in a line, but, in the Max TTG, the initial trees
form a maximally-connected DAG, i.e., the upper triangle of
the adjacency matrix is all ones.

2) Routing: Prior work on EDST resilience [17] does not
present a routing algorithm that is suitable for implementa-
tion in hardware forwarding tables. We introduce a routing
algorithm for DF-EDST resilience suitable for implementation
given TCAMs in Algorithm 1, and this algorithm is a gener-
alized version of the routing algorithm for EDST resilience.

Given Algorithm 1, Equation 1 captures the state require-
ments of DF-EDST resilience if the current tree is marked in
a packet’s header.



Yo € V| fu(d,t, e,,bm)| = |D|* Z reachable(t)+1 (1)
teTTG

Because the path lengths for each tree may vary widely, to
choose from the available initial trees, we use a random top-k
approach similar to that taken by prior work on using EDSTs
for deadlock-free routing [6]. For every switch and destination,
the initial trees across all of the virtual channels are sorted by
path length. If the best tree is within a factor of 1.35x of
the shortest path distance, then forwarding table entries are
installed such that a packet starts forwarding randomly over
any of the up-to top-8 initial EDSTs whose path length is
within a factor of 1.35x. Otherwise, default rules are installed
that randomly route over any of the trees with a path length
equal to that of the best initial EDST.

3) Discussion: On networks with low connectivity, the
applicability of EDST resilience may be limited due to the
number of EDSTs. However, using EDSTs for resilience can
suffer from the opposite problem on data center networks.
There are at least 20 EDSTs on the 1: 1 bisection bandwidth
ratio topologies we evaluate. Even after applying NetLord-
style network virtualization [33] to reduce state, installing
rules for all 20 EDSTs on a 2048-host topology can require
more than 10 Mbit of TCAM state for many of the TTGs
we evaluate. Because of this, we consider ways to reduce the
forwarding table state.

Specifically, forwarding table state can be reduced by
reducing the number of virtual channels used, which can
impact performance, or forwarding over a subset of the TTG
for each destination, which can impact performance or fault
tolerance. Reducing the number of virtual channels and thus
the independent sets of EDSTs is simple to implement. On
the other hand, using only a subset of the trees in the TTG is
more complicated.

If only the initial trees are selected for the subset, then the
forwarding table would be O-resilient. Further, all switches
must use the same TTG subset for a given destination so that
rules for the entirety of a spanning tree are installed. However,
if the subset of the TTG avoids the trees with the longest
paths for the destination, then state may be reduced without
significant impact to performance.

Given the trade-off between fault tolerance and performance
in choosing a subset of the TTG for a destination, we chose the
trees with the shortest average path length for the destination,
subject to the resilience constraints of the TTG.

V. METHODOLOGY

This section presents our methodology for evaluating DF-FI
and DF-EDST resilience!, which is similar to prior work so
as to allow comparisons [6], [10].

To evaluate DF-FI resilience, we implemented Plinko with
the modifications discussed in Section III and then evaluated
how many virtual channels are required for the DF-FI routes

Thttps://github.com/bestephe/res-sim

on both EGFT [34] and Jellyfish [35] topologies built with 64-
port switches to support a range of hosts (1K-4K), bisection
bandwidth ratios, ranging from 1:1 (B1) to 1:6 (B6), levels
of resilience, and degrees of multipathing.

Similarly, we use the same topologies to evaluate DF-
EDST resilience. Like prior work [6], we use a randomized
algorithm for finding the set of EDSTs on a topology. Given
the TTGs we introduced in Section IV-B1, we use simulations
to compute the aggregate throughput achieved, the expected
probability of routing failure, and the size of the forwarding
tables. To compute forwarding throughput, we use a uniform
random (URand) workload with a degree of four combined
with Algorithm 1 from DevoFlow [36]. We then normalize
the achieved throughput by the combined throughput capacity
of the end hosts. To compute the probability of routing failure,
we randomly select sets of edges of different sizes for failures.
After evaluating the impact of at least 80 different sets of failed
edges, we then report the average fraction of routes in the
network that experienced a routing failure. To provide an upper
bound on throughput, we compare DF-EDST resilience against
ideal deadlock-oblivious shortest path routing. To compute
the state requirements of DF-EDST, we assume, like prior
work [10], that each entry requires 64-bits of TCAM state,
which is the size of the port bitmask on 64-port switches.
Further, we consider building forwarding tables both with and
without the current EDST marked in packet headers, because
marking packets can reduce forwarding table state. Lastly,
because the total number of available virtual channels on DCB
is 8, we only present state results assuming NetLord-style
network virtualization with 8-way and 4-way multipathing,
which reduces the state requirements from being proportional
to the number of end-hosts to the number of switches times
the degree of multipathing.

