
0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 1

AxMAP: Making Approximate Adders Aware of
Input Patterns

Morteza Rezaalipour, Mohammad Rezaalipour, Masoud Dehyadegari, and Mahdi Nazm Bojnordi

Abstract—Making approximate computing specific to user requirements is crucial to system performance, energy-efficiency, and
reliability. However, developing hardware for such optimization becomes a significant challenge due to the high cost of examining all
potential choices while exploring a large design space. One determinant aspect of exploring a design space is the efficiency of
evaluating error metrics, such as the Mean Error Distance (MED) and the Error Probability (EP), for each possible choice within the
search space. Since computing these error-metrics is quite time-consuming, efficient calculation approaches are essential.
This paper proposes a novel formal approach to accurately compute the EP and MED of approximate adders for any input pattern at a
linear time and space complexity. Our experimental results indicate that the proposed approach can accurately compute error-metrics
of large approximate adders at a 150 times faster speed compared to the Monte Carlo sampling methods. We then develop AxMAP, a
design tool based on the proposed error-metrics computation that generates energy-efficient approximate adders for any given input
pattern. When applied to image processing applications, AxMAP produces more than 150 different designs for adders that achieve
superior performance and energy-efficiency compared to the existing state-of-the-art approximate adders.

Index Terms—Approximate Computing, Adders, Mean Error Distance, Error Probability, Circuit Synthesis

F

1 INTRODUCTION

A PPROXIMATE computing trades accuracy for power, area,
and delay of modern-day applications such as machine

learning and image processing [1]. Digital adders are the key
component of a wide range of error-resilient applications. In5

general, Approximate adders have become the main focus of
numerous recent [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. Approximate adders have been classified to Low Power
Approximate Adder (LPAA) [2], [5], [7], [8], [10], [11], [13], and
Low Latency Approximate Adder (LLAA) [3], [4], [6], [9], [12].10

Prior work has extensively used various error-metrics such as
the Mean Error Distance (MED) and Error Probability (EP) to
assess the error characteristics of approximate adders [14], [15],
[16], [17]. Computing these metrics is quite time consuming as
they often require obtaining the results of every possible input15

pattern, which is 22n instances for an n-bit adder. The time
complexity of computing MED and EP for an n-bit adder is of
the order of O(22n). However, an efficient and accurate computa-
tion of error-metrics is necessary to develop design automation
tools that can synthesize approximate adders specific to user20

requirements [18], [19]. For instance Tajasob et al. [2] propose
a vast design space with billions of billion approximate adders
each having specific circuit and error characteristics. Exploring
such huge space to find matches to users needs requires efficient
methods of computing error-metrics.25

Several analytical methods have been presented in the liter-

• Morteza Rezaalipour and Masoud Dehyadegari are with the K. N. Toosi
University of Technology.
E-mail: mrezaalipour@email.kntu.ac.ir and dehyadegari@kntu.ac.ir

• Mohammad Rezaalipour is with the Software Institute, Faculty of Infor-
matics, Università della Svizzera italiana (USI), Lugano, Switzerland.
E-mail: mohammad.rezaalipour@usi.ch

• Mahdi Nazm Bojnordi is with the School of Computing, University of Utah,
Salt Lake City.
E-mail: bojnordi@cs.utah.edu

Manuscript received April xx, 20xx; revised August xx, 20xx.

ature to compute error-metrics [1], [15], [20], [21], [22], [23].
Although they have been successful in addressing this problem
partially, there are limitations for each. Some studies, such as the
work of Liu et al. [15], avoid exhaustive and time consuming 30

calculation of error metrics to some extent by employing Monte
Carlo sampling methods. However, the results estimated by Monte
Carlo methods are inexact. Moreover, these methods are time-
consuming and largely impractical as the number of samples in-
creases. Mazahir et al. [1] also mention limitations of Monte Carlo 35

simulations for computing error characteristics of approximate
adders.

Li and Zhou [23] propose a framework that computes MEDs
of LLAAs accurately while the results produced for EPs are
approximated. Their framework only works with uniform input 40

patterns. The method presented by Liu et al. [15] estimates MED
for different input patterns. However, this framework does not
compute EP and employs different approaches for different types
of adders. Mazahir et al. [1] propose to address the issue with a
more general method for computing EPs and error distributions 45

of LLAAs. It also employs error distributions to compute other
metrics such as MED. This method works with different input
patterns; however, it only produces the results for uniform input
patterns accurately. Wu et al. [21] propose a method to compute
EPs and MEDs of LLAAs which faster than the work by Mazahir 50

et al. [1]. Both methods provide estimates of error-metrics for
non-uniform input patterns.

