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Abstract— Clustering is a crucial tool for analyzing data
in virtually every scientific and engineering discipline.
The U.S. National Academy of Sciences has recently announced
“the seven giants of statistical data analysis” in which data
clustering plays a central role. This report also emphasizes
that more scalable solutions are required to enable time and
space clustering for the future large-scale data analyses. As a
result, hardware and software innovations that can significantly
improve energy efficiency and performance of the data clustering
techniques are necessary to make the future large-scale data
analysis practical. This paper proposes a novel mechanism for
computing bit-serial medians within resistive RAM arrays with
no need to read out the operands from memory cells. We propose
a novel four-transistor, four-memristor memory cell that enables
in situ median computation within the data arrays. (If necessary,
the proposed cell could be used as four ordinary one-transistor,
one-memristor memory cells to store four bits of information.)
The proposed hardware is used to accelerate a data clustering
library using breast cancer samples, indoor localization, and
the U.S. Census data sets, as well as two applications using
k-means clustering. Our simulation results for the library indicate
an average performance improvement of 15.5× and an energy
reduction of 28.5× over a baseline CPU system. Also, we observe
an overall speedup of 5.8× with an energy improvement of
14.1× over a baseline processing-in-memory accelerator. For the
k-means applications, we observe speedups of 45.7× and 1.5×
with respective energy improvements of 49.5× and 1.3× as
compared with the CPU baseline.

Index Terms— Computer architecture, in situ processing,
k-medians, resistive RAM (RRAM) technology.

I. INTRODUCTION

DATA clustering is one of the most fundamental compo-
nents in learning and understanding the natural struc-

ture of data sets. Clustering techniques are increasingly used
in science and engineering for important applications, such
as precision medicine [1], World Wide Web [2], machine
learning [3], self-driving cars [4], business marketing [5],
and economy [6]. Due to recent advances in sensor and
storage technologies, as well as the significant growth in
the applications of unsupervised learning, data clustering has
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become one of the most critical tools for the future computer
systems.

K-means [7] is one of the most commonly used algorithms
for solving data clustering problems in various fields of science
and engineering. (Detailed background on object classification
and k-means applications can be found in the literature [8].)
For instance, iterative k-means clustering is used to identify
cancerous samples [9] or to perform unsupervised learning
tasks [10]. The algorithm partitions a set of input data into
k clusters, each of which is represented with a centroid.
The original algorithm relies on the arithmetic mean to
compute the centroids; therefore, the results are very sensitive
to outliers. In response to this problem, more robust variants
of the algorithm, such as k-medians and k-medoids, have been
proposed and used in the past [11]. In particular, k-medians
achieves better solution quality by setting the centroid of each
cluster to its median. However, it requires excessive memory
accesses to the data points and significantly limits the overall
performance. Numerous techniques have been proposed in
the literature to accelerate k-medians clustering, such as
precise and approximate software solutions [12]–[14], field-
programmable gate array (FPGA) accelerators using sorting
networks [15], [16], parallel probabilistic platforms [17],
graphics processing unit (GPU) accelerators [18], and
application-specific hardware frameworks [19]. Regrettably,
the required data movement between the main memory and
the processor cores limits the performance of these recent
efforts even for moderately sized data sets. Moreover, with
the growing interest in the future data intensive applications—
such as deep learning applications that rely on unsupervised
classification—the importance of high performance data
clustering techniques is expected to increase.

This paper proposes a memory-centric hardware accelerator
for in situ k-medians clustering based on bit-serial median
rank order filters (ROFs) [20] and recently developed resistive
RAM (RRAM) technology. A bit-serial ROF—often used in
signal and image processing—is capable of identifying the
i th median of an input data set, which may be used for
k-medians clustering. The performance of a bit-serial ROF is
significantly limited due to the excessive memory accesses
required for clustering large data sets. The in situ k-medians
accelerator addresses the problem by leveraging the compu-
tational capabilities of RRAM cells to realize a memristive
platform capable of performing bit-serial rank order median
computation in situ memory arrays, thereby unlocking the
potential massive parallelism in k-medians clustering.
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Algorithm 1 Basic k-Means Clustering

The proposed hardware accelerator is evaluated on a
k-means clustering library using breast cancer, indoor local-
ization, and the U.S. census data sets, and two applications
that use k-means clustering. We observe that the proposed
accelerator achieves an average performance improvement of
15.5× and an average energy reduction of 28.5× over the soft-
ware implementation of k-means on a CPU system. Moreover,
the results indicate an overall speedup of 5.8× with an energy
improvement of 14.1× over a processing-in-memory (PIM)
accelerator. When used for accelerating k-means clustering
in gene expression analysis (GEA) and classification based
on term frequency–inverse document frequency (TF–IDF),
we observe that the proposed in situ accelerator can achieve
speedups of 45.7× and 1.5× with respective energy improve-
ments of 49.5× and 1.3× as compared with the CPU baseline.

II. BACKGROUND AND MOTIVATION

This section provides the necessary background knowledge
on data clustering algorithms, ROFs, and resistive memory
technologies.

A. Clustering Algorithms

Data clustering is a computationally difficult (NP-hard)
problem that refers to partitioning a set of objects into mean-
ingful groups (called clusters) with no predefined labels [21].
The entities of a cluster are more similar to each other
than to those in other clusters. K-means and its variants
are the most prominent clustering algorithms that have been
successfully used in numerous fields of science and engi-
neering [22]. The basic k-means operations are shown in
Algorithm 1, where k centroids are used to represent the
clusters. A centroid is either a representative member of the
cluster (e.g., median) or an additional data point computed
based on the similarities among all of the cluster members
(e.g., the arithmetic mean). The former has been proven to
find better clusters than the latter due to its resistance against
outliers [21], [22]. Prior to partitioning, the k centroids are
randomly initialized; then, the algorithm repeats two steps
(Lines 3 and 4 in Algorithm 1) until convergence is reached.
First, the clusters are formed by assigning data points to their
closest centroid; second, the centroids are recomputed for each
cluster.1

1) Example Applications of Data Clustering: Numerous
applications of k-means clustering can be found in the lit-
erature. We review two representative examples on GEA and
text data mining.