VI. EVALUATION

In this section, we first present the results from our analysis
of DF-FI resilience and then present our evaluation of DF-
EDST resilience. For DF-FI resilience, we find that all but
relatively small topologies and low levels of resilience require
more virtual channels than are available on today’s networks.
However, this just further motivates our analysis of DF-EDST
resilience. This analysis shows that DF-EDST resilience can
improve fault tolerance by roughly an order of magnitude
without impacting performance when compared with using
EDSTs just for deadlock-free routing. However, if we are
willing to accept a small reduction in aggregate forwarding
throughput, often <5-10%, then the expected probability of
routing failure given even tens of link failures can be reduced
by 3 to 4 orders of magnitude.

A. DF-FI Resilience

For DF-FI resilience, there is one key question that we
would like to answer: how many virtual channels are required
to implement DF-FI resilience? If DF-FI resilience needs
more virtual channels for a topology size and resilience level
than are provided by the network, which is 8 for DCB, then



1024-H
1-E/2-E/4-E/8-E

2048-H

1-E/2-E/4-E/8-E

512-H
1-E/2-E/4-E/8-E

0-R 1/1/1/1 1/1/1/1 1/1/1/1
1-R 1/1/2/1 1/1/17? 3/5/21?
2-R 1/1/1/1 3/4/6/10 7/12/21/?
4-R 2/3/417 711472517 18/2171?

TABLE I: Number of VCs Required on (B1) EGFTs

this impies that DF-FI would not be implementable for this
topology size and resilience level.

To answer this question, Table I shows the required number
of virtual channels on (B1) EGFT topologies for varying
topology sizes (*-H), levels of resilience (*-R), and degrees
of multipathing (*-E). As expected, O-resilience on EGFTs
only requires one virtual channel. However, given resilience,
this table shows that the number of virtual channels required
by DF-FI resilience can be prohibitive. Providing even §-way
ECMP and 4-resilience required 10 or more virtual channels
on all of the 1024-host topologies we evaluated. Similarly, 4-
way ECMP and 1-resilience requires 10 or more trees on all
of the 2048-host topologies we evaluated, and 1-way ECMP
and 2-resilience is barely implementable on the 2048-host
topologies we evaluated, typically requiring 8 virtual channels.
Different bisection bandwidths and the Jellyfish topologies
showed similar trends.

B. DF-EDST Resilience

Unlike EDST resilience, DF-EDST resilience represents a
trade-off between performance and fault tolerance. Because of
this, we are primarily interested in evaluating the aggregate
throughput and expected probability of routing failure for
different variants of the TTGs discussed in Section IV-B1. In
addition, we evaluate the forwarding table state requirements
of DF-EDST resilience.

All things considered, DF-EDST resilience can match the
performance of prior work on using EDSTs for deadlock
freedom [6] while still reducing the probability of a rout-
ing failure by about an order of magnitude. Moreover, if a
small impact on performance is acceptable, fault tolerance
may be increased. Even providing 3-resilient routing often
only reduces throughput by between 5-10%, and 3-resilience
experiences 3—4 orders of magnitude fewer routing failures
than non-fault-tolerant routing given 16 edge failures.

This paper introduces two practical TTGs, Rand and Max,
which leads to the following question: Is one of these TTGs
better than the other? Because the Rand TTG is less connected
than the Max TTG, it could be expected to increase forwarding
throughput and decrease fault tolerance. However, in our
evaluation, we find that neither the Rand nor Max TTGs differ
significantly in terms of throughput, expected probability of
routing failure, or forwarding table state.

Forwarding table state may be reduced by either reducing
the size of the TTG subset for each destination or by reducing
the number of different TTGs on different virtual channels
used to increased forwarding throughput, i.e., reducing the
degree of multipathing. Although it may be expected that
these approaches would represent different points in the space
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Fig. 2: Throughput for the Rand and Max TTGs

of trade-offs between throughput and resilience, we find that
neither is inherently better than the other. For example, we
found that using 12 trees per destination and 4-way multi-
pathing (4 virtual channels) had the same aggregate forwarding
throughput and forwarding table state and only slightly lower
probability of routing failure when compared with using 8
trees per destination and 8-way multipathing (8 virtual chan-
nels). This result is particularly interesting because it implies
that not all of the available virtual channels are required for
high performance and fault tolerant deadlock-free routing.