It is worth stating that none of the studies mentioned above
can calculate MED and EP for LPAAs. Ayub et al. [22] propose
a method to obtain EPs of LPAAs for different input patterns. 55

This method does not compute MED. Another method presented
by Roy et al. [20] only computes MEDs of LPAAs, and does not
work with different input patterns. Also, the complexity of the
method presented in [20] is of the order of O(2m), where m is
the length of the approximate portion. 60

In this paper, we present a novel formal approach that ac-

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 2

curately and efficiently computes EPs and MEDs for LPAAs,
for different input patterns, in linear time and space complex-
ities. This approach employs a model so-called the quad-tree
representation [2] to provide generic MED and EP formulae65

that can be instantiated for any LPAA. The experimental results
demonstrate the validity of our approach and indicate that it
can compute MEDs, and EPs of large approximate adders more
than 150 times faster than Monte Carlo sampling methods. We
develop a tool called AxMAP that employs the proposed approach70

and automatically generate approximate adders. By exploring the
design space, AxMAP finds a suitable adder for given input
patterns, under specified circuit and error characteristics. Using
this tool, more than 150 adders have been produced for an image
processing problem each providing better trade-offs among power,75

area, delay, and MED compared to the existing state-of-the-art
energy-efficient approximate adders. To show the generality of the
results, we evaluate the generated adders over a wider range of
input images.

2 BACKGROUND AND OBSERVATIONS80

2.1 Preliminaries
The proposed approach in this paper is based on two primary
concepts: fast and accurate computation of error-metrics and
design space exploration using quad-tree representation [2]. This
section provides an overview of these concepts.85

2.1.1 Error-metrics
Liang et al. [16], [17] propose Error Distance (ED) as a metric
to characterize the reliability of adders for a specific input pair.
For a given n-bit approximate adder and two binary inputs
a = (an−1an−2...a0) and b = (bn−1bn−2...b0), the error90

distance is defined as EDj = R̂j − Rj , where Rj is the
correct result (i.e, the result of an accurate adder for a and b),
R̂j is the value that the given approximate adder produces, and
j is the index of the current input pair, which we compute as
j = (a0b0a1b1...an−2bn−2an−1bn−1)10.95

Based on the metric ED, two other well-known error-metrics
are defined which are the Mean Error Distance (MED) and the
Error probability (EP) [16]. EP represents the ratio of the number
of input pairs whose ED is not zero, to the total number of input
pairs (i.e., 22n for an n-bit adder). MED is the mean value of all100

EDs produced for an n-bit approximate adder, and it is shown in
Eq. (1). The term Qj represents the probability of input pair j,
and for the uniform input pattern, since input pairs occur with the
same probability (i.e., 1/22n), Qj can be replaced by 1/22n.

MED =
22n−1∑
j=0

|EDj |Qj (1)

2.1.2 Quad-tree Representation105

The so-called quad-tree representation [2] is a generic form based
on ED to model building blocks of a family of LPAAs known
as disjoint approximate adders. The quad-tree representation has
been employed to produce energy-efficient adders that demon-
strate better trade-offs between circuit and error characteristics110

compared to the state-of-the-art adders. An n-bit disjoint approxi-
mate adder comprises a sequence of k-bit approximate sub-adders
(i.e., disjoint building blocks) each of which produces a subset of
the output bit positions. The disjoint building blocks in a sequence

R

1000 01 11

a b

S

+

Cout E0 E1 E2 E3

Fig. 1. Quad-tree representation of disjoint single-bit building blocks.

do not pass or receive carry signals, except for the last building 115

block which produces the carry-out signal (Cout) of the final
result. The state-of-the-art Lower-Part-OR adder (LOA) [13] is
a disjoint approximate adder which is designed based on disjoint
single-bit building blocks (i.e., k = 1).

Figure 1 illustrates the quad-tree representation of disjoint 120

single-bit building blocks. In this model, the node at level 0 is
the root of the tree, which is labeled as R in Figure 1, and each
node at the last level (e.g., the node labeled as E0) is called leaf.
A path starting from the root to a leaf demonstrates a specific
input pair. Since disjoint single-bit building blocks do not receive 125

carry-in signals (Cin), there are only four possible input pairs to
them. Thus, there are four edges in their quad-tree representation,
each having its corresponding input pair written on it in Figure 1.
The parameter Ei (0 ≤ i ≤ 3) in each leaf, represents the ED
computed for the input pair of the path to that leaf. 130

Since the last building block of each disjoint approximate
adder produces a carry-out signal, it has a 2-bit wide output
comprising the sum signal (S) and Cout. Thus, there are four
possible values for each Ei depending on the exact output for its
corresponding input pair. For instance, for input pair (a, b = 0, 0), 135

E0 can be either of the values 0, +1, +2, and +3. As a result, there
are 44 possible sequences of leaves, each of which represents
a disjoint single-bit building block with the carry-out signal,
regardless of hardware implementation.

The output of building blocks that do not have carry-out 140

signals are 1-bit wide comprising only the sum signal (i.e., S).
As a result, for these building blocks, there are only two possible
values for each Ei. For example, for input pair (a, b = 1, 1), E3

can be either -1 or -2, which indicates the existence of 24 possible
disjoint single-bit building blocks of this type. 145

The quad-tree representation is capable of modeling disjoint
multi-bit building blocks as well (i.e., k > 1). However, due to
space limitations, it is not reviewed here, and for further details,
interested readers are directed to the article prepared by Tajasob et
al. [2]. 150

2.2 Observations

2.2.1 First Observation: MED Calculation

The primary purpose of the quad-tree representation is to model
disjoint building blocks based on their EDs. However, after a
thorough examination of the quad-tree representation, we realized 155

that it could also represent disjoint approximate adders as a frame-
work for analytical computation of error-metrics for approximate
adders.