1Based on the application needs, this process may be repeated either for a
fixed number of iterations or until none of the centroids changes.

Fig. 1. Clustering gene samples to detect cancerous cells.

Fig. 2. TF–IDF text mining with k-means algorithm.

a) Gene expression analysis: Recently, clustering has
seen wide use in medical research, such as cancer diagnosis
and drug discovery. An accurate clustering algorithm often
has a profound impact on the correctness of these applications.
For example, Lu and Han [23] have shown that data clustering
algorithms can be used for more accurate cancer classifications
based on the abundance of gene expression data rather than the
traditional morphological and clinical-based methods. A gene
that forms the basic unit of heredity is defined as part of a
deoxyribonucleic acid (DNA) transferred to an offspring by
its parent. The process of transcribing a gene’s DNA sequence
into ribonucleic acid is called gene expression that changes
during biological phenomena, such as cell development. In the
case of diseases such as cancer, the genes of normal body
cells undergo multiple mutations to evolve cancerous cells.
As shown in Fig. 1, this anomaly is now possible to be detected
through GEA that requires clustering of a large number of gene
samples.

b) Document clustering: Clustering text documents is
an important branch of text mining that refers to organizing
paragraphs, sentences, and terms into meaningful clusters to
improve information retrieval and document browsing [24].
Unlike the numerical data, text clustering requires preprocess-
ing the documents to represent their features in the form of
numerical vectors (see Fig. 2). These vectors are then used to
group similar terms into the same clusters. A commonly used
feature vector for text clustering is the TF, which represents
the number of word occurrences in every document divided by
the total number of words. Moreover, an IDF for every word
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is defined as the logarithmic ratio of the total number of
documents to those that contain the word. These two metrics
are then multiplied to compute a TF–IDF score (wi, j ) for
the j th word of the i th document. Finally, the documents—
represented as rows of the TF–IDF matrix—are partitioned
into multiple groups with similar members using a clustering
algorithm—e.g., k-means.

B. Data Clustering Using Rank Order Filters

ROFs are nonlinear digital components widely used in sig-
nal and image processing to filter out noise from input signals.
In general, an ROF is characterized by: 1) the number of input
signals (N) and 2) an index (i ) that determines which input sig-
nal to appear in the output. The filter identifies the i th largest
(or smallest) input signal to be sent to the output. In particular,
a median filter can be realized if i = (N/2), which is
used to compute the centroids in the k-medians algorithm.
Rank order median filters are memory intensive operations,
for which numerous hardware and software optimizations have
been proposed in the literature [25]–[27]. These proposals
rely on two different approaches: 1) word-based search that
sequentially examines all of the objects to find the median and
2) bit-serial process that computes the majority of selected bits
from all of the objects in parallel. Both approaches suffer from
excessive memory accesses when applied to large-scale data
sets. This paper focuses on unlocking the significant potential
for extremely parallelizing the bit-serial approach by in situ
computation within memory arrays.

1) Bit-Serial Median Filter: In principle, the median of
a list can be computed using a sorting algorithm, which is
complex and inefficient. In 1981, the first bit-serial algorithm
for median filters was proposed by Danielsson [28] that
eliminates the need for sorting. Thereafter, numerous hardware
and software implementations of bit-serial median filters have
been proposed in the literature that relies on the majority
function [20]. The majority function defines a mapping from N
binary inputs to a single output, such that the output is 0 when
(N/2) or more inputs are 0; otherwise, it is 1. Assuming that
the pi values are the binary inputs, (1) can be used to compute
the majority function

M(p1, . . . , pN ) =
⌊

1

2
+

∑N
i=1 pi − 1

2

N

⌋
(1)

a) Computing the median value: Fig. 3 shows how to
compute the median of five input numbers using the bit-serial
algorithm. Every number is represented in a binary format
within a single row. Starting from the most significant bit
toward the least significant bit (LSB), the algorithm performs a
vertical computation followed by a horizontal bit propagation,
repeatedly.2 During the vertical computation, the majority vote
among all of the bits within a selected column is computed.
The result of the majority function is used: 1) to determine
a bit of the final result (median in Fig. 3) and 2) to identify
the minority bits within the selected column. In the next step,

2Notice that the total number of iterations depends on the word size rather
than the number of inputs.

Fig. 3. Illustrative example of computing the median of five input numbers
using the bit-serial algorithm. (a) Original data. (b) Compute majority.
(c) Propagate minorities. (d) Final result.

the minority bits are used to replace all of the bits on their
right-hand side.

b) Implementation challenges: Theoretically, the bit-
serial median algorithm is amenable to massively parallel
implementations: selected bits from all of the inputs can be
processed in parallel. In practice, however, this potential paral-
lelism is significantly constrained due to the required excessive
memory accesses to the input numbers per every iteration.
This paper designs a memory-centric accelerator that performs
the majority function computation and bit propagation steps
in situ memory arrays, thereby eliminating the unnecessary
accesses to the inputs. As a result, the proposed platform will
enable massively parallel execution of the bit-serial median
algorithm.

2) Related Work on Median Filters: There have been several
techniques coined in the past to implement 1-D/2-D median
filters for data and speech processing, as well as image and
video processing. Xilinx builds an FPGA-based 2-D ROF
targeting image processing applications [29]. An example
FPGA platform for computing 32-bit medians is found in
prior work [16]. A 1-D median filter from nonrecursive sorting
algorithms is proposed by Moshnyaga and Hashimoto [30].
Regrettably, the performance of these efforts has been sig-
nificantly constrained due to the excessive memory accesses
required during every iteration of the algorithm. The pro-
posed accelerator will address this problem by computing
the medians in situ novel memristive data arrays, which will
eliminate all of the reads to the data points during median
computation.

C. RRAM Array Structure

Resistive memories are nonvolatile, free of leakage
power, and largely immune to radiation-induced transient
faults [31], [32]. RRAM is one of the most promising mem-
ristive devices under commercial development that exhibits
excellent scalability, high-speed switching, a high dynamic
resistance range, and low power consumption [33]. Numerous
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Fig. 4. Illustrative example of two common cell topologies for 1T-1R.
(a) Double bitline cell. (b) Double wordline cell.

array topologies have been proposed in the literature that opti-
mize RRAM for better reliability, density, and computational
capabilities [34]–[36]. Fig. 4 shows two common example
topologies for a one-transistor, one-memristor (1T-1R) mem-
ory cell comprising an access transistor and a resistive storage
element. In both cases, the cell’s content is read or written by
applying an appropriate voltage across the memristive element.
This can be accomplished by activating the access device using
a wordline and applying the required read or write voltage
across a bitline and the third terminal of the cell, which is a
bitline∗ or wordline∗ for the dual bitline and dual wordline
topologies, respectively. The proposed accelerator builds upon
these cell topologies to design a new RRAM cell capable of
storing data and performing the essential operations required
for the bit-serial median filter (see Fig. 3).

D. Hardware Accelerators for In-Memory Processing

The proposed hardware accelerator builds upon existing
mechanisms for near data processing (NDP) and in situ
computation. Numerous hardware accelerators have been
proposed on accelerating important applications in memory
chips and arrays. PIM [37] aims at limiting round trip data
movement by processing data directly on memory chips.
Computational RAM [38] proposed a system that connects
single instruction, multiple data (SIMD) pipelines with sense
amplifiers. Parallel PIM [37] introduces a configurable chip
to enhance the effect of PIM by operating as a conventional
memory or for processing data as an SIMD processor. Active
Pages [39] propose a microprocessor with adequate logic
circuitry integrated near the dynamic random access mem-
ory (DRAM) arrays to reduce memory latency. FlexRAM [40]
and intelligent RAM (IRAM) [41] are other techniques for
NDP that have been evaluated on different technologies.

E. Hardware Accelerators for k-Means Clustering

The k-means and k-medians algorithms are widely used
techniques for clustering data. As a result, researchers have
proposed numerous hardware architectures for accelerating
these techniques. Hussain et al. [42] propose an FPGA
approach to accelerating k-means clustering on gene expres-
sion data sets obtained from gene microarray experiments.
A recent work on clustering hyper spectral images pro-
poses a reconfigurable hardware for accelerating the k-means
algorithm [43]. This paper shows that using a hardware/
software codesign operating at a moderate frequency can
significantly reduce the clustering time.

Fig. 5. Illustrative example of a multicore processor interfaced with the
proposed memristive data clustering accelerator.

III. K -MEDIANS CLUSTERING WITHIN RRAM ARRAYS

This section provides an overview of the proposed
memristive accelerator and explains the design principles
for realizing energy-efficient data clustering within memory
arrays. The key idea is to exploit the computational capabilities
of the memristive elements in RRAM arrays to perform the
necessary computation of the bit-serial median filter algorithm
in memory cells. As a result, the proposed architecture elimi-
nates unnecessary latency, bandwidth, and energy overheads
associated with streaming data out of the memory arrays
during the clustering process. This novel capability will then
unlock the unexploited massive parallelism in data clustering
using bit-serial median filters.

A. System Organization

As shown in Fig. 5, a memory module comprising multiple
chips is designed to perform large-scale k-medians data clus-
tering using the proposed accelerator. Each chip comprises a
hierarchy of data arrays interconnected with a reconfigurable
reduction network. The memory cells are capable of storing
data bits and computing the basic operations required for
bit-serial median filters. The interconnection network allows
for retrieving or merging partial results from the data arrays.
The accelerator module is connected to the processor via a
standard double data rate memory interface [44]. This modular
organization of the proposed accelerator allows the user to
selectively integrate the proposed hardware in those computer
systems that execute data clustering workloads.

Moreover, the proposed memory architecture supports two
operational modes: the storage mode that allows the accel-
erator module to serve ordinary read and write requests and
the compute mode, which is used for in situ data clustering.
For every computation task, three steps are followed. First,
the module is configured by software for solving a clustering
problem. Next, the in situ computation will be triggered after
transferring the data from the main memory to the accelerator
chips. Finally, the processor will be notified by the accelerator
to access the results.

B. Design Principles

Three major operations are necessary to implement a bit-
serial median filter within memory arrays: 1) computing the
majority of bits within a selected column; 2) determining
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Fig. 6. Key ideas behind the proposed memristive data clustering accelerator.
(a) Parallel resistors. (b) Serial resistors. (c) Signaling for serial resistors.
(d) Logical XNOR.

which rows hold the minority bit; and 3) replacing the LSBs
of those rows with the minority bit.3 The key idea behind the
proposed in situ data clustering with RRAM cells is shown
in Fig. 6; the serial and parallel topologies of the resistive
elements are used to build an XNOR circuit that computes the
majority function and performs bit comparison.

1) Computing the Majority Vote: Fig. 6(a) shows how the
majority function can be computed through parallel memristive
cells connected to a single bitline. Assuming that each memory
cell employs its high and low resistance states (i.e., RHI
and RLO) to represent 1 and 0, respectively. The number
of 1s determines the amount of current (I ) flowing through
the bitline. By measuring this current and comparing it with
a threshold, one can determine whether the number of 1s
is greater than the half of bits or not, thereby computing
the majority vote. This capability is leveraged to realize the
vertical computation step in the bit-serial median filtering
algorithm (see Fig. 3).