In the rest of this section, we present our evaluation in
more detail. To start off, Figure 2 shows the throughput
achieved by variants of the Rand and Max TTGs with varying
resilience (*-R), number of trees per destination (*-T), degrees
of multipathing (*-E), and sorting the initial trees either for
performance (P) or resilience (R) on variants of the Jellyfish
and EGFT topologies with varying numbers of hosts and
bisection bandwidths (B*). The first thing that these figures
show is that the throughput of both the Rand and Max TTGs
closely tracks that of deadlock-oblivious reactive shortest path
routing (SP), especially given no or relatively few failures.
To some extent, this is expected. Because every tree is an
initial tree, the O-R variants behave identically to the NoRes
TTG given no failures. Although increasing resilience in the
other *-R variants disallows a number of trees from being
initial trees equal to the level of resilience, the impact of
this on performance is also relatively small. For example,
given no failures on the (B1) 1024-host EGFT topology, the
Rand 0-R TTG reduced forwarding throughput by 6.5% when
compared with SP, while the Rand 3-R TTG only reduced
forwarding throughput by 10.9%. While this impact increases
with topology size, the impact is still small, with the Rand
0-R TTG on a 2048-host (B2) EGFT reducing forwarding
throughput by 6.7%, the Rand 3-R TTG reducing throughput
by 14.3%, and the other TTGs falling somewhere in-between.

We also found that both the “8-T 8-E” and “12-T 4-E” TTG
variants provide near-identical forwarding table throughput
across a range of number of failures, topologies, and bisection
bandwidths. However, the “12-T 8-E” and “16-T 8-E” TTG
variants, while not shown, had forwarding throughput even
closer to that of SP. This shows that, if more forwarding table
state can be dedicated to DF-EDST resilience, then the impact
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of forwarding throughput can be even further reduced.

To show how likely it is for DF-EDST routes to fail,
Figure 3 presents the average number of routing failures of
different variants of the Rand and Max TTGs on a range
of Jellyfish and EGFT topologies. These figures show that
a 3-resilient Max TTG can reduce the probability of routing
failure by about three to four orders of magnitude when
compared with non-resilient forwarding (NoRes), which is
expected given that recent work has shown that linear increases
in resilience result in exponential decreases in the average
probability of routing failure [37]. This is an important result
because we have previously shown that this TTG only reduces
the aggregate throughput of the network by about 5-10%.

Additionally, these figures also show that even the O-resilient
variants of the Rand and Max TTGs are more fault tolerant
than the NoRes TTG. Across a wide range of failures and
topologies, the O-resilient variants of the Rand and Max
TTGs experience roughly an order of magnitude fewer routing
failures than the NoRes TTG on average. This is important
because, given O failures, the O-resilient Rand and Max TTGs
behave identically to the NoRes TTG. However, the big
difference is that the O-resilient Rand and Max TTGs use
a TTG that allows for improved fault tolerance by allowing
packets to transition between initial trees.

However, unlike with throughput, which was nearly equal
for the 8-T 8-T variants and the 12-T 4-E variants, the 12-
T 4-E variants are only slightly more fault tolerant. This is
because not all initial trees in the Rand and Max TTGs provide
the same level of resilience. What has a larger impact on
fault tolerance than increasing the total number of trees is
by increasing the number of trees set aside for guaranteed
resilience, and the number of set aside trees is equal in the
8-T and 12-T variants with the same resilience.

Because Equation 1 predicts the state requirements of DF-
EDST resilience, we omit any figures of the state requirements
of different TTGs. Instead, we note that tree resilience requires
40Mbit of TCAM state to implement DF-EDST with 12-trees
per destination and 4-way multipathing on a (B1) Jellyfish
topology with about 3K hosts and a (B1) EGFT topology
with about 5K hosts. For context, 40Mbit of TCAM state is
the total amount of state available in Metamorphosis [38], a
proposed SDN switch. Additionally, forwarding table state is
reduced as bisection bandwidth is reduced. Given 1:4 bisec-

tion bandwidth topologies, DF-EDST should scale to networks
with about 8K hosts. However, if packets are not modified,
the state requirements are increased. Both the EGFT and
Jellyfish topologies require more 40Mbit for topologies with
(B1) topologies with 2K hosts and (B2) and (B4) topologies
with 3K hosts. Further, we find that the state requirements of
of both the “12-T 4-E” and “8-T 8-E” are also nearly identical.

VII. RELATED WORK

Although this work is motivated by recent research that
uses lossless Ethernet to improve TCP or application perfor-
mance [5], [6], [24], [25], [39], we avoid a detailed discussion
of this work because it is orthogonal from deadlock-free or
fault tolerant routing. Similarly, related work on deadlock-free
routing for data centers has already been covered in Section II.
Thus, we only focus on related work on local fast failover in
this section, none of which are deadlock-free.

First, local fast failover groups have been a part of the
OpenFlow standard since version 1.1 [40]. Although we are
not aware of any switch that implements this part of the
standard in hardware, DF-EDST resilience should be fully
expressible in terms of OpenFlow fast failover groups.

The most closely related work to DF-EDST resilience
was introduced by Elhourani et al. [17], who contributed an
approach to resilience that uses arc-disjoint spanning trees
(ADST) instead of EDSTs. On a k-connected network, there
are k ADSTs per destination that can be used to provide
(k — 1)-resilience if tree failures are marked in packets.

Given the proof that DF-EDST is deadlock-free, it follows
that arc-disjoint spanning trees (ADSTSs) can also be used to
provide deadlock-free local fast failover if the TTG is acyclic.
However, because arcs are directed, ADSTs are directed trees,
in contrast with EDSTS, which are undirected. This implies
that that not every source and destination have a path defined
by every ADST. Because of this, using ADSTSs in this way
could lead to limited path diversity and resilience.

Similarly, trying to use ADSTs to improve upon Theorem 2
is promising. If deadlock freedom is not required, ADST re-
silience may use a different set of ADSTs for each destination.
Given a line TTG, ADST resilience does not need to modify
packet headers. However, there is one large problem in using
this forwarding model to improve upon Theorem 2. The proof
that ADST resilience can build (k — 1)-resilient routes relies
on the property that the tree that is chosen after an arc failure
must be the tree that includes the opposite arc of the failed
arc, but this tree ordering may be different for each switch and
set of failures. Given a line TTG, this ordering may not be
respected. Thus, such a forwarding function is not guaranteed
to be (k—1)-resilient. Currently, the resilience of ADSTs given
an arbitrary topology is an open problem.

Although there has been much research on local fast
failover, many existing implementations fail to meet our re-
quirements. For example, ECMP, IP Fast Re-route [31], and
Fat Tire [15] offer limited resilience. Packet re-cycling [41]
and Borokhovich et al. [19] use inefficient paths. R-BGP [42]
and F10 [16] rely on graph-specific properties. DDC [18]



can temporarily incur significant stretch and can suffer from
forwarding loops, although an IP TTL may terminate the
forwarding of a packet, and KF [14] also allows loops.

Although these projects do not provide deadlock-free local
fast failover, they can be complementary. For example, al-
though DDC [18] can incur significant stretch and loop packets
until a TTL expires, it can guarantee that a packet will reach
its destination if the network is connected. Because DF-EDST
resilience does not require all 8 VCs provided by DCB, lossy
DDC can be implemented on one VC to provide connectivity
for important or control traffic. Similarly, the fault tolerant
routing algorithm presented by Borokhovich et al. [19] could
also be used to ensure connectivity on a lossy VC without
even allowing for forwarding loops.

VIII. CONCLUSIONS

In summary, we have introduced and evaluated two different
approaches to implementing both deadlock-free and fault-
tolerant forwarding for arbitrary data center networks, DF-FI
resilience and DF-EDST resilience. First, we find that DF-FI
resilience requires more virtual channels than are currently
available to implement resilient forwarding on data center
topologies with more than 2K hosts. Until further advances are
made on the topic of guaranteeing that some configurations of
backup routes are never possible and thus could never form
deadlocks, DF-FI resilience is not a scalable solution.

However, this result also further motivates DF-EDST re-
silience. To enable DF-EDST resilience, we prove that DF-
EDST resilience is deadlock-free as long as the TTG is
acyclic. In DF-EDST resilience, the TTG determines both
the performance and resilience of the forwarding function.
Given this, we then evaluated the aggregate throughput, av-
erage probability of routing failure, and forwarding table state
requirements of a number of different TTGs. We show that,
with DF-EDST resilience, fault tolerant forwarding can be
provided on any arbitrary well-connected data center topology
without impacting throughput beyond that of using EDSTs to
provide deadlock-free routing. In effect, the only extra cost of
fault tolerance is additional forwarding table state. Moreover,
if even three of the total EDSTs in the topology, of which there
are often 10-20, are reserved for fault tolerance and guaranteed
resilience (3-resilience), then the probability of routing failure
can be reduced by 3—4 orders of magnitude with only a small
impact on forwarding throughput.

Lastly, we evaluated the forwarding table sizes necessary to
implement DF-EDST resilience. Even though implementing
DF-EDST in our evaluation requires 40Mbit of TCAM state,
the total amount of TCAM state provided by Metamorpho-
sis [38], on topologies with at most about 8K hosts, we do
not consider these forwarding table state requirements to be
limiting. Because of the trade-off between fault tolerance and
forwarding table state, fault tolerance can be reduced to enable
DF-EDST on larger topologies. Further, these results motivate
building switches with forwarding table hardware specifically
designed for tree resilience. Given custom packet processing
hardware that could search for the first non-failed tree, we

believe the forwarding table state requirements of the resilient
TTGs could be reduced to match that of using EDSTs for
non-fault-tolerant but deadlock-free forwarding, | D| * |Vrrg|.
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