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Abstract—Power dissipation is a significant problem limiting the performance of today’s computer systems. One of the main
contributors to power consumption in microprocessors is data movement in cache and memory interface. Several solutions such as low
power interconnects, energy-aware data encoding, and low power signaling have been proposed to mitigate this problem. Almost all of
these techniques result in a significant system performance degradation. This article examines the application of a novel technique,
called STFL-DDR, for hybrid signaling on low-power DRAM interface. To keep the power consumption low, STFL-DDR employs a
high-performance clock rate for transferring data on low power wires. To avoid any signal deterioration, STFL-DDR employs data
encoding/decoding to prevent each wire from switching in any two consecutive cycles. STFL-DDR creates new opportunities for
optimizing the energy-efficiency of DRAM systems. We compare the efficiency of STFL-DDR with the state-of-the-art methods by
simulating a mix of 12 parallel benchmark applications on a muticore system. Our simulation results indicate that STFL can reduce the
energy consumption of a contemporary DRAM interface by 17% as compared to an LPDDR baseline while achieving the throughput of
a high-performance DRAM. Applying STFL to both last level cache and DRAM interface results in improving the system energy,
energy-delay product, and performance by 8%, 15%, and 9% respectively. Compared with a high-performance memory interface, STFL
improves the system energy and energy-delay product by 25% and 75%, while reaching 98% of the average performance of the

high-performance system.

Index Terms—Memory Interface, Low Power Wires, Energy-efficiency, Hybrid Signaling.

1 INTRODUCTION

Transferring data over off-chip wires consumes more than
20% of the overall DRAM energy [1]. Figure 1 shows an
energy breakdown for a multicore processor running a set
of memory intensive parallel applications. ! As illustrated in
this figure, the last level cache (LLC) and DRAM IO together
consume about 33% of the overall system energy. Recent
studies show that the data movement energy is a dominant
energy consumer for modern computer systems [2], [3], [4].
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Fig. 1. Example system energy breakdown for a multicore processor.
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Bit time is defined by the amount of time required
for sending a single bit of information over a wire. The
peak bandwidth of the wire is defined by the number of
possible bit times per second. To increase the bandwidth
of the wire, we can increase the number of bit times per
second. Increasing the number of bit times may result in
an increased number of switchings between a low and a
high voltage levels. The higher the switching activity, the
more dynamic power consumption. Based on the dynamic
power equation P = aCV?2f, numerous techniques have
been introduced to reduce power by lowering the switching
activity («), capacitance (C), voltage (V'), and frequency
(f). In our recent work [5], we propose STFL to improve
the bandwidth and energy efficiency of low power wires in
LLCs. In this article, we extend the application of STFL to
DRAM interfaces using novel microarchitectural techniques.

1. Detailed explanation of the system configurations is provided in
Section 5.

DRAM data bus consumes energy due to signal tran-
sitions (wire flips) for transferring data bits and on-die
termination. Every wire flip expends energy for charg-
ing/discharging a wire capacitance. On-die termination cir-
cuit consumes energy for impedance matching and mitigat-
ing signal reflection in the data wires. A termination circuit
enables a higher data rate in modern DRAM interfaces
at the cost of dissipating a significant amount of DRAM
energy. To alleviate this problem, asymmetric termination
designs, such as DDR4 [6], GDDR4/5 [7], and LPDDR4 [8],
have been proposed to reduce power consumption in high
performance interfaces. However, significant power reduc-
tions are only possible through low power DRAM interfaces
that leverage low voltage-swing signaling and unterminated
wires—e.g., LPDDR3 [9]. Regrettably, the bandwidth and
energy efficiency of these techniques are limited mainly due
to the significant reduction in the frequency of interface.

We examine a microarchitectural solution to achieve a
higher bandwidth in low power DRAM interfaces. The key
bottleneck to achieve a high bandwidth in low power wires
is the transition speed that relates to the wire characteristic;
and is hard to change. Despite this limitation, we propose
to signal data bits at high rates on low power wires. To avoid
signal deterioration when sending consecutive transitions,
we pause the transmission by injecting delay cycles after
each transition. Furthermore, we propose a simple encoding
technique to reduce the number of transitions per trans-
ferred data and signal the voltage levels faster to reduce the
transfer time. To the best our knowledge, STFL is the first
architectural solution for hybrid signaling on low power
cache and DRAM interfaces. While the area and power
overheads of the encoding/decoding circuits are compa-
rable to the state-of-the-art techniques, the system energy
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and performance potentials of the proposed solution are
considerable. We demonstrate the efficiency of our method
when we apply STFL to the DRAM interface and both
DRAM and cache interfaces. Our simulation results over
a mix of 12 parallel benchmark applications running on
a multirate system shows that STFL improves the DRAM
interface energy by 17% as compared to a low power DRAM
interface. In addition, STFL is applied to both last level cache
and DRAM interface to improve the system energy, energy-
delay product, and performance averages by 8%, 15%, and
9% respectively.

2 BACKGROUND

This section provides the necessary background on data
communication in modern memory systems and the rele-
vant energy optimization techniques.

2.1 Bus Termination in DRAM Interface

Terminated DRAM buses can reach a higher performance
than unterminated interfaces because of the reduction in
signal reflection within off-chip wires; however, they dissi-
pate more energy due to on-die termination [10]. A basic
on-die termination circuit comprises a switch (I') and a
resistor (Rierm) that matches the impedance of data wires.
On every data reception, the switch is on and a DC current
flows through the resistor that results in energy dissipation.
Numerous techniques have been proposed to reduce this
DC current. For example, DDR4 has adopted a pseudo open
drain technique to address this problem (Figure 2(a)). On
transferring a 1, Ty and 73 are on and off, respectively;
since Rierm is connected to VDD, no DC current flows
through the resistor. However, on transferring a 0, T is on
that results in a DC current flowing through the resistor,
thereby dissipating energy. In contrast, LPDDR3 [9] adopts
an unterminated ( slower) interface to reduce the power
consumption in data wires (Figure 2(b)). On every wire flip,
a load capacitance (C) is charged/discharged that results
in switching power. The absence of a termination circuit
narrows down the interface power only to signal transitions.
The proposed STFL-DDR employs unterminated wires for
sending data bits to completely remove the termination
power in data bus; it leverages a novel frequency aware
encoding to improve the bit rates in low power wires and
exploits data locality to further reduce the switching activity
in unterminated wires.
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Fig. 2. Pseudo open drain (a) and unterminated (b) memory interfaces.

2.2 Energy-Efficient Data Encoding

Data encoding is a popular way to reduce switching activity
and dynamic power consumption over the LLC and DRAM

2

interfaces. Numerous techniques have been proposed for
energy efficient data encoding. Bus invert coding (BIC)
sends the data or its complement: the one that leads to less
switching activity [11]. Data bus inversion (DBI) [12] applies
the BIC technique to open drain interfaces like GDDRS,
DDR4, and LPDDR4 to reduce power consumption.

DESC [13] sends a transition per data chunk (a group of 4
bits) on data wires while using synchronized counters at the
sender and receiver to represent data in terms of the elapsed
cycles between two consecutive transitions. Due to guaran-
teeing up to one transition per data chunk, DESC decreases
the switching activity of wires; however, the transmission
time depends on the value of data chuck that is typically
longer than binary encoding. Adaptive time-based encoding
[14] monitors the application phases and memory burst over
the data bus at run time and applies either binary encoding
or DESC encoding to improve energy-efficiency. Flip-N-
Write [15] applies a bus inversion coding to the phase-
change memories to reduce the write energy. CAFO [16]
is a cost aware flip optimization method suitable for non-
volatile memories with asymmetric endurance and energy
for writing 1 and 0. The goal of CAFO is to minimize the cost
of write operations. SETS [17] makes use of limited weight
codes [18] to make the wire energy proportional to the
blocks’ Hamming weight.MiL [19] has shown an application
of sparse encoding to the DDR4 interface.

History based methods utilize the similarities between
the past and future data blocks to reduce switching activity.
For example, bitwise difference (BD) encoding [20] utilizes a
table to detect similarities between data words sent over the
bus and sends the difference between the current data and
the most similar entry of the table. Recent work on online
data clustering and encoding [21] clusters data blocks at
the transmitter and receiver sides. It computes the cluster
centers and sends the difference between the data block and
the closest center along with its ID.

Due to the ever-increasing bandwidth demand in GPU
systems, energy consumption of high speed DRAM inter-
faces has become a significant challenge. Lee et al. propose
a mechanism that captures data similarities across GPU
DRAM transactions to reduce the data movement energy
in terminated, pseudo open drain I/O interfaces [22].

3 STFL CODING

STFL proposes a hybrid technique for slow-transition, fast-
level (STFL) signaling that creates a balance between power
and bandwidth in the last level cache and DRAM inter-
faces. Transition speed is the key bandwidth bottleneck in
low power wires. STFL employs a hybrid technique that
transfers signal levels faster and reduces the number of
transitions in every data block. Instead of using binary en-
coding that represents 1s and 0s with two different voltage
levels, STFL exploits signal transitions that map every 1 to
a signal transition on the wire and every 0 to the absence of
wire transitions. This creates an opportunity for controlling
the bit flips over wires via data encoding. In addition,
STFL sends and receives data at a high clock rate. The
main problem is the signal deterioration that may happen
when transferring consecutive transitions. To address this
problem, STFL detects each transition and injects a delay
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cycle (0) after the transition (1). The STFL receiver detects
the transitions and removes those inserted dummy delay
cycles (0).

Figure 3 demonstrates an example of sending a four-bit
data (0011) by making use of high speed wire, low power
wire, and STFL interface. The high speed wire sends data
with the fastest transmission time (¢). However, it needs
a high voltage that leads to a high power consumption.
The low power wire has the longest transmission time (2t)
and the least power consumption. STFL is a hybrid data
transmission technique that consumes similar power to the
low power technique. With the help of the dummy cycles
(D), STEL is able to send 0s at a higher rate than 1s, thereby
reducing the overall transition time from 2¢ to 1.5¢. As a
result of optimizing both power and time, STFL is now
able to improve the energy efficiency of data transmission
compared to the other two techniques.

(a) High speed (b) Low power (c) STFL
0 0 1 1 0 0 1D 1D
reduced power ! ' reduced latency
:: AN

2t it

Fig. 3. Transferring a 4-bit data with transition signaling on high speed wire
(a), low power wire (b), and STFL interface (c) [5].

4 APPLYING STFL To DRAM INTERFACE

DRAM power and bandwidth are crucial to the energy
efficiency and performance of computer systems. Therefore,
numerous optimization techniques have been proposed in
the literature to improve the efficiency of DRAM subsys-
tems [1], [23]. Memory IO dissipates an increasingly signifi-
cant amount of DRAM energy as more memory bandwidth
is utilized. Figure 4 shows the IO power and the peak mem-
ory bandwidth provided by various DRAM generations
and the proposed STFL-DDR mechanism. LPDDR interfaces
consume a lower power at the cost of limiting the memory
bandwidth compared to DDR. Instead, STFL-DDR strikes
a balance between power and bandwidth by employing
low power wires from LPDDR3 to transfer data bits and
high performance wires from DDR4 to carry the clock and
control signals. A controller is used to efficiently manage
data movement in the proposed memory interface.
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Fig. 4. Energy efficiency of STFL-DDR and conventional DRAM interfaces.

Figure 5 illustrates an example data movement between
a CPU and an eight-chip DRAM DIMM using STFL-DDR.
Similar to DDR4 and LPDDR3, each of the DRAM chips
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employs nine data wires for transferring eight data bits and
a mode bit?; therefore, a DIMM provides a 64-bit data bus.
STFL-DDR employs the same unterminated wires as used
in the LPDDR3 (800MHz) data bus for the data bits and a
pseudo open drain wire as used in DDR4 (1600MHZz) for the
mode bit.

Every data wire is connected to an STFL-DDR trans-
mitter and an STFL-DDR receiver. STFL-DDR employs the
encoder/decoder unit to control every group of eight
transmitter-receiver pairs. The transmitter transfers a byte
by generating a set of transitions (wire flips) on a data wire;
while, the receiver retrieves the original data from those

transitions.
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Fig. 5. lllustrative example of the proposed STFL-DDR interface.

4.1 STFL-DDR Transmission

As show in Figure 6, the transmitter follows multiple
steps to generate appropriate transitions for every input
data. STFL-DDR restricts the number of transferred 1s per
transmission to reduce the number of transitions. First, a
population counter computes the Hamming weight of each
byte; if the result is greater than four, the inverted data
(otherwise, the original data) is stored in a parallel-in, serial-
out shift register. This inversion is necessary to guarantee
that no more than four 1s will be transferred on the data
wire. Then, the contents of the shift register are serially read
and converted into wire flips using a transition generator
circuit consisting of a latch and an XOR gate. Similar to the
STFL-LLC transmitter [5], a delay injector circuit controls the
shift register by maintaining the previous output value and
disabling the shift operation if the value is a 1. A transition
generator circuit translates STFL codes into switchings in
DRAM data bus. Despite using a high speed clock signal,
the delay injector logic can avoid generating two transitions
in consecutive cycles; as a result, the transmitter can keep
the maximum transition rate on every data wire below 1.6
giga transitions per second.

horizontal bits vertical bits
«—{ T T T T T T T TTTT]]
Transition Delay Injector
i T T
Generator Shift e = E)y/:z (1)
- B T T
F H
- ) s i ;
Shift Register byte

STFL-DDR Transmitters STFL-DDR Encoder

Fig. 6. lllustrative example of the proposed transmitter for STFL-DDR inter-
face.
4.2 STFL-DDR Reception

The receiver comprises a transition detector and a serial-in,
parallel-out shift register ( Figure 7). The transition detector

2. The mode bit in DDR4 and LPDDR3 indicates if data bus inversion
(DBI) is applied to the data bits [12].

Authorized licensed use limited to: The University of Utah. Downloaded on May 18,2020 at 17:28:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2978826, IEEE

Transactions on Computers

employs an XOR gate and a flip-flop to convert every
transition to a 1 and the absence of a transition to a 0. The
resultant bit stream is then sent to the shift register. STFL-
DDR identifies and removes dummy 0s from the received
stream simply by pausing the shift register and overwrit-
ing the previously received bit. Finally, the shift register’s
contents are XORed with the corresponding inversion bit to
retrieve the original data. Notice that both the STFL-DDR
transmitter and receiver operate at the high interface clock
frequency.

STFL-DDR Receiver
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Fig. 7. lllustrative example of the proposed receiver for STFL-DDR interface.

4.3 Optimizing STFL Codes for DRAM

In addition to the transmitter and receiver, STFL-DDR em-
ploys a simple encoder to further improve power consump-
tion in the memory interface. The key idea is to reduce
the number of transitions (1s) on data wires by exploiting
spatial locality across adjacent data wires. (Notice that all of
the inversion control bits are transferred on the mode wire.)
As shown in Figure 6, STFL-DDR applies data encoding
to every array of 8 x 8 data bits. Each row of the array is
assigned to a data wire. Four vertical and eight horizontal
mode bits are generated for every 8 x 8 data array. STFL-
DDR uses two phases to reduce the number of 1s (transi-
tions) without incurring significant overhead.

In the first phase, every pair of adjacent columns are
XORed. For each computed result, if the Hamming weight
is greater than four, the leftmost column of the pair is
inverted and the corresponding vertical mode bit is set to 1.
As a result of this bitwise inversion, the similarity between
adjacent columns increases that helps to reduce the number
of ones in the second phase.® In the second phase, STFL-
DDR computes the Hamming weight of each row separately.
If the result is greater than four, the row is inverted and its
horizontal mode bit is set to 1 (left of Figure 6). Increasing
the similarity between columns in the first phase results in
having most bits of the rows set to either 0 or 1. Hence,
the proposed techniques can significantly reduce the total
number of 1s, while it is guaranteed that every row does
not contain more than four 1s.*

4.4 STFL-DDR Clock Frequency

The proposed STFL-DDR interface employs a reference 1600
MHz clock frequency. We do not allow a variety of time
scales for Os and 1s. 1s are only allowed to be transferred at
the half frequency of zeros; therefore, a single clock reference

3. We also observed that this technique can reduce the total number
of transitions per data blocks.
4. This requirement is forced by STFL to limit the transmission delay.

4

is sufficient for synchronization.The transmission frequency
is set to 1600MHz (the same as the mode wire); however,
STFL-DDR encoding guarantees that the required frequency
for sending transitions on the data bus does not exceed
800MHz. We inject dummy zeros after each 1 as explained
in Section 3. This means that for sending 8-bit with at most
4 ones, we add 4 dummy zeros and send them with the
frequency of 1600MHZ. In DDR we can send 2 bits in each
cycle time; however, in STFL, we send 8 data bits in 6 cycle
time, which means that we can send 1.33 bits in each cycle
time. Accordingly, the bandwidth of the STFL (2.13 Gps)
is equal to the bandwidth of a DDR that works with the
frequency of 1066 MHz. The proposed interface employs a
reference 1600 MHz clock and an appropriate encoding and
signaling mechanism to significantly improve the energy
efficiency of data movement in DRAM interface. As shown
in Figure 4, the 1600MHz STFL-DDR provides a memory
bandwidth almost equal to that of the 1066 MHz DDR4
interface at a significantly lower power.

Due to the dual-data rate of DRAM interface, STFL-DDR
transfers data bits on both edges of the clock. Therefore,
transferring an 8 x 8 data array (i.e., 64 bits) between CPU
and a DRAM chip requires 6 DDR clock cycles. (This paper
employs a 1600MHz clock for STFL-DDR that provides the
same bandwidth as in a DDR4 1066 MHz interface.)

Overall, the proposed mechanism further reduces the
dynamic power consumption of STFL-DDR in the unter-
minated data wires by decreasing the number of transitions
(1s) while it sends and receives data bits at high perfor-
mance rate.

5 EXPERIMENTAL SETUP

We evaluate area, performance, power, and energy of STFL-
DDR based on hardware synthesis with a 45nm CMOS
technology library [24]. The synthesis results are scaled to
22nm using the scaling parameters provided by the prior
work [25]. Our SPICE models for the interfacing circuits are
based on the PTM [26] high-performance 22nm transistors.
We use the HSPICE simulator to estimate the delay and
energy overheads. To evaluate the overall energy and per-
formance potentials of the interconnects in DRAM, CACTI
10 [27], Micron power calculator [28], [29], and DRAM-
Power [30] are used. We use McPAT [31] to estimate the
overall processor power consumption.

5.1

We employ a heavily modified ESESC simulator [32] to
model a multicore processor system that includes data along
with every memory request for calculating the dynamic
energy, accurately. The multicore system comprises four
000 cores with private L1 cache and a shared 4MB LLC
interfaced to two DRAM channels. The simulation parame-
ters for the processor are shown in Table 1.

TABLE 1
Processor architectural parameters.

Processor Architecture

Core four 4-issue OoO cores, 128 ROB entries, 3.2 GHz

IL1/DL1 cache 32KB, 4-way, LRU, 64B block, hit/miss delay 1/1

shared L2 cache [4MB, 8-way, LRU, 64B block, hit/miss delay 8/2, MESI protocol

Temperature 360K (77°C)
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5.1.1 Methodology

We evaluate and compare STFL-DDR interfaces with the
state-of-the-art encoding and signaling techniques such
as the conventional binary encoding, bus invert cod-
ing [11], BD encoding [20], DESC [13], SETS [17], and two-
dimensional block coding with CAFO [16]. Furthermore, we
model a low power (LP) baseline using low power wires
for both last level cache and DRAM interface. We use low
voltage-swing wires in the LLC H-trees and unterminated
LPDDRS3 wires in the DRAM IO interface. We develop two
versions of the bus invert coding optimized for power in
data wires: DBI-LLC is used to reduce the switching activity
of on-chip wires for LLC and DBI-DDR is developed to
reduce the total number of transferred 1s over the DDR4
wires. Similarly, two versions of CAFO and BD encoding are
developed for reducing the switching activity and number
of 1s in cache and DRAM. CAFO-LLC is applied to data
blocks while the size is 8 x 8 bits; whereas, CAFO-DDR
is optimized for the burst length of DRAM by encoding
8 x 16 data blocks. We also adopt two optimized versions
of history-based BD encoding with 64- and 32-entry tables
for DRAM and LLC interfaces, respectively. DESC and SETS
require excessive time and wire overheads that make them
largely inefficient solutions for DDR interfaces.” As a result,
these two techniques are applied only to the last level cache
interface.

To account for the energy and delay overheads of the
STFL coding, we consider reusing the existing components
from LPDDR3 and DDR4 DRAM devices. However, more
energy-efficiency and better performance are expected to be
achievable through a custom design. We use the clocking
circuits and pseudo open drain wires for mode bits from a
1600MHz DDR4 device, while the data wires are borrowed
from an 800MHz LPDDR3 device.

5.1.2 DRAM Performance and Energy Model

We implement a detailed model of a two-channel DRAM
system for the proposed and baseline systems to carry out
all the cycle-accurate performance simulations and energy
estimation in the ESESC simulator [32]. As the same DRAM
core technology is used for all the evaluated systems, we
set the timing parameters based on a DDR4-2133 device
(Table 2).° We calculate the burst time (tgyrsr) based on
the requirements of each interface: it is set to 6 for STFL-
DDR and 4 otherwise. Notice that 6 STFL-DDR cycles at
1600MHz result in about the same amount of transmission
time as 4 DDR4 cycles at 1066MHz (3.75 ns). However, the 4
LPDDR3 cycles at 800MHz requires 33% more transmission

time than STFL-DDR and DDR4 interfaces.
TABLE 2
DRAM timing parameters (ns).

DDR4 [6] tRCD: 14.16, tCL: 13.32, tWL: 16, tCCD: 4, tWTR: 7.5, tWR: 12,

tRTP: 7.5, tRP: 13.32, tRRD: 4, tRAS: 32, tRC: 45.32, tFAW: 30

Table 3 shows the parameters used for DRAM energy
calculation using different interfaces. DRAM core param-
eters are common for all three interfaces. However, the

5. DESC employs a temporal encoding mechanism that requires a
maximum of 16 cycles; where, SETS needs either 4x pins or time to
transfer a byte.

6. Notice that appropriate conversion of the parameters to DRAM
cycles is necessary according to the frequency of each interface.

5

IO related parameters are set according to the components
that exist in each interface. For example, IDD3 parameters’
mainly account for the clocking circuit in the standby mode;
therefore, we use the same values as in the 1600MHz DDR4
for STFL-DDR. To compute the data movement energy on
wires, STFL-DDR employs two values for each read and
write IDD4 parameters. The two values correspond to the
mode and data wires.

TABLE 3
DRAM power parameters (m A).

| [ DDR4 | LPDDR3 | STFL-DDR ||

[ Common in AIl |

IDD3P 33 10 35 IDDO0 56
IDD3N 57 47 63 IDD2P 22
IDD4R 135 265 170/265 IDD2N 41
IDD4W 117 294 154/294 IDD5B 297

Table 4 shows voltage, energy/bit, termination and
switching power values for all the DDR4 and LPDDR3.
STFL-DDR employs LPDDR3 (800MHz) low power wires

TABLE 4
Voltage, energy/bit, and termination power values [33], [34]
Parameter DDR4 | LPDDR3

VDDQ 1.2 12

energy/bit (PJ/bit) 7.4 2.6
termination Read power (mW) 16.2 -
termination Write power (mW) 14.0 -

switching power (mW) 3.4 4.14

for data only; while, the corresponding clock data recovery
circuits [35], [36], [36], [37], [38], [39], [40], [41], [42]—e.g.,
PLL or DLL units—are connected to high performance wires
operating at a 2x faster clock rate (i.e., 1600MHz). Mode
bits are sent over DDR4 wires. The fixed ratio between the
two frequency domains eliminates the need for transmit-
ting multiple clock references for data recovery. Therefore,
similar to the prior work on reliable and low-jitter clock
data recovery [43], [44], [45], a frequency divider converts
the high-frequency clock to an appropriate reference for
recovering data from the low power wires. Therefore, STFL-
DDR is able to employ the high frequency clock and division
circuits for data equalization [44], [46], [47] and double-edge
signal alignment [45], [48] at the receiver.

5.1.3 Applications

A mix of twelve parallel applications from Phoenix [49],
NAS [50], and SPLASH-2 [51] benchmark suites are used to
evaluate the impact of STFL codes on both memory inten-
sive and non-intensive applications. We run the simulations
until completion for power, and performance evaluations.
Table 5 summarizes the evaluated benchmarks and their
input sets.

5.2 Applying STFL to Cache

In this Section, we briefly review how to employ STFL at the
last level cache interface [5].

5.2.1 Applying STFL to Large Caches

On-chip last level caches are performance critical compo-
nents in modern computer systems that occupy significant
die area and consume considerable amounts of energy. Due

7. IDD3N represents the current flowing through the DRAM when at
least one bank is active; IDD3P is the current when an external clock is
on during the power-down mode.
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TABLE 5
Applications and data sets.
[ Label | Benchmarks [ Suite [ Input |

FT Fourier Transform NAS OpenMP Class A

IS Integer Sort NAS OpenMP Class A

MG Multi-Grid NAS OpenMP Class A

CG Conjugate Gradient | NAS OpenMP Class A

BT Block Tri-diagonal NAS OpenMP Class A
RAY Ray Trace SPLASH-2 car
OCN Ocean SPLASH-2 514x514 ocean
FFT FFT SPLASH-2 1048576 data points
LU LU SPLASH-2 1024 x 1024 Matrix
BRN Barnes SPLASH-2 16K particles
HIST Histogram Phoenix 100MB file

WCNT Word Count Phoenix 10MB text file

to the large interconnects used for transferring data in last-
level caches, accessing a data block necessitates expending
a large amount of dynamic energy. To address this problem,
STFL-LLC is used to optimize the cache energy by reducing
the number of wire flips in the interconnects.

Cache Mat

Bank

an Sub-array

Bank ™
Cache
Controller
\

Bank level S~ Vertical  Horizontal
H-tree H-tree H-tree

Fig. 8. Hierarchical organization of an example last-level cache with
eight banks.

As shown in Figure 8, large caches are typically or-
ganized as a hierarchy of banks, sub-banks, mats, sub-
arrays, and multiple H-trees that are disciplined by a cache
controller. Independent banks are accessed simultaneously
through a bank-level H-tree; each bank comprises a group
of sub-banks that share the wires of a vertical H-tree; within
every sub-bank, multiple mats are connected to a horizontal
H-tree and supply different bits of the cache block in a bit
parallel fashion. The number of subarrays inside each mat
is always 4. The optimal number of banks, subbanks and
mats explored through CACTI [52] to minimize energy-
delay product (EDP) . Every read and write access re-
quires moving data over long and capacitive wires within
the H-trees, which results in significant delay and power
consumption [13], [53]. STFL-LLC reduces the overall data
movement energy in the cache interconnects through (1)
using low power wires in data H-trees, and (2) integrating a
set of STFL transmitters and receivers in the mats and cache
controller to perform data transmission.

We apply STFL to the input and output data buses
transferring a cache block between the cache controller and
the selected mats during every cache access. Figure 9 depicts
transferring a 64-byte cache block using an STFL-LLC inter-
face with 16 groups. STFL divides every cache block into
multiple groups of four bytes. Each group is converted to
four STFL codewords transferred over four low power data
wires. STFL employs an existing low power wire to transfer
the encoding modes used for the four codewords. Finally,
the receiver detects the signals and converts the codes to the
original data block.

Transmitted Data (64 bytes) [ « | 5 |

Transmission Buffers %
STFL Encoders

-
i

data wireS ||

mode wire* |

STFL Decoders

Reception Buffers

i
|

-

Received Data (64 bytes) [

Fig. 9. lllustrative example of transferring a 64-byte cache block using the
STFL-LLC interface.

5.2.2 Data Encoding with STFL-LLC

The proposed STFL-LLC mechanism exploits the similarities
between adjacent bytes (i.e., spatial locality) in every cache
block to reduce the Hamming weight of the codewords.
This optimization is implemented through defining multiple
encoding modes for every byte («) to be transferred. The
STFL-LLC encoder estimates the energy and delay costs
for all of the possible codewords through computing the
Hamming weight (®) of each candidate. Therefore, STFL-
LLC selects the codeword with less Hamming weight to
be transferred for the data byte. Table 6 shows the three
possible encoding modes and the corresponding codewords
for every . The mode is set to 000 if the original data
(a) is selected as the codeword. This mode is useful for
transferring low Hamming weight bytes, such as 00000000.2
STFL-LLC employs mode 01D for transferring the inverted
data (@) to reduce the number of 1s in heavy bytes, such
as 11111111. The 1D0 mode is used for transferring the
difference between « and its adjacent byte 3 within the same
group. Notice that the mode bits of each group are serially
transferred on a low power wire, thereby requiring a D after
every 1.

TABLE 6
STFL-LLC encoding.
Condition Codeword | Mode
@@ <DA(@adp) <) | a®B | IDO
@) > DA (Badf) > 5(@) o 01D
Otherwise « 000

One difficulty in mode 1D0 that computes codewords
by XORing the adjacent bytes is the possibility of forming
long chains of XORs at the decode time. To avoid delay
and energy overheads, STFL-LLC limits the XOR coding
in mode 1D0 to every data group only. The rightmost
byte of each group may be XORed with a fixed constant
value (01010101) rather than its adjacent byte. * Figure 10
illustrates the proposed encoding mechanism for STFL-LLC.
The encoder employs two population counters and a simple
encoding logic to prepare data prior to transmission on
a data wire. Based on Table 6, the logic generates three
mode bits indicating which encoding is applied to the data
(). STFL-LLC generates a total of 12 mode bits for all of
the bytes in every data group and transmits them using a
single mode wire. Similarly, the decoder employs Table 6

8. Prior work [13] shows that about 30% of the transferred bytes may
be zero.

9. Our studies indicate that XORing with a constant value that
provides a code equally distant from the true and inverted value of
the original byte results in a lower number of ones.
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to convert the received codewords into the original data. In
addition to the encoder and decoder units, STLF employs
a transmitter and a receiver to generate and detect the
corresponding signals with every codeword.

a Encoder Decoder
fary |
A T
Population -
Decodin
Populati Counter Y« p
puiation Transmitter Logic
Counter
[ Receiver
Encoding Logic ﬁj E . x_‘
data wire A a
i LT A\
‘ mode bits for « mode wire
O EE

Fig. 10. lllustrative example of the STFL-LLC encoder and decoder.

Figure 11 shows how an 8-bit codeword is transferred
over an example STFL interface that includes three mech-
anisms for transmitting codewords, receiving signals, and
transferring mode bits. The transmitter sends each code-
word by generating a set of transition signals on the data
wire; the receiver detects those transitions and recovers the
original data.

Transition !
Delay Injector Generator !
|

. Level |
3 < Converteri
Bebit e _ 8-bit

Codeword = -=—---___ Codeword

Shift Register
Shift

iConverter Transition

B Detector STFL-LLC Receiver

Fig. 11. Transferring data codewords in STFL-LLC.

Transmitting Encoded Data. To ensure the transition signals
are properly generated for each codeword, multiple steps
are followed by the STFL-LLC transmitter. First, STFL-LLC
stores the eight-bit codeword generated by the encoder
in a parallel-in, serial-out shift register. (Due to using the
encoding modes as explained in Table 6, it is guaranteed
that every codeword contains no more than four 1s.) STFL
reads the code bits serially read from the shift register and
converts into transition signals using a transition generator
comprising a latch and an XOR gate. A delay injector
controls the shift register and maintains the previous output
of the shift register. The delay injector is connected to
the shift register via an (active low) shift signal; every 1
transmitted in the previous cycle disables the shift register
in the current cycle, thereby injecting a D after every 1 in the
code. Since the shift register can now contain up to four 1s,
the longest generated codeword is 12 bits long. To avoid the
complexity of variable length encoding, the transmitter is
set to produce fixed 12-bit codes (zero padding is required
for the codes with fewer 1s). The STFL codes are serially
fed into a transition generator circuit that translates every 1
into a flip on its output. Finally, STFL-LLC employs the level
converter to prepare the signals prior to transmission on the

low-power wires by converting from full to low-swing.!’

Transmitting Mode Bits. Unlike codewords, mode bits can
be directly converted to the transition signals on the wire
with no need for delay injection. The STFL-LLC encoder
generates a total of 12 mode bits for every four data bytes,
where 1s are spaced out by dummy 0s in the resultant bit
pattern. Similarly to the data codewords, transferring the
mode bits requires 12 cycles. Figure 12 shows how the mode
bits are transmitted on a low-power wire.

Transition
Generator

,,,,,,,,,,,,,,,,,,,

Mode Wire 3 [
(L1}
|

I

12-bit _

mode !
! I Level Shift
! Converter, ! Converter

Fig. 12. Transferring mode bits in STFL-LLC.

Receiving STFL-LLC Signals. The STFL receiver employs
the level converter to convert the domain of signals trans-
ferred on the low power wires. It makes use of a transition
detector, consisting of an XOR gate and a flip-flop, to
convert the transition signals into 1s (Figures 11 and 12).
From data wires, the result is sent to a serial-in, parallel-
out shift register. On every cycle, a newly detected bit is
fed to the shift register; moreover, the same bit controls
the shift operation. Every 0 results in shifting the content
and inserting the bit in the register; a 1, however, disables
the shift operation and overwrites the previously sampled
value—which is a dummy 0. Therefore, STFL removes all
of the additional delay cycles by the transmitter at the
receiver. Finally, the result is sent to the STFL-LLC decoder
for extracting the original data block (Figure 10).

6 EVALUATION

In this section, we first present the area, energy, and delay
overheads of the STFL encoder and decoder as compared to
the baseline systems. Next, the energy and performance po-
tentials of STFL and the baseline systems will be explained.

6.1 Synthesis Results

Table 7 shows area, critical path delay, and power consump-
tion of the encoders and decoders used for 64-bit DRAM
interfaces using DBI, BD, CAFO, DESC, SETS, as well as
STFL. Overall, the area, delay, power, and energy overheads
of the encoders and decoders are negligible as compared
with the interface circuits and data wires. However, each
encoding mechanism may significantly impact the overall
system performance through indirect overheads such as
consuming significant static energy due to long encoding
latency, degrading the energy-efficiency, and increasing the
cache and memory footprint. As shown in the table, STFL
consumes less area overhead compared to BD and CAFO
with comparable delay and power overheads. The impacts
of these delay and power overheads are evaluated in the
final results.

10. Notice that a shared H-tree is used to connect the sub-banks
within every bank (Figure 8). Similarly to the prior work on DESC [13],
we employ a re-generator circuit for transferring the transition signals
on shared data wires.
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TABLE 7
Overhead of various encoders and decoders.
Encoder Decoder

Area Delay | Power Area Delay | Power
Interface (um?) (ns) (mW) (um?) (ns) (mW)
DBI-DDR 78.044 0.176 0.16 25.536 0.016 0.43
STFL-DDR 1642.284 0.831 0.49 102.144 0.071 0.71
BD-DDR 3195.358 0.74 0.38 3195.358 0.24 0.33
CAFO 2638.72 0.705 1.41 51.072 0.033 0.71

6.2 Energy

This section presents the potential energy savings of STFL
as compared with the other baseline mechanisms when
applied to the DRAM interface. We also assess the system
energy including cache, CPU cores, and DRAM.

6.2.1 DRAM Interface Optimization

Figure 14 shows the impact of various encoding mecha-
nisms on the DRAM interface energy including switching
and termination. This experiment accounts for the addi-
tional energy required for encoding, decoding, and trans-
ferring mode bits. The proposed STFL-DDR codes reduce
the DRAM interface energy by an average of 72% for all of
the benchmark applications. CAFO and BD are successful in
reducing the termination energy of the wires by decreasing
the total number of transferred 1s. These techniques, how-
ever, are not able to completely eliminate the termination
energy, which is equal to not sending 1s. In contrast, STFL-
DDR and LPDDR3 employ unterminated wires that trans-
late to a lower energy consumption. LPDDR3 has a limited
bandwidth due to the unterminated wires; whereas, STFL-
DDR recovers the bandwidth loss through STFL codes, and
further reduces the wire energy by lowering the switching
activity.! On average, STFL-DDR achieves a 17% reduction
in DRAM interface energy over LPDDR3. DBI reduces the
termination energy by decreasing the Hamming weight of
the data blocks via bus inversion. CAFO applies a two di-
mensional bus invert codes to further reduce the Hamming
weights. Unlike DBI and CAFO, BD encoding reduces both
the number of 1s and the bit flips by exploiting data similar-
ity. STFL-DDR and LPDDR3 mechanisms significantly bene-
fits from unterminated wires to reduce energy reduction for
data transfer. However, STFL-DDR is able to reduce further
interface energy due to reducing the switching energy via
data encoding. The combination of both data encoding and
exploiting unterminated wires results in superior energy
savings compared to all of the baseline systems.
ODBIDDR OBD-DDR BCAFO-DDR ®LPDDR3  WSTFL-DDR
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Fig. 14. Total DRAM interface energy consumed by STFL and other baseline
systems when they are applied only to DRAM.

Figure 15 shows the overall DRAM energy when the
proposed STFL -DDR and baseline mechanisms are applied

11. We observed that more energy is consumed during a switching
on an unterminated wire than a terminated one.

8

to the DRAM IO wires. STFL-DDR reduces the overall
DRAM energy by 26% averaged across all of the eval-
uated benchmark applications. CAFO and BD encoding
techniques achieve 18% and 11% energy reductions, re-
spectively. LPDDR3 achieves an average of 22% energy
reduction, which is close to STFL-DDR. The main reason for
the marginal improvement of STFL-DDR over LPDDR3 is
the fact that most of the evaluated applications can tolerate
the bandwidth degradations imposed by LPDDR3.!? This
point becomes clearer if we take a closer look at individ-
ual applications. For example, BT is a memory intensive
application that consumes 15GBps of DRAM bandwidth.
Our simulations on BT indicate average DRAM energy
reductions of 43% and 53% for STFL-DDR and LPDDRS3,
respectively. As BT’s performance heavily depends on the
DRAM bandwidth, a bandwidth degradation by LPDDR3
results in consuming more DRAM static power; therefore,
a bandwidth boost through STFL-DDR coding becomes
important.

ODBI-DDR OBD-DDR HCAFO-DDR BLPDDR3 MSTFL-DDR
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Fig. 15. Total DRAM energy consumed by STFL and other baseline systems
when they are applied only to DRAM.

6.2.2 System Energy Optimization

To assess the overall energy saving potentials of STFL cod-
ing in computer systems, we consider applying STFL and
the baseline encodings to both last level cache and DRAM
interfaces. Figure 13 shows the system energy consumption
of various baselines and STFL normalized to the conven-
tional binary encoding system. The results indicate that
STFL improves the average system energy by 25%; whereas,
LP saves only 19% of the system energy, on average. When
normalized to LP, STFL reduces the overall system energy
by 8%. Both these techniques provide better system energy
savings as compared with the other baselines (i.e., DBI,
CAFO, and BD encoding) that rely on high performance
wires.

Figure 16 shows the total system power consumed for
STFL and baseline systems. STFL consumes an average
power similar to LP. This proves that the efficiency of STFL
comes from a reduced execution time while the power
consumption is kept low.
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Fig. 16. Total system power consumed by STFL and other baseline systems
when they are applied to both LLC and DRAM.

12. This was also observed by prior work on DRAM energy propor-
tionality [1].
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6.3 Performance

To evaluate the impact of STFL coding on system perfor-
mance, we compute 1/execution_time for all the bench-
mark applications in two system configurations: 1) DRAM
10 is optimized, and 2) both cache and DRAM interfaces are
optimized.

6.3.1 DRAM Interface Optimization

We evaluate the impact of STFL and the baselines on perfor-
mance when applied to only DRAM IO interface as shown
in Figure 17. This experiment shows that STFL provides
almost the same performance as that of the high perfor-
mance (HP) DRAM interface. For different applications, BD
has between 1% to 4% better performance than STFL-DDR.
Except for OCN, IS, BRN and RAY, STFL-DDR has better
performance than CAFO. Notice on average, STFL-DDR
and CAFO show the same performance for the evaluated
benchmarks. As observed by prior work on PARDIS [54],
a delay in processing requests at the memory controller
may result in a different schedule that may improve or
worsen the system performance within a small margin.
The observed performance variance across the evaluated
systems is mainly due to this processing delay.
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Fig. 17. System performance of the STFL and other baseline systems when
they are applied only to DRAM.

6.3.2 LLC and DRAM Interface Optimization

Figure 18 shows the average execution time when STFL and
the baseline mechanisms are used to optimize both the last
level cache and DRAM interfaces. As compared to LP, STFL
reduces the end-to-end execution time by an average of
7% across all the evaluated benchmarks. While LP incurs
10% increase in the overall execution time; STFL reduces
the loss down to less than 2% and achieves 98% of the
high-performance binary encoding baseline. CAFO and BD
encoding result in excessive bandwidth overheads in the last
level cache interface, thereby increasing the execution time
by 4% and 3%, respectively.
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Fig. 18. Total system performance of the STFL and other baseline systems
when they are applied to both LLC and DRAM.

6.4 Energy-Delay Product

Due to improving both energy and delay, STFL can signif-
icantly reduce the energy-delay product (EDP) of a con-
temporary multicore system. Figure 19 shows that STFL
improves the system EDP by 15% and 25% compared to
the binary encoding on LP and HP wires, respectively.

7 DISCUSSION
7.1 Adapting STFL Coding to Data Patterns

As explained in Section 5.2.2, STFL-LLC employs three en-
coding modes to reduce the switching activity on the wires
based on the block contents. Figure 20 shows the usage of
each mode for all of the evaluated applications.'® The results
indicate that most of the transferred data bytes have low
Hamming weights and chose as the best codeword.
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Fig. 20. Breakdown of STFL-LLC mode usage.

7.2 Exploiting Spatial Locality

We definespatial locality as the repetition of a bit value in the
same bit position of neighboring bytes. As a result, XORing
the adjacent bytes may lead to more zeros in codewords.
Notice that STFL does not solely rely on spatial locality
to reduce bit-flips. Most of the energy efficiency is due to
using low power signaling and a hybrid signaling /encoding
that guarantees a certain numbers of 1s per byte. Never-
theless, we observed the following average numbers of 1s
transferred over the DRAM across the evaluated benchmark
applications (Figure 21).

13. This study is also used to assign bit patterns to each mode: the
more frequently used mode is assigned to the code with less switchings
(1s).
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Fig. 21. Average number of 1s of evaluated benchmarks.

7.3 DRAM Bandwidth

Figure 22 shows DRAM bandwidth consumption for STFL-
DDR and the baselines. STFL-DDR provides the same band-

width as DDR4 due to operating at 1600MHz. However,
LPDDR3 @800MHz encounters a bandwidth drop.
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Fig. 22. Average DRAM Bandwidth consumption for various techniques.
7.4 Handling ECC

Modern cache and memory systems may require error-
correction codes (ECC) to improve system reliability. We
expect such mechanism impact an STFL interface in two
ways: 1) transferring ECC codewords may increase the
entropy of transferred data; and 2) a single error may impact
multiple bits of a byte, which may be addressed through bit
interleaving per block as explained by the prior work on
DESC [13].

8 CONCLUSIONS

This paper examined a hybrid technique for slow-transition,
fast-level signaling on the DRAM interface called STFL-
DDR. The proposed technique improves the performance,
bandwidth, and energy efficiency of low power wires com-
pared with state of the art solutions. We also demonstrated
the significant effectiveness of our proposed method when
it is applied to both LLC and DRAM interface. Since data
movement is the major source of energy consumption in
modern computer systems, this technique can assist the
designers to build more energy-efficient computer systems.

REFERENCES

(1]

(2]

(3]
(4]

(5]

6]

(8]

(9]
(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periy-
athambi, and M. Horowitz, “Towards energy-proportional data-
center memory with mobile dram,” in ACM SIGARCH Computer
Architecture News, vol. 40, no. 3, 2012, pp. 37-48.

I. Akturk and U. Karpuzcu, “Amnesiac: Amnesic automatic com-
puter trading computation for communication for energy effi-
ciency,” in ASPLOS 2017, 2017, pp. 811-824.

“The top ten exascale research challenges,” in Report of the Ad-
vanced Scientific Computing Advisory Committee Subcommittee, 2014.
V.Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware
for machine learning: Challenges and opportunities,” in IEEE
Custom Integrated Circuits Conference (CICC), 2017, pp. 1-8.

P. Behnam and M. N. Bojnordi, “Stfl: Energy-efficient data move-
ment with slow transition fast level signaling,” in Proceedings of the
56th Annual Design Automation Conference 2019. ACM, 2019, p. 42.
“Jedec standard: Ddr4 sdram,” JEDEC Solid State Technology Asso-
ciation, 2012.

S.]. Baeet al., “An 80 nm 4 gb/s/pin 32 bit 512 mb gddr4 graphics
dram with low power and low noise data bus inversion,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 1, pp. 121-131, Jan 2008.
T. Y. Oh et al., “A 3.2 gbps/pin 8 gbit 1.0 v Ipddr4 sdram with
integrated ecc engine for sub-1 v dram core operation,” IEEE
Journal of Solid-State Circuits, vol. 50, no. 1, pp. 178-190, Jan 2015.
S. Dumas, “Mobile memory forum: Lpddr3 and wideio,” in JEDEC
mobile forum, vol. 201, no. 1, 2011.

H. Nguyen, V. Gadde, and B. Lau, “Calibration methods and
circuits for optimized on-die termination.”

M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power
i/o,” IEEE Trans. Very Large Scale Integr. Syst., vol. 3, no. 1, pp.
49-58, 1995.

T. M. Hollis, “Data bus inversion in high-speed memory applica-
tions,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 56, no. 4, pp. 300-304, 2009.

M. N. Bojnordi and E. Ipek, “Desc: Energy-efficient data exchange
using synchronized counters,” ser. MICRO-46, 2013, pp. 234-246.
P. Behnam, N. Sedaghati, and M. N. Bojnordi, “Adaptive time-
based encoding for energy-efficient large cache architectures,” in
Proceedings of the 5th ACM International Workshop on Energy Efficient
Supercomputing, 2017, p. 5.

S.Cho and H. Lee, “Flip-n-write: A simple deterministic technique
to improve pram write performance, energy and endurance,” ser.
MICRO 42, 2009, pp. 347-357.

R. Maddah, S. M. Seyedzadeh, and R. Melhem, “Cafo: Cost aware
flip optimization for asymmetric memories,” in HPCA 2015, 2015,
pp. 320-330.

Y. Song, M. N. Bojnordi, and E. Ipek, “Energy-efficient data
movement with sparse transition encoding,” in ICCD, 2015, pp.
399-402.

M. R. Stan and W. P. Burleson, “Limited-weight codes for low-
power i/0,” in International Workshop on low power design, vol. 6,
no. 3. Citeseer, 1994, pp. 6-8.

Y. Song and E. Ipek, “More is less: Improving the energy efficiency
of data movement via opportunistic use of sparse codes,” in
Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. ACM, 2015, pp. 242-254.

H. Seol et al., “Energy efficient data encoding in dram channels
exploiting data value similarity,” in ISCA 2016, 2016, pp. 719-730.
S. Wang and E. Ipek, “Reducing data movement energy via online
data clustering and encoding,” in MICRO, 2016, pp. 1-13.

D. Lee, M. O’Connor, and N. Chatterjee, “Reducing data transfer
energy by exploiting similarity within a data transaction,” in
HPCA, 2018, pp. 40-51.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of Utah. Downloaded on May 18,2020 at 17:28:59 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2978826, IEEE

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

(44]

[45]

[46]

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Computers

H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu,
“Memory power management via dynamic voltage/frequency
scaling,” in Proceedings of the 8th ACM international conference on
Autonomic computing, 2011, pp. 31-40.

“Free PDK 45nm open-access based PDK for the 45nm technology
node,” http://www.eda.ncsu.edu/wiki/FreePDK.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in
Proceedings of the 38th Annual International Symposium on Computer
Architecture, ser. ISCA "11.  ACM, 2011, pp. 365-376.

W. Zhao and Y. Cao, “New generation of predictive technology
model for sub-45nm design exploration,” in International Sympo-
sium on Quality Electronic Design, 2006.

N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas,
“Cacti-io: Cacti with off-chip power-area-timing models,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,
no. 7, pp. 1254-1267, 2015.

“Micron ddr4 power calculator,”
PowerCalculator(xlsm)-Micron.
“Micron lpddr3 power calculator,” http://www.micron.com/.

K. Chandrasekar, C. Weis, Y. Li, B. Akesson, N. Wehn, and
K. Goossens, “Drampower: Open-source dram power & energy
estimation tool,” URL: http://www. drampower. info, 2012.

S. Li et al., “Mcpat: An integrated power, area, and timing mod-
eling framework for multicore and manycore architectures,” in
MICRO, 2009, pp. 469-480.

E. K. Ardestani and J. Renau, “Esesc: A fast multicore simulator
using time-based sampling,” in HPCA, ser. HPCA “13, 2013, pp.
448-459.

Micron, “Mobile lpddr3 sdram,” https://www.micron.
com/-/media/client/global/documents/products/data-
sheet/dram/mobile-dram/low-power-dram/lpddr3/178b_8-
16gb_2c0f_mobile_lpddr3.pdf. Accessed:2019-03.

——, “Twindie ddr4 sdram,” https://www.micron.com/media/
client/global /documents/products/data-sheet/dram/ddr4/
ddr4_16gb_x16_lcs_twindie.pdf.Accessed:2019-03.

B. Razavi, “Challenges in the design high-speed clock and data
recovery circuits,” IEEE Communications magazine, vol. 40, no. 8,
pp. 94-101, 2002.

S. Ozawa, J.-i. Okamura, Y. Ishizone, and S. Miura, “Transmitter
circuit, receiver circuit, clock data recovery phase locked loop
circuit, data transfer method and data transfer system,” 2009, uS
Patent 7,535,957.

J.-H. Chae et al., “A 1.74 mw/ghz 0.11-2.5 ghz fast-locking, jitter-
reducing, 180 phase-shift digital dll with a window phase detector
for lpddr4 memory controllers,” in 2015 IEEE Asian Solid-State
Circuits Conference, 2015, pp. 1-4.

J.-K. Woo et al., “A fast-locking cdr circuit with an autonomously
reconfigurable charge pump and loop filter,” in IEEE Asian Solid-
State Circuits Conference. 1EEE, 2006, pp. 411-414.

S.-K. Lee et al., “A 650mb/s-to-8gb /s referenceless cdr circuit with
automatic acquisition of data rate,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2009, pp. 184-185.

R. E Payne and B. Parthasarathy, “Interpolator based clock and
data recovery (cdr) circuit with digitally programmable bw and
tracking capability,” Jan. 1 2008, uS Patent 7,315,596.

D. Kim, J. Wei, Y. Frans, T. Bystrom, N. Nguyen, and K. Donnelly,
“Clock-data recovery (“cdr”) circuit, apparatus and method for
variable frequency data,” Mar. 6 2012, uS Patent 8,130,891.

E. Guerrero, C. Sanchez-Azqueta, C. Gimeno, J. Aguirre, and
S. Celma, “An adaptive bitrate clock and data recovery circuit for
communication signal analyzers.” IEEE Trans. Instrumentation and
Measurement, vol. 66, no. 1, pp. 191-193, 2017.

J. Lee and B. Razavi, “A 40 gb/s clock and data recovery circuit
in 0.18/spl mu/m cmos technology,” in Solid-State Circuits Confer-
ence, 2003. Digest of Technical Papers. ISSCC. 2003 IEEE International.
IEEE, 2003, pp. 242-491.

Y. Shim, D. Oh, T. Hoang, and Y. Ke, “A jitter equalization
technique for minimizing supply noise induced jitter in high speed
serial links,” in Electromagnetic Compatibility (EMC), 2014 IEEE
International Symposium on. 1EEE, 2014, pp. 827-832.

H. Partovi et al., “Data recovery and retiming for the fully buffered
dimm 4.8 gb/s serial links,” in IEEE International Solid-State Cir-
cuits Conference, ISSCC 2006. IEEE, 2006, pp. 1314-1323.

R. E. Palmer, “Adaptive equalization using correlation of edge
samples with data patterns,” Dec. 29 2009, uS Patent 7,639,737.

DDR4SDRAMSystem-

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

11

K. Kaviani, et al, “A 64 gb/s near-ground single-ended
transceiver for dual-rank dimm memory interface systems,” in
IEEE International Solid-State Circuits Conference (ISSCC), 2013, pp.
306-307.

J.-M. Dortu and A. M. Chu, “Clock latency compensation circuit
for ddr timing,” Aug. 8 2000, uS Patent 6,100,733.

R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth:
Scalable mapreduce on a large-scale shared-memory system,” in
Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC), 2009, pp. 198-207.

D. H. Bailey et al., “The nas parallel benchmarks&mdash;summary
and preliminary results,” in Proceedings of the 1991 ACM/IEEE
Conference on Supercomputing, ser. Supercomputing ‘91, 1991, pp.
158-165.

S. C. Woo et al., “The splash-2 programs: Characterization and
methodological considerations,” in ISCA 95, 1995, pp. 24-36.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti
6.0: A tool to model large caches,” HP Laboratories, pp. 22-31, 2009.
A. N. Udipi, N. Muralimanohar, and R. Balasubramonian, “Non-
uniform power access in large caches with low-swing wires,”
in 2009 International Conference on High Performance Computing
(HiPC), Dec 2009, pp. 59-68.

M. N. Bojnordi and E. Ipek, “Pardis: A programmable memory
controller for the ddrx interfacing standards,” in 39th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2012, pp. 13-24.

Payman Behnam received his B.S. and M.S.
degrees with distinction in computer science and
engineering from Shiraz University, Iran and the
University of Tehran, Iran. Currently, he is a grad-
uate research assistant in School of Computing
at the University of Utah, UT, USA. His research
centers on designing energy-efficient system de-
sign and building hardware accelerators for com-
puter vision and machine learning accelerators.

Mahdi Nazm Bojnordi received the Ph.D.
degree from the University of Rochester,
Rochester, NY, USA, in 2016 in electrical and
computer engineering. He is currently an As-
sistant Professor of School of Computing with
the University of Utah, Salt Lake City, UT, USA,
where he leads the Energy-Efficient Computer
Architecture Laboratory (ECAL). His current re-
search interests include energy-efficient archi-
tectures, low-power memory systems, and the
application of emerging memory technologies to

computer systems. Professor Bojnordi’s research has been recognized
by two IEEE Micro Top Picks Awards, an HPCA 2016 Distinguished
Paper Award, and a Samsung Best Paper Award.

Authorized licensed use limited to: The University of Utah. Downloaded on May 18,2020 at 17:28:59 UTC from IEEE Xplore. Restrictions apply.