2) Performing In Situ Bit Comparison: Fig. 6(b) shows
the proposed circuit for performing in situ bit comparison
using two serially connected memristive elements that form a
voltage divider network. Depending upon the input value (V )
and the states of memristive elements (r0 and r1), the volt-
age divider produces an output (vout) that varies between
(V RHI/(RHI + RLO)) � V and (V RLO/(RHI + RLO)) � 0.
According to Fig. 6(c) and (d), this output value represents
the results of a binary XOR/XNOR on v and r . The voltage
divider circuit can greatly benefit from the high dynamic
resistance range (RHI/RLO) provided by phase-change mem-
ory and RRAM technology, which is not easily available in
other technologies, such as magnetoresistive RAM [45]. This
paper examines the use of RRAM technology in leveraging
this bit comparison concept to represent the memristive cell
and the input data in their true and complement forms. This
novel functionality is used in the bit-serial median filter
for finding the minority bits, as well as in the k-medians
algorithm for searching and selecting all the members of a

3The critical operations for these three steps are explained in Section II-B.

Fig. 7. Illustrative example of the proposed memory cell.

dynamically formed cluster prior to finding new centroids
(see Section V-B).

IV. PROPOSED ARCHITECTURAL BUILDING BLOCKS

The proposed accelerator is designed based on three funda-
mental building blocks: a memory cell, a majority unit, and
a network reduction unit. The building blocks are designed
and optimized to achieve high memory density, low energy
consumption, and massive parallel computational capabilities
at the memory cells.

A. Memory Cell

Fig. 7 shows the circuit and an example physical layout
for the proposed memory cell capable of: 1) serving ordinary
reads and writes; 2) performing in situ XNOR between the cell
and an external input; and 3) propagating the minority bit to its
adjacent cell. The proposed a four-transistor, four-memristor
cell comprises four transistors and four memristive elements
that can be viewed as a combination of four conventional
1T-1R RRAM cells, as shown in Fig. 4. Three wordlines
and four bitlines are provided to perform read, write, and
compute operations on the cell. Every memristive element
in the proposed cell can be read or written through a set
of three bitlines and wordlines, which makes it possible to
use the proposed cells as four individual 1T-1R memory cells
to store data. For example, R in the Data Bit is accessed
using {I, C, C}; R in XNOR is accessed through {E, M, I};
similarly, {E, M, I} can be employed to access R in XNOR;
and bitlines from adjacent cells are used to access low through
{P, C, C}.

1) Computing the Median Within the Cell: Computing bit-
serial median requires multiple steps, each of which involves
activating the cells using bitlines and wordlines. Fig. 8(a)
shows three adjacent memory cells in a row. On every iteration,
only one cell of each memory row will be processed. Based on
Fig. 8(b), P and I are initialized to determine if the cell should
be included in computation. This is necessary to ensure that
irrelevant data points are not included in computing the median
value. To compute the majority vote of column bi , bitlines C
from columns bi and bi−1 are connected to ground and bitline
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Fig. 8. Illustrative example of computing with the proposed memristive cell.
(a) Computing majority. (b) Computational modes. (c) Determining I and P .

C of the column bi is connected to Vdd. As shown in Fig. 8(a),
two paths are possible for flowing current between Vdd and
ground. One path is through column bi that determines the
amount of current driven from the bitline based on the content
of data bit (1). Another possible path includes the memristive
element (low) of the previous column (bi−1) to determine the
amount of current pulled from the compute bitline in case of
bit propagation (2). Notice that P and I are used to enable the
current paths. As shown in Fig. 8(b), only one (or none) of the
columns in every row contributes to the bitline current. First,
none of the cells are selected if P I = 00; second, column bi

is selected to be included in the majority vote computation if
P I = 01; and third, column bi−1 contributes to the majority
vote computation if P I = 10. By measuring the total current
driven through the compute bitline (C) and comparing it with
a threshold, the majority is computed (see Section IV-B).

One difficulty in realizing the in situ bit-serial median
computation is propagating the minority bit within each row
that results in forming long chains of cells, thereby impacting
the area, delay, and power dissipation. The proposed cell
architecture avoids forming long chains by allowing only
1s to be propagated from bi−1 to bi . (Notice that 1 and
0 are represented with the low and high resistance states,
respectively.) Because of the significant difference between
the high and low resistance states in RRAM ((RHI/RLO) ≥
105 [33], [46]), the currents contributed to the bitline by those
memristive cells in high resistance states can be omitted. This
optimization is considered by dedicating a low memristive
element in bi−1, which is included in current summation only
if P is high. After computing the majority vote in current
column (bi ), P and I are recomputed prior to processing the
next column (bi+1). Fig. 8(c) shows how the new values for
P and I are determined. The newly computed majority vote
is applied to M and M; E is connected to Vdd activating the
access transistors; and the XNOR part of the cell generates an
output (M

⊕
R) on the wordline I . On a 1-to-0 transition,

first, I is set to 0 and will remain the same until the end of
computation, and second, P is set to 1 only if M is equal to 1.

2) Updating the Cell: Recall that the proposed cell stores
the true and complement values of the data bit; therefore,
updating the contents of every cell requires additional writes

Fig. 9. Illustrative example of the proposed circuit for computing the
majority vote.

to the replicas. We employ a two-phase update mechanism
that writes all 1s in the first phase and then all of the 0s.
Notice that in a typical data clustering problem, the data set
is written in the memory once and is read by the algorithm
multiple times. As a result, the additional write operations
do not impact the overall execution, significantly. Moreover,
the performance and energy benefits of the proposed in situ
computing significantly surpass such overheads.

B. Analog Bit Counter

In k-medians clustering, the cluster size determines the
complexity of the majority vote unit. Fig. 9(a) shows an analog
bit counter designed for the proposed accelerator to compute
the majority vote per every column of data arrays. Notice that
the bit counter unit is proposed to replace the conventional
sense amplifier circuit in RRAM arrays. In addition to reading
individual cells, the proposed analog bit counter is able to
quantize the total amount of current pulled by the bitline into
a multibit digital value—i.e., the number of 1s within the
column.

A successive approximation mechanism [47] is designed
and employed to accomplish the analog bit counting for every
column. To compute the majority vote of a column, Vdd is
supplied to the compute bitline (C) using a line driver. A two-
level amplification mechanism consisting a current mirror [48]
and a current-mirror-based differential amplifier (DA) [49]
is employed to quantize the total current of the compute
bitline (C). Every time, the DA produces a high or low voltage
based on the reference and input signals. We employ five novel
digital sample and hold (S/H) units, each of which includes
a latch and a NAND gate to sample the DA output and hold
it in its data output. The S/H units produce a 5-bit input to
a digital-to-analog converter [50] that generates the analog
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Fig. 10. Illustrative example of the waveforms generated by the proposed
analog bit counting circuit for 22 and 0.

reference signal fed to DA for comparison. Fig. 10 shows
example waveforms generated through SPICE4 simulations on
different input signals that correspond to data values 22 and 0.
Every input signal is quantized and sampled in five subsequent
cycles in the S/H units. The output data bits from S/H units
represent the quantized value (see time periods 6n–7n and
12n–13n in Fig. 10).

C. Reduction Unit

Theoretically, solving a large-scale data clustering problem
requires computing the majority vote of a large number of data
points stored in a single memory array, which becomes imprac-
tical due to significant sensing and reliability issues. Instead,
data points are stored in multiple limited sized arrays, and
only a fraction of the cells within each column is processed in
every iteration—e.g., 32 cells of a 256×256 array. Notice that
multiple such operations are performed in parallel data arrays
to achieve significant performance improvements. As shown
in Fig. 9, a hierarchical merging mechanism is proposed to
compute the majority vote of a large number of data points
stored in numerous data arrays across the accelerator chip.5 An
interconnection tree comprising reduction units is employed to
merge the partial counts into a single value for computing the
majority vote. The main purpose of the reduction tree is to
merge the partial counts computed by the analog bit counters.

4Simulation program with integrated circuit emphasis.
5Section V provides the details of chip organization and data layout for the

proposed accelerator.

Fig. 11. Illustrative example of the proposed accelerator module.

An energy-efficient reduction tree is designed to retrieve the
partial data from the local analog bit counters and to compute
the final bit counts. The reduction tree comprises a hierarchy
of bit-serial adders to strike a balance between throughput and
area efficiency.

V. SYSTEM ARCHITECTURE

The proposed hardware accelerator employs a hierarchical
organization of data arrays, banks, and chips to form a memory
module capable of solving clustering problems varying in
size (see Fig. 11). Similar to prior work on the memristive
Boltzmann machine [51], the accelerator module receives data
and commands from CPU over an off-chip memory bus. Soft-
ware initiates every clustering job by writing the configuration
parameters into the chip registers—e.g., size and the number of
iterations. Only, a small fraction of the memory address space
(e.g., 1 KB) is dedicated to the chip registers, through which
all of the configuration parameters, status flags, and data points
are transferred between software and the hardware accelerator.
Similar to Intel and advanced micro devices processors [52],
[53], uncachable loads and stores are employed to access the
chip registers in the same order as requested by software.
Regardless of the data size, one chip register is dedicated
for transferring data to the accelerator. The chip controller
receives the data to be clustered word-by-word and distributes
them into the data arrays across multiple accelerator banks.
Similarly, a data output port is employed to collect the results
of data clustering from the accelerator.

A. Bank Organization

As shown in Fig. 11, every accelerator chip comprises
multiple banks that perform data clustering, independently.
A reconfigurable reduction tree is used inside every bank to
interconnect the data arrays and the chip controller. The pro-
posed tree is capable of selectively merging the partial counts
from the data arrays into a single count value. For exam-
ple, Fig. 12 shows the proposed reduction unit employed to
realize nine possible ways of reading data from the children
arrays A, B, C, and D. All of the reduction units at every node
of the tree are connected to a shared four-bit mode register.
The nodes are programmed to appropriate operational modes
prior to solving a clustering problem. The nodes at the same
tree level are programmed to the same mode value—e.g., m0
in Fig. 12. It is now possible to read the individual arrays
that are used for serving ordinary read requests or to read
the sum of values provided by every two or four adjacent
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Fig. 12. Proposed configurable reduction tree for banks.

Fig. 13. Illustrative example of the proposed array comprising the cells and
peripheral circuits.

arrays, which is used for computing the count value. This
flexibility is essential to achieve significant energy efficiency in
computing those problems that partially occupy the accelerator
banks. In the proposed data clustering platform, software is
responsible for computing the mode bits for a given problem
size. The mode bits are then streamed into the accelerator
during the chip initialization phase.

B. Array Organization

As shown in Fig. 11, every bank includes a controller con-
sisting of buffers for maintaining local data (e.g., centroids),
serial adders, comparators, and logic for controlling iterative
tasks, such as partitioning and recomputing the centroids.
Moreover, the bank controller makes it possible to read,
write, and compute a set of selected data arrays efficiently.
For energy-efficient k-medians clustering, two subarrays are
used to build an array that maintains the data points and
the corresponding labels (see Fig. 13). On every clustering
iteration, seven major steps are followed by the bank controller
to cluster the data points.

1) Initializing Centroids: Every k-medians clustering task
begins with randomly initializing the centroids, which are
maintained by the bank controller in local buffers (1).
The index of each centroid in this table is used as a label
for the corresponding cluster.

2) Forming New Clusters: The bank controller forms new
partitions by reading the data points from the data subarrays
and comparing them with the centroids (2). The index of the
closest centroid to every data point is used as the new cluster
label for that data and will be written to the label array (3).
This is accomplished through a set of serial comparators at
the bank controller. As the data points are read out, the serial
comparator determines the index of the closest centroid to
the data.

3) Computing Medians: The centroid of every cluster must
be recomputed by applying the bit-serial median algorithm

Fig. 14. Proposed mechanism for clustering real numbers. (a) Floating point
data set. (b) Fixed-point numbers. (c) Median of fixed-point numbers.

to all the elements of every cluster. This requires the bank
controller to keep track of the cluster members at all time.
The label array uses the same structure as the data array to
carry out the required book keeping for all of the data points.
At the beginning of every median computation, the label arrays
are searched for matching entries using the cluster labels one
after another (4). The outcome of every search operation is
the matching lines in the label subarray connected to a row
selector unit to determine the I and P values for the data
array (5). Next, the median’s bits are computed by iteratively
performing the vertical majority vote computation followed by
the horizontal minority propagation (6). As being serially com-
puted, the median’s bits are streamed to the bank controller
for updating the centroids (7). This process will end after a
certain number of iterations defined by software or when all
of the newly computed centroids are the same as the old ones
(i.e., convergence is reached).

C. Data Representation

Due to the limitations of the bit-serial median algorithm for
negative or real numbers, the proposed accelerator requires the
data points to be represented in a fixed-point positive format.
The necessary data conversion and preprocessing for clustering
real numbers and negative values are performed by software
prior to loading the data points into the accelerator chips.

1) Clustering Real Numbers: Our experiments indicates that
the energy and delay overheads of this required preprocess-
ing are negligible compared with the energy and delay of
transferring data to/from the accelerator and performing the
actual clustering computations. Moreover, we observed that a
64-bit fixed-point format for the evaluated applications and
data sets achieves virtually the same results obtained with
a double precision IEEE floating point format. Nevertheless,
for sensitive applications, the proposed accelerator is flexible
enough to compute the medians of wider bit representations by
increasing the number of vertical majority vote computation
and applying minimal changes to the control logic. Fig. 14
shows an example of floating point to fixed-point conversion.
The input floating point data are scaled by a factor of 23 and
then are converted to fixed-point data. We now apply an ROF
to compute the median of the fixed-point data.

2) Handling Negative Numbers: The median computa-
tion by an ROF algorithm assumes that the input data are
positive integers. However, for real-time applications, the input
data set need not be positive integers. The proposed accelerator
addresses this concern by representing the input data set in
biased notation, i.e., a bias value 2n is added to all of the
negative and positive elements. Fig. 15 shows an example of
computing the median of four-bit integer data. A bias of 23 is
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Fig. 15. Illustrative example of handling negative numbers in the proposed
clustering framework.

Fig. 16. Illustrative example of even number of data points. (a) Original
data. (b) Append 0 and compute Median. (c) Append 15 (0× f) and compute
Median.

added to each of the data points to make them positive, and
the median is then computed by applying the ROF algorithm.

D. Handling Even Number of Data Points

The ROF algorithm can compute the median of an odd num-
ber of data points only. The proposed accelerator, however,
is capable of computing the median of both even and odd
numbers of input data. The members of a given cluster may
be spread across different arrays and banks of the accelerator.
The number of cluster elements in each cluster may change
per iteration due to cluster reformations. In order to find the
median for a given cluster, we first send the cluster label to
the label array. Similar analog bit counting is used to find the
number of matches in all label arrays. As shown in Fig. 16,
if the cluster contains an even number of elements, the median
of the cluster is computed in two steps. First, we append a
new data point with value 0 to the cluster elements so that
the number of data points becomes odd; then, we find the
median M1 using the median ROF algorithm. In the second
step, we append an all 1s data point to the cluster elements
and compute the median M2. The average of M1 and M2
gives the true median M for the cluster.

VI. EXPERIMENTAL SETUP

We evaluate the system performance and energy consump-
tion of the proposed hardware accelerator using a modified
version of the enhanced superscalar simulator (ESESC) [54].
A library with real data sets [55]–[57] and two applications
pertaining to k-means clustering is used to assess the hardware
accelerator against a baseline CPU and a PIM accelerator.
We employ the cache access and cycle time models [58] with
the multicore power, area, and timing tool [59] to calculate
the overall system energy for every configuration.

A. Methodology

K-means computation in CPU involves excessive data
movement between the core and the main memory. As the

input size and the number of clusters increase, system
performance deteriorates further. Moreover, in the case of
k-medians clustering, significant computations are required to
calculate the median. The baseline CPU configuration imple-
ments the k-means algorithm for floating point real data sets.
As mentioned before, the quality of k-medians is higher than
k-means, because the latter is susceptible to outliers [21], [22].
However, since k-means does not need data sorting, it is much
faster than the k-medians. To better evaluate the performance
and energy of the proposed accelerator as compared with CPU,
we consider a k-means implementation that provides the best
performance and energy on CPUs. [Notice that the proposed
memristive hardware accelerator achieves higher clustering
quality (using k-medians) having performance and energy
numbers significantly better than the k-means.]

Present day, energy-efficient big data processing techniques
use parallel compute substrates, such as FPGA, GPU, and
many-core systems, to better utilize the memory bandwidth
and computational resources. For example, advanced GPU
architectures [60] employ in-package DRAM to achieve TBps
memory bandwidths for data intensive applications. To provide
a comparison against such compute systems, we develop a
PIM specifically designed and optimized for k-means data
clustering. By virtue of being specifically designed, the PIM
accelerator eliminates some of the limitations in the general
purpose CPU, GPU, and FPGA baselines. PIM places the
functional units next to the data arrays on memory dice to
alleviate the significant cost of data movement between the
processor and the memory in every iteration of the algorithm.
Despite a higher bandwidth provided by in-package DRAM,
notice that the bandwidth of such system is still limited by the
through silicon vias and microbumps used for die-to-die com-
munication, whereas a PIM architecture can directly access
data in the memory arrays without such limitations. To build
a strong PIM baseline, we consider many dense memristive
arrays connected to CMOS functional units that implement
the k-means algorithm.

Notice that k-medians requires sorting of data before median
computation and majority vote if calculated by the ROF
method. These prerequisites for median computation are both
time-consuming and demand a large hardware setup for a
PIM architecture. In contrast, the in situ accelerator addresses
these issues and achieves significantly higher performance
and energy efficiency due to: 1) in situ computations that
eliminates unnecessary data movement at the data arrays
and simplifies the additional logic on the memory dice and
2) median computation that enables massively parallel process-
ing at the memory cells for finding centroids through rank
order median filtering. For fair comparison, we explore the
design space of both PIM and the proposed accelerators to
find instances that achieve the best energy efficiency within
similar area consumption.

B. Architecture

We model a single core system configuration on
ESESC [54] that runs at a clock frequency of 3.2 GHz
and employs a two-level cache hierarchy with a four-way
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TABLE I

BASELINE CPU CONFIGURATION

TABLE II

APPLICATION AND DATA SETS

32-KB L1 cache and an eight-way 2-MB last-level cache.
The single core system interfaces to two DDR4-3200 DRAM
channels, as shown in Table I. For the CPU baseline, both
DDR4 channels are plugged with DRAM and serve as a
main memory, whereas in the PIM and the proposed in situ
baselines, one of the channels is employed for communicating
with the accelerator. For every clustering problem, the data
points and the configuration parameters are first transferred to
the accelerator. For transferring data points, a direct memory
access mechanism is implemented in ESESC that is con-
figured by the software and simulates the process in cycle-
accurate fashion.

C. Applications

We evaluate the accelerator for a k-means library with
three real data sets belonging to different domains. First,
data set profiles breast cancer samples [55] containing nearly
12 000 proteins per sample. Second, an indoor localization
data set [56] with nearly 20 000 training records validated
with more than 1000 points, and the last data set contains
nearly 1% sample of the total U.S. census from 1990 [57].
We further assess the proposed hardware on two k-means-
specific applications—GEA and text mining using TF–IDF.
Table II summarizes the data sets used for the library and
applications.

The data set used for GEA is a 2-D input file, wherein
the rows show various genes, while every column repre-
sents experimental results of these genes over time. For
evaluating TF–IDF-based document clustering, we use BBC

data sets consisting of 737 documents from the BBC Sport
website corresponding to sports news articles in five topical
areas (athletics, cricket, football, rugby, and tennis) from
2004 to 2005 [61]. The input data set for this algorithm
includes a corpus and a collection of words that exists across
all the documents as mentioned in Table II. The product of
the number of word occurrences in every document divided by
the total number of words (TF) and the logarithmic ratio of
the total number of documents to the number of documents
in which the word occurs (IDF) forms a 2-D TF–IDF matrix
that represents the frequency of occurrence of each word in
every document present in the corpus. Finally, the words are
clustered into multiple groups based on their frequency of
occurrence in the corpus.

We study all of the applications and input data sets to
determine appropriate ways of representing real and negative
numbers. The floating point to fixed-point conversion may
induce a rounding error that impacts the final cluster assign-
ments. The choice of scaling factor depends on the range of the
input data set. We have evaluated the k-means clustering for
various scaling factors ranging from 218 to 224 and observed
no change in the final cluster assignments. As discussed
in Section V-C, a fixed bias value is added to every data
point in order to convert the data set to positive integers.
We have evaluated the k-means clustering for various bias
values ranging from 224 to 232 and observed no change in
the final cluster assignments.

D. Circuits

SPICE predictive technology models [62] of the CMOS
transistors at a 22-nm technology node are used to evaluate
the proposed RRAM arrays. Area, delay, and energy of the
data arrays are evaluated with memristive parameters RLO =
315 K and RHI = 1.1G based on prior work [46] using
NVSim [63]. The RRAM element is simulated using the
Verilog-A model provided by prior work on the threshold
adaptive memristor model [64] that is tuned for a switching
time of 50 ns. The parasitic resistance and capacitance of
the wordlines and bitlines are modeled based on the inter-
connect projections from international technology roadmap
for semiconductor [45]. Area, timing, dynamic energy, and
leakage power are computed by performing circuit simulations
and hardware synthesis on the controller logic at the 45-nm
technology node [65]. The results are scaled to 16 nm using
the scaling parameters provided by prior work [66]. A charge
pump circuit [67] is used to provide higher voltage, as RRAM
cells require a write voltage more than supply Vdd.

VII. EVALUATION

This section presents potential performance improvements
and system energy savings that are attainable for the proposed
accelerator compared with the CPU and PIM baselines.

A. Energy

We evaluate the energy potentials of the proposed in situ
accelerator by comparing its total system energy with that
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Fig. 17. ASA Library—system energy consumption normalized to the
CPU baseline.

Fig. 18. ASA Library—system energy consumption normalized to the
PIM baseline.

of two baseline implementations of k-means on a general
purpose CPU and a PIM-like hardware accelerator. Fig. 17
shows the overall system energy consumption normalized to
the CPU baseline when accelerating the applied statistics
algorithm (ASA) library for clustering various data sets of
sizes 1, 2, 4, and 8 MB with 100, 200, 400, and 800 iterations
to form four clusters. The data sets are selected from breast
cancer, indoor localization, and U.S. census data explained
in Section VI. The results indicate that the proposed in situ
accelerator can significantly reduce the average system energy
over the CPU baseline: 18.7×, 38.4×, and 36.2× for the
breast cancer, indoor localization, and U.S. census data sets,
respectively.

Fig. 18 provides a similar energy comparison between
the proposed in situ accelerator and a PIM-like baseline.
We observe a significant energy reduction achieved by the
proposed in situ accelerator due to eliminating data accesses
to the memory arrays for fetching data prior to data clustering.
The results indicate averages of 18.7×, 7.3×, and 32.1×
energy savings for the proposed in situ accelerator as compared
with the PIM-like baseline. Also, we observe more significant
energy improvements that are achieved as the number of
iterations of the clustering algorithm increases.

We further evaluate the system energy improvements by
accelerating two different applications of data clustering.
Fig. 19 shows the overall system energy normalized to the
CPU baseline when accelerating the GEA application. To bet-
ter evaluate the systems, we vary the size of data sets and the
number of iterations to form four clusters on the gene data.
The results indicate that the PIM-like baseline achieves an
average of 10.7× improvement over the CPU k-means base-
line, whereas the proposed accelerator improves the system

Fig. 19. GEA—system energy consumption normalized to the CPU baseline.

Fig. 20. TF–IDF—system energy consumption normalized to the
CPU baseline.

energy by more than 49×. For further evaluations, we include
a k-medians version of GEA implemented on CPU, which
results in consuming 2.1× system energy compared with the
k-means CPU baseline.

Most of energy and execution time of the GEA appli-
cation are consumed by clustering the data point. Unlike
GEA, document clustering with TF–IDF comprises multiple
significant components, including text-to-number conversion
and data classification. Therefore, TF–IDF represents a group
of data clustering applications with moderate potentials for
hardware acceleration. Fig. 20 shows the system energy of the
in situ accelerator and PIM normalized to that of the k-means
implementation on CPU.6 Similar to previous experiments,
the data points are processed to form four clusters. The results
indicate that PIM consumes more energy than the CPU, while
the in situ accelerator improves energy an average of 1.3×.
As shown in Fig. 20, the energy improvements by the in situ
accelerator increases to 2.2×, as the number of clustering
iterations varies from 100 to 800.

B. Performance

Fig. 21 shows performance improvements gained by the
in situ accelerator over the CPU baseline for accelerating
the ASA library for clustering various data sets (1, 2, 4,
and 8 MB) with 100, 200, 400, and 800 iterations to form
four clusters. The results indicate average speedups of 11×,
8.3×, and 41.2× over the CPU baseline for the breast can-
cer, indoor localization, and U.S. census data sets, respec-
tively. Similarly, Fig. 22 shows significant speedup over the

6We notice that this increase is mainly due to the significant static energy
consumed by the additional functional units used in PIM. The PIM-like
accelerator is optimized for performance.
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Fig. 21. ASA Library—performance normalized to the CPU baseline.

Fig. 22. ASA Library—performance normalized to the PIM baseline.

Fig. 23. GEA—performance normalized to the CPU baseline.

Fig. 24. TF–IDF—performance normalized to the CPU baseline.

PIM hardware: averages of 3.7×, 6.5×, and 8.1× for the
breast cancer, indoor localization, and U.S. census data sets,
respectively.

As shown in Fig. 23, the proposed in situ accelerator and
PIM baseline achieve respective average speedups of 45.7×
and 27.2× over the baseline CPU implementation. How-
ever, the CPU version of k-medians increases the execution
time by 70% on average. For the TF–IDF document clustering,
we observe an average drop in performance by 10% for
small data sets. As the input size increases, the performance
rise of 1.5× is observed (see Fig. 24). Overall, we observe
more performance improvements, as the number of iterations
increases.

Fig. 25. Execution time and total system energy with increase in the number
of clusters.

C. Discussion

1) Finite Switching Endurance: The switching endurance
exhibited by RRAM cells varies between 106 and 1012

writes [33], [46], [68]. The number of possible writes affects
the lifetime of RRAM cells. Therefore, the number of writes
to RRAM cells is monitored to estimate the lifetime of the
proposed hardware accelerator. It is important to know that
the input data set is written only once into the accelerator
and the memory cells maintain content during clustering
iterations. To find the minimum lifetime of the accelerator
dual in-line memory module, we conservatively consider the
hardware being used constantly to solve clustering problems
that require the full capacity of the accelerator.7 We assume
that every new problem requires all of the memory cells to
switch when loading the data points; therefore, we find the
time between the switching of the memory cells in this setup,
which is Ts = 2.258� s. � is the product of the number
of clusters and the number of iterations that are defined by
the application. Notice that Ts increases as the number of
clusters and iterations increase. Assuming 108 for write cycles
and 1 for �, the minimum lifetime of the proposed hardware
accelerator is estimated to be seven years while constantly
solving clustering problems.

2) Increase in the Number of Clusters: Fig. 25 shows the
impact of increase in the number of clusters on the overall sys-
tem energy and execution time of the CPU, the PIM, and the
memristive accelerator. This sensitivity analysis is performed
on the ASA 136 library with 400 iterations while increasing
the number of clusters from 4 to 1024 by a step of 2n .
Each design point represents the relative execution time and
system energy averaged on three runs of the library for 8-MB
data from breast cancer, indoor localization, and U.S. census
data sets. The results indicate that the energy and execution
time of data clustering increase as the number of clusters
grows; however, such increase is much more significant for
the PIM and CPU baselines. Overall, the proposed in situ
accelerator achieves 22–290k× and 8–81× better energy-
delay-products compared with the CPU and PIM baselines,
respectively.

7In the case of clustering small problems, memory allocation techniques
may be employed to distribute write across memory cells to alleviate the
endurance problem.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RUPESH et al.: ACCELERATING k-MEDIANS CLUSTERING USING A NOVEL 4T-4R RRAM CELL 13

VIII. CONCLUSION

K-means and k-medians clustering are widely used tech-
niques for data clustering in scientific research and engineering
disciplines. Most of the available solutions suffer in perfor-
mance and energy due to excessive data movement involved
throughout the clustering process. The proposed RRAM-based
in situ data clustering accelerator successfully addresses these
concerns by implementing bit-serial ROF algorithm for median
calculation and performing in situ computations within novel
RRAM memory cells, thereby eliminating unnecessary data
movement between the core and the main memory. Based
on our simulation results, the proposed accelerator achieves
significantly better energy and performance improvements as
compared with CPU and PIM-like accelerators. In conclusion,
the proposed hardware accelerator significantly improves the
performance and energy for clustering applications involving
processing of very large data sets.
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