Figure 2 illustrates the quad-tree representation of an n-bit
adder comprising disjoint single-bit building blocks. In this model, 160

i (i < n) refers to the levels of the tree, and in each level, j (j <
22i) is the index of nodes. Considering a = (an−1an−2...a0) and
b = (bn−1bn−2...b0) as the binary input numbers to the adder,
j is computed as j = (a0b0a1b1...an−2bn−2an−1bn−1)10. The
depth of this quad-tree is equal to the length of the adder, which 165

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 3

R

e0 (1) e1 (1) e2 (1) e3 (1)

e0 (i) e1 (i) e2 (i) e3 (i)

e0 (i-1)

ev-3 (i) ev-2 (i) ev-1 (i) ev (i)

eu (i-1)

e0 (n) e1 (n) e2 (n) e3 (n)

e0 (n-1)

ey-3 (n) ey-2 (n) ey-1 (n) ey (n)

ex (n-1)

u=22(i-1)-1, v=22i-1,

x=22(n-1)-1, y=22n-1

ej (i-1)

Fig. 2. Quad-tree representation of an n-bit disjoint approximate adder
comprising single-bit building blocks.

is n. Node j at level i, referred to as ej(i), contains the ED of
an i-bit sub-adder comprising the first i least significant bits (i.e.,
from bit-position 0 to i-1). Thus, for adders comprising disjoint
single-bit building blocks, e0(1) to e3(1) are equal to E0 to E3.
An edge starting from a parent node at level i − 1 to one of its170

children at level i represents aibi, the ith bits of the two binary
input numbers a and b.

Based on the presented model in Figure 2, each leaf at level
n contains the ED value for one of the possible input pairs to the
n-bit adder. As a result, for uniformly distributed input patterns,
the MED of the family of adders represented in this figure can be
computed by Eq. (2).

MED(n) =
|e0(n)|+ |e1(n)|+ ...+ |e22n−1(n)|

22n
(2)

Since there are 22n addition operations in Eq. (2), its time
complexity is of the order of O(22n), which needs to be reduced.
On the other hand, considering the characteristics of the quad-
tree in Figure 2, the value in each four siblings at level i can be
expressed based the value of their parents at level i− 1, using the
following equation:

e4j+l(i) = |ej(i− 1) + 2i−1 × El|, (3)

where l ∈ {0, 1, 2, 3}, the parameter j represents the indices of
leaves at level i−1, and 0 ≤ j ≤ 22(i−1)−1. Employing Eq. (3),
we can restate Eq. (2) as the following:

MED(n) =

1

22n
× (|e0(n− 1) + 2n−1 ×E0|+ |e0(n− 1) + 2n−1 ×E1|+

|e0(n− 1) + 2n−1 × E2|+ |e0(n− 1) + 2n−1 × E3|+ ...+

|e22(n−1)−1(n−1)+2n−1×E0|+|e22(n−1)−1(n−1)+2n−1×E1|
+ |e22(n−1)−1(n− 1) + 2n−1 × E2|+

|e22(n−1)−1(n− 1) + 2n−1 × E3|), (4)

which still requires 22n addition operations. In the following, we
first present and prove LEMMA 1, and then, we use it to decrease
the number of addition operations in Eq. (4).175

Lemma 1. In an n-bit disjoint approximate adder, comprising
identical disjoint single-bit building blocks, if the EDs of the
employed single-bit building blocks are all positive, the absolute

value operator in Eq. (3) is removed, and it is restated as follows:
180

e4(j−1)+l(i) = ej(i− 1) + 2i−1 × El.

Proof. As mentioned in Section 2.1.2, a disjoint single-bit build-
ing block possesses four EDs referred to as E0, E1, E2, and
E3, which are equivalent to e0(1), e1(1), e2(1), and e3(1),
respectively. When EDs of the building block are all positive,
for i = 2 (i.e., at level 2), both the terms ej(i − 1) and El, 185

where j, l ∈ {0, 1, 2, 3}, are positive as well. In this case, the
terms within the absolute value operator in Eq. (3) are positive,
and thus, the absolute value operator can be removed.

Lets assume that ej(i − 1), which represents the content of
each leaf at level i − 1, is always positive. In this case, since E0 190

through E3 (i.e., El) are also positive, the 22i leaves at level
i which are represented by e4j+l(i) in Eq. (3), are positive,
regardless of the absolute value operator. Thus, the absolute
value operator can be removed. Consequently, by the principle
of Mathematical Induction [24], the absolute value operator in 195

Eq. (3) can be removed for all i (2 ≤ i ≤ n).

Based on LEMMA 1, when E0 through E3 are all positive, we
can remove the absolute value operators in Eq. (4) which leads to
the following equation:

MED(n) =
1

22n
×[4×(e0(n−1)+...+e22(n−1)−1(n−1))]

+
1

22n
× [22(n−1) × 2n−1 × (E0 + E1 + E2 + E3)]

= MED(n− 1) + 2n−3 × (E0 + E1 + E2 + E3). (5)

Eq. (5) computes MED recursively, using n addition opera-
tions, which makes it a lot more efficient compared to Eq. (4).
Besides, owing to the fact that Eq. (5) is a first-order linear
recurrence relation [24], it can be solved using approaches such as
the iteration method. Solving Eq. (5) results in Eq. (6), which is
of the order of O(1).

MED(n) =

∑3
l=0 El

4
+ (2n−2 − 1

2
)×

3∑
l=0

El (6)

Since we have used LEMMA 1 to obtain Eq. (6), this equation
can only be used when EDs of building blocks are positive.
However, we can follow a similar approach to demonstrate that
Eq. (6) can also be used in situations where all EDs are negative,
with the only difference that the resulting MED values will also
be negative. As a result, we can state that when the EDs of the
employed single-bit building blocks are all of the same sign (i.e.,
all positive or all negative), MED can be computed using Eq. (7).

MED(n) = |
∑3

l=0 El

4
+ (2n−2 − 1

2
)×

3∑
l=0

El| (7)

2.2.2 Second Observation: Importance of Input Patterns
When it comes to selecting an optimal or near optimal adder
design for a specific problem (e.g., a DSP application), the design
performing the best trade-off within the range of application 200

dictated constraints is always desired. In approximate computing,
the compromise is between error criterion (e.g., MED) and circuit
characteristics (i.e., power and energy consumption, area occupa-
tion, and circuit delay). Error characteristics should be calculated

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 4

TABLE 1
Comparison of circuit and error characteristics between LOA and the

proposed adder

Design
Dynamic

Power
(µW)

Static
Power
(µW)

Area
(µm2)

Delay
(fs)

MED
(Uniform)

LOA 2.76 0.226 10.108 0.06 47.875
Proposed 2.63 0.195 7.714 0.09 49.32

in a way that describes the error behavior of the selected designs,205

based on applications input data set. In other words, input patterns
should be taken into consideration while selecting a design for
a specific application. In the following, we first describe MED
computation based a specified input pattern and then present
an example to demonstrate the impact of input patterns on the210

problem of finding optimal adders for a given application
Consider P (x) as the probability of x to be 1, where x can be

any single bit of the two binary numbers a = (an−1an−2...a0)
and b = (bn−1bn−2...b0), which are the inputs to an n-bit adder.
Consequently, P (x) = 1 − P (x) is the probability of x to be 0.
Based on this notation, every input pattern can be demonstrated by
two sequences Pat(a) = (P (an−1), P (an−2), ..., P (a0)) and
Pat(b) = (P (bn−1), P (bn−2), ..., P (b0)). All together, these
two sequences indicate the probability of each single bit of the
two inputs a and b to be 1. For instance, the two sequences
Pat(a) = (0.1, 0.3, 0.6) and Pat(b) = (0.7, 0.4, 0.9) demon-
strate the pattern of two inputs to a 3-bit adder, according to which
P (a0) = 0.6. To compute MED for a given input pattern, we can
use Eq. (1), where the probability of each input pair (i.e., Qj) is
computed by Eq. (8).

Qj =
n−1∏
q=0

F (aq)× F (bq)

F (x) =

{
P (x) x = 1

P (x) x = 0
(8)

Figure 3 shows the two 8-bit energy and area-efficient ap-
proximate adders to clarify the importance of input patterns. We
consider Lena and F16 images as inputs to the image addition
benchmark. Table 1 shows the MED of the two adders for uni-215

formly distributed inputs and their power, area, and delay by using
Verilog description and synthesis in Synopsys Design Compiler
with a NanGate FreePDK45nm library [25].

If we consider the MED as our criterion, LOA is selected as
the best choice for the image addition. However, the results in220

Table 2 and Figure 4, demonstrate the superior performance of
the proposed adder in both mathematical and subjective metrics,
respectively. Although the proposed adder has higher MED than
LOA for uniformly distributed inputs, it has better MED for the
applied input images. The MED of LOA is 58.99 for the input225

patterns of Lena and F16, but the MED of the proposed adder is
35.22 for the same input images.

2.2.3 Third Observation: MED Calculation for different In-
put Patterns

In this subsection, we demonstrate how to obtain MED of ap-230

proximate adders for a given pair input patterns by utilizing the
quad-tree representation.

a0 b0a7 b7

S0S1S2S3S4S5S6S7Cout

a1 b1a2 b2a3 b3a4 b4a5 b5a6 b6

(a)

a0 b0

S0S2S3S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

GNDGND

a1 b1

S1

GNDGND

(b)

Fig. 3. Gate-level implementation of 8-bit LOA and the proposed 8-bit
approximate adder. (a) LOA; (b) the proposed adder.

(a) (b) (c)

Fig. 4. The results of performing the image addition operation. (a) Accu-
rate 8-bit adder; (b) 8-bit LOA; (c) proposed 8-bit adder in Figure 3b.

Based on the quad-tree representation in Figure 2, leaf j at the
last level (i.e, level n) contains the ED of the jth input pair to the
adder, where j = (a0b0a1b1...an−2bn−2an−1bn−1)10. Consid- 235

ering this fact and using Eq. (8), for a given input pattern provided
by two sequences Pat(a) = (P (an−1), P (an−2), ..., P (a0))
and Pat(b) = (P (bn−1), P (bn−2), ..., P (b0)), MED can be
computed using Eq. (9).

MED(n) =

[P (a0) P (b0)... P (an−1) P (bn−1)]× e0(n)+

...+

[P (a0)P (b0)...P (an−1)P (bn−1)]× e22n−1(n) (9)

TABLE 2
Comparison of output quality and MED of LOA and the proposed adder

in an image addition application

Design PSNR MSE MAE MED (Lena and F16)

LOA 9.705 6958 71.39 58.99
Proposed 15.291 1922 34.25 35.22

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 5

Based on Eq. (3) and LEMMA 1, we can restate Eq. (9) as:

MED(n) = [P (a0) P (b0)...P (an−2) P (bn−2)]×[e0(n−1)
× (P (an−1) P (bn−1) + P (an)P (bn) + P (an−1)P (bn−1)

+ P (an−1)P (bn−1)) + 2n−1 × (P (an−1) P (bn−1)E0

+ P (an−1)P (bn−1)E1 + P (an−1)P (bn−1)E2

+ P (an−1)P (bn−1)E3)] + ...

+ [P (a0) P (b0)...P (an−2) P (bn−2)]× [e22(n−1)−1(n− 1)×
(P (an−1) P (bn−1) + P (an−1)P (bn−1) + P (an−1)P (bn−1)

+ P (an−1)P (bn−1))2
n−1 × (P (an−1) P (bn−1)E0

+ P (an−1)P (bn−1)E1 + P (an)P (bn−1)E2

+ P (an−1)P (bn−1)E3)],

and since ∀i ∈ [0, n − 1] : (P (ai) P (bi) + P (ai)P (bi) +
P (ai)P (bi) + P (ai)P (bi) = 1), it is simplified to the following
form:

MED(n) = [P (a0) P (b0)...P (an−2) P (bn−2)e0(n− 2)]+

[P (a0) P (b0)...P (an−2) P (bn−2)× 2n−1×
(P (an−1) P (bn−1)E0 + P (an−1)P (bn−1)E1+

P (an−1)P (bn−1)E2 + P (an−1)P (bn−1)E3)] + ...+

[P (a0)P (b0)...P (an−2)P (bn−2)e22(n−1)−1(n− 1)]+

[P (a0)P (b0)...P (an−2)P (bn−2)× 2n−1 × (P (an−1)

P (bn−1)E0 + P (an−1)P (bn−1)E1 + P (an−1)P (bn−1)E2+

P (an−1)P (bn−1)E3)]. (10)

Considering the characteristics of the quad-tree representation
shown in Figure 2, level n − 1 represents a disjoint approximate
adder with the length of n−1, which takes a = (an−2...a1a0) and
b = (bn−2...b1b0) as inputs. Thus, similar to Eq. (9), the MED
of the adder at level n − 1 can be computed by the following
equation:

MED(n−1) = [P (a0) P (b0)...P (an−2) P (bn−2)e0(n−1)]
+ ...+

[P (a0)P (b0)...P (an−2)P (bn−2)e22(n−1)−1(n− 1)] (11)

On the other hand, for the adder at level n− 1 we have:

P (a0) P (b0)...P (an−2) P (bn−2)+

P (a0) P (b0)...P (an−2)P (bn−2) + ...+

P (a0)P (b0)...P (an−2)P (bn−2)+

P (a0)P (b0)...P (an−2)P (bn−2) = 1 (12)

Based on Eq. (11) and Eq. (12), we can simplify Eq. (10) to
the following form:

MED(n) = MED(n−1)+2n−1×[P (an−1) P (bn−1)E0+

P (an−1)P (bn−1)E1 + P (an−1)P (bn−1)E2+

P (an−1)P (bn−1)E3] (13)

For a given input pattern, Eq. (13), which is of the order240

of O(n), recursively computes MED for the family of adders
illustrated in Figure 2. Since we have used LEMMA 1 to obtain
Eq. (13), it only works when EDs of building blocks are positive.
However, it can be shown that Eq. (13) can also be used when EDs

an-1 bn-1

Sn-1

an-1 bn-1

Sn-1

an-2 bn-2

Sn-2

a1 b1

S1

a1 b1

S1

a0 b0

S0

a0 b0

S0

C1C2Cn-2Cn-1Cn

Fig. 5. General structure of LPAAs.

Ra b

S

+

Cout

E0 E1 E2 E3 E4 E5 E6 E7

000 001 010 011 100 101 110 111

Cin

Fig. 6. Extended quad-tree representation of single-bit building blocks
with carry signals.

of building blocks are all negative. In this case, the resulting MED 245

is also negative, and thus, its absolute value represents MED.
As we can see, the quad-tree representation has the potential

to be used as a framework to compute error-metrics such as MED,
for both uniform and specified input patterns. However, it has
two limitations. First, when the EDs of single-bit building blocks 250

have different signs, MED computation based on the quad-tree
representation is not very straightforward, and we had to use
LEMMA 1 to be able to compute MED for specific cases. Second,
the quad-tree representation can only model disjoint approximate
adders. Thus, it can not be used to find formulae for error-metrics 255

while adders comprise building blocks with carry signals among
them. Therefore, in Section 3, we address both of these problems
by extending the quad-tree representation.

3 PROPOSED APPROACH

In this section, we first show how to use the quad-tree to model 260

carry propagation and EDs with different signs. Next, we demon-
strate an accurate calculation of the MED and EP of approximate
adders for any given input pattern. At last, a case study is provided
to illustrate an up-close and detailed example of the proposed
approach. Figure 5 shows the most general structure of an LPAA 265

which we consider as our baseline. In Figure 5, except for the first
approximate full adder in the first bit position which does not have
a carry-in input, full adders in all other bit positions may have
one. Thus, all blocks may generate carry-out signals. Moreover,
each of them can have a different configuration compared to 270

the other ones. Also, Due to their different implementation and
functionality, there may be EDs with different signs. Considering
all possible configurations, including those with different sign
EDs, there are 48 separate approximate single-bit full adders
available. Thus, for an 8-bit LPAA, the design space contains 275

655368 different configurations but Eq. (7) can calculate MED
for only a small fraction of this rich design space.

Modeling carry propagation: To model adders with carry-
out signals, we extend the quad-tree of Figure 1, as Figure 6. As
shown in Figure 6, approximate full adders receive three inputs, 280

so they have eight edges. Thus, they should be modeled with eight
different EDs (the dashed-lines refer to the case where carry-in =
1). Depending on the carry-in input, only four of those edges are
used at a time. Figure 7 shows the quad-tree of two consecutive
single-bit full adders forming a 2-bit LPAA. Table 3 shows the 285

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 6

0 +4 +4 -2

0

0 +4 +4 -2

0

0 +4 +4 -2

0

0 +4 +4 -2

0

0 +4 +4 -2

0

0 +4 +4 -2

0

+1 +3 +3 -1

+1

+1 +3 +3 -1

+1

R

Fig. 7. An example of a 2-bit non-disjoint LPAA uisng modified quad-tree
representation.

TABLE 3
Approximate adder at bit position 1.

] a b s Cout ED

1 0 0 0 0 0
2 0 1 1 0 0
3 1 0 1 0 0
4 1 1 1 1 +1

truth table of the single-bit full adder at bit position 1 and Table 4
shows the truth table of the single-bit full adder at bit position 2.

Table 3 generates a carry-out signal only for the case it receives
11 as its inputs, otherwise, its carry-out is zero. So, if both a0 and
b0 are 1, then the four selected edges showing the functionality290

of the second block, are those having carry-in of 1 (i.e., the four
bottom rows in Table 4). But, if a0 and b0 are not 11, then the
other four edges, the top four rows of Table 4, are selected to
represent the functionality of this block.

Modeling EDs with different signs: Consider the example 2-295

bit LPAA in Figure 7. Four of the leaves are negative. Therefore,
there are EDs with different signs and LEMMA 1 is no longer
applicable. Hence, we cannot use Eq. (7) for MED computation.
To overcome this problem, we aim on dividing MED into several
groups.300

For example, the MED of the 2-bit LPAA can be divided into
MED of positive and negative nodes, and each of them can be
calculated, separately. Finally, the total MED is the sum of both
MED of positive and negative nodes. In a more generic manner,
to classify MED into several smaller groups, we need to find out305

all interactions between two consecutive approximate full adders
at bit positions i− 1 and i (i.e., parent nodes and their connecting
edges to their child nodes).

3.1 Node grouping

Based on the quad-tree representation, at the depth i−1 , there are310

22(i−1) nodes. We classify these nodes into 14 separate groups,
depending on carry-out signals, the sign of their EDs, and their
interaction with their edges.

Therefore, nodes, based on their carry-out signal, can be
classified into two groups (i.e., carry-out = 1, and carry-out =315

0). Depending on their sign, they can be classified into three
groups (i.e., positive, negative, and zero). Also, for the positive
and negative cases, they may have the absolute ED value larger,
equal, or less than their edges with different sign. Therefore,
again, we classify them into three other groups (namely, Normal,320

Abnormal0, Abnormal1):

1) Normal: parents at depth i− 1, where their absolute EDs
are less than 2i−1. In this case, the sign of the child node
is always determined by the sign of the edge that connects
it to its parent.325

TABLE 4
Approximate adder at bit position 2

] Cin a b s Cout ED

1 0 0 0 0 0 0
2 0 0 1 1 1 +2
3 0 1 0 1 1 +2
4 0 1 1 1 0 -1

5 1 0 0 1 0 0
6 1 0 1 1 1 +1
7 1 1 0 1 1 +1
8 1 1 1 0 1 -1

Node Grouping

PositiveNegativeZero

NormAb0Ab1NormAb0Ab1

01Co 01 01 01 01 01 01

Fig. 8. Node grouping: all 14 groups of nodes.

2) Abnormal0: refers to the parents at depth i-1, with their
absolute EDs exactly equal to 2i−1. In this case, based
on the amount of the parents edge, the child node is zero.

3) Abnormal1: refers to the parents at depth i-1, with their
absolute EDs greater than 2i−1. In this case the child 330

nodes sign can be the same as its connecting edges sign,
or its parents sign.

In other words, for a single-bit approximate full adder, nodes
with the ED value of ±1, are normal. ED value of ±2 refers
to abnormal0 nodes and abnormal1 nodes are identified with ED 335

value of ±3.
Since the absolute amount of leaves determine MED, we

use this classification and describe MED in a more fine-grained
manner by dividing MED into 12 portions (two zero groups are
neglected for MED calculation) in a way that the sum of all parts 340

is equal to MED. Table 5, shows the classified MED of an n-
bit LPAA and its portions (Indexes ”P ”, ”N”, and ”Z” stand for
positive, negative, and zero, respectively. Normal, abnormal0, and
abnormal1 are shown with ”Norm”, ”Ab0”, and ”Ab1”).

3.2 Edge grouping 345

This process is quite the same as node classification except that
the carry-in signal should be taken into considerations too. So,
based on receiving carry-in and generating carry-out, there are
four groups. Again, we classify the edges based on their sign to
be positive, negative, or zero, into three groups. Finally, based 350

on the value of the edge that connects the current child node to
its parent, there are three more groups formed, called Normal,
Abnormal0, and Abnormal1. Thus, there are 28 different types of
edges available, shown in Table 6 (to save space, we only show
normal edges in the table). Since these edges describe the behavior 355

of an approximate adder in the current bit position (i.e., at depth

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 7

Edge Grouping

PositiveNegative

Norm

Zero

0Ab1Ab

000110110001101100011011

Norm0Ab1Ab

000110110001101100011011CinCo  00011011

Fig. 9. Edge grouping: all 28 groups of edges.

TABLE 5
Dividing MED into 12 portions

Portion name Description

MEDP (Norm,Co, n)
MED of Positive Normal leaves with

Carry-out = 0

MEDP (Norm,Co, n)
MED of Positive Normal leaves with

Carry-out = 1

MEDP (Ab0, Co, n)
MED of Positive Abnormal0 leaves

with Carry-out = 0

MEDP (Ab0, Co, n)
MED of Positive Abnormal0 leaves

with Carry-out = 1

MEDP (Ab1, Co, n)
MED of Positive Abnormal1 leaves

with Carry-out = 0

MEDP (Ab1, Co, n)
MED of Positive Abnormal1 leaves

with Carry-out = 1

MEDN (Norm,Co, n)
MED of Negative Normal leaves with

Carry-out = 0

MEDN (Norm,Co, n)
MED of Negative Normal leaves with

Carry-out = 1

MEDN (Ab0, Co, n)
MED of Negative Abnormal0 leaves

with Carry-out = 0

MEDN (Ab0, Co, n)
MED of Negative Abnormal0 leaves

with Carry-out = 1

MEDN (Ab1, Co, n)
MED of Negative Abnormal1 leaves

with Carry-out = 0

MEDN (Ab1, Co, n)
MED of Negative Abnormal1 leaves

with Carry-out = 1

i), the edge variables starts ”CR”. There are two different kinds
of edge variables; (1) CR variables refer to the weighted sum
of specific edge errors; and (2) CRNUM variables are equal
to the occurrence probability of a specific edge error. Figure 10360

shows how to calculate all 12 portions of positive CR variables
for a given approximate full adder and a given input pattern. The
algorithm in Figure 10 takes the truth table and the probabilities of
its input pair as its inputs and outputs all 12 portions of ”CRP ”.
It observes all the eight possible input combinations and their365

errors. Then, based on their input pattern probability, the amount
of errors, carry-in, and carry-out signals, the amount of each of
the classes of ”CRP ” is calculated. Since the for loop in line
7, iterates 8 times at the most, then all ”CRP ” variables are
calculated with O(8). The same process should be accomplished370

for CRN , too. But for zero nodes CRZ is always equal to 0.
Having 14 groups for parent nodes and 28 groups for edges,

we end up having 392 different types of interactions between a
node and its connecting edge. However, there are a lot of invalid
interactions among these 392 types. There are three categories375

for invalid interactions: (1) invalid parents, (2) invalid edges, (3)
invalid connections. These invalid interactions and their conditions
are as followings:

Input: TruthTableApproximate, P (a), P (b)
Output: All 12 portions of CRP

1. Err = TruthTableApproximate − TruthTableAccurate

2. if This adder recieves carry-in signal then
3. Combinations← 8
4. else
5. Combinations← 4
6. end if
7. for i = 1 to Combinations do
8. if a == 0 and b == 0 then
9. Probability ← P (a)× P (b)

10. else if a == 0 and b == 1 then
11. Probability ← P (a)× P (b)
12. else if a == 1 and b == 0 then
13. Probability ← P (a)× P (b)
14. else if a == 1 and b == 1 then
15. Probability ← P (a)× P (b)
16. end if
17. if Err(i) == +1 then
18. if Cin and Co then
19. CRP (Norm,Cin,Co)+ = Probability × |Err(i)|
20. else if Cin and Co then
21. CRP (Norm,Cin, Co)+ = Probability × |Err(i)|
22. else if Cin and Co then
23. CRP (Norm,Cin,Co)+ = Probability × |Err(i)|
24. else if Cin and Co then
25. CRP (Norm,Cin,Co)+ = Probability × |Err(i)|
26. end if
27. else if Err(i) == +2 then
28. if Cin and Co then
29. CRP (Ab0, Cin, Co)+ = Probability × |Err(i)|
30. else if Cin and Co then
31. CRP (Ab0, Cin, Co)+ = Probability × |Err(i)|
32. else if Cin and Co then
33. CRP (Ab0, Cin, Co)+ = Probability × |Err(i)|
34. else if Cin and Co then
35. CRP (Ab0, Cin, Co)+ = Probability × |Err(i)|
36. end if
37. else if Err(i) == +3 then
38. if Cin and Co then
39. CRP (Ab1, Cin, Co)+ = Probability × |Err(i)|
40. else if Cin and Co then
41. CRP (Ab1, Cin, Co)+ = Probability × |Err(i)|
42. else if Cin and Co then
43. CRP (Ab1, Cin, Co)+ = Probability × |Err(i)|
44. else if Cin and Co then
45. CRP (Ab1, Cin, Co)+ = Probability × |Err(i)|
46. end if
47. end if
48. end for

Fig. 10. Calculation of all 12 portions of CRP for a given approximate
full adder

1. Invalid parents: Positive abnormal0 and abnormal1 parents

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 8

TABLE 6
Classification of normal edges

Portion name Description

CRP (Norm,Cin, Co)
Weighted Sum of Positive Normal edges

with Carry-in=0 & Carry-Out=0

CRP (Norm,Cin, Co)
Weighted Sum of Positive Normal edges

with Carry-in=0 & Carry-Out=1

CRP (Norm,Cin, Co)
Weighted Sum of Positive Normal edges

with Carry-in=1 & Carry-Out=0

CRP (Norm,Cin, Co)
Weighted Sum of Positive Normal edges

with Carry-in=1 & Carry-Out=1

CRN (Norm,Cin, Co)
Weighted Sum of Negative Normal edges

with Carry-in=0 & Carry-Out=0

CRN (Norm,Cin, Co)
Weighted Sum of Negative Normal edges

with Carry-in=0 & Carry-Out=1

CRN (Norm,Cin, Co)
Weighted Sum of Negative Normal edges

with Carry-in=1 & Carry-Out=0

CRN (Norm,Cin, Co)
Weighted Sum of Negative Normal edges

with Carry-in=1 & Carry-Out=1

that do not generate carry-out do not exist. Negative abnormal0380

and abnormal1 parents that generate carry-out do not exist either.
2. Invalid edges:

2.1) A positive normal edge with carry-in of 1 and no carry out
does not exist. Similarly, a negative normal edge with no carry-in
and carry-out of 1, does not exist.385

2.2) There are no positive abnormal0 edges that do not gener-
ate a carry-out. Also, there are no positive abnormal1 edges that
have no carry-out or receives a carry-in of 1.

2.3) A negative abnormal0 edge that generates a carry-out does
not exist. A negative abnormal1 edge that generates carry-out or390

does not receive a carry-out does not exist.
3. Invalid connections: A parent node that has carry-out of 1
cannot interact with an edge that does not receive a carry-in. Also,
a parent node that has no carry-out cannot interact with an edge
with carry-in of 1.395

After examining all possible 14×28 (392) interactions, we find
out that 312 of them are invalid. Therefore, only 80 interactions
are possible between a parent not and its edges. For each of these
80 interactions between parents and edges, we must identify the
group to which the offspring nodes belong. Then, each one of the400

12 portions of MED can be calculated separately. As an example,
Table 7 shows the child node classes when normal positive or zero
parents interact with different classes of positive edges (Note that
invalid connections are removed from the table).

3.3 Case Study405

As an example, assume that we want to calculate the desired por-
tion for bit-position i (MEDP (Ab0, Co, i)). Therefore, we need
all MED and EP portions at bit-position i-1. Also, we need all CR
and CRNUM variables for the ith (current) block. The idea is to
add the errors of the ith block to the cumulative amount (from bit-410

positions 0 to i-1) of desired portion of the MED for bit-position
i. Thus, we must first identify all interactions, at bit position i-
1 that are leading to positive, abnormal nodes with carry-out at
bit-position i. Table 8 shows identifies all four interactions that
leads to child nodes of group P (Ab0, Co). As an example, the415

first row of Table 8 indicates that for each P (Ab0, Co) nodes at
i-1, there is one edge (i.e., P (Norm,Cin,Co)) that leads to a
P (Ab0, Co) child node at bit-position i.

TABLE 7
Normal positive and zero parents interacting with different classes of

positive edges

parent edge child

Pos(Norm,Co, i− 1)

Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Invalid Edge
Pos(Ab1, Cin, Co) Invalid Edge
Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Pos(Ab1, Co, i)

Pos(Ab1, Cin, Co) Pos(Ab1, Co, i)

Pos(Norm,Co, i− 1)

Pos(Norm,Cin,Co) Invalid Edge
Pos(Ab0, Cin, Co) Invalid Edge
Pos(Ab1, Cin, Co) Invalid Edge
Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Pos(Ab1, Co, i)

Pos(Ab1, Cin, Co) Invalid Edge

Zero(Co, i− 1)

Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Invalid Edge
Pos(Ab1, Cin, Co) Invalid Edge
Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Pos(Ab0, Co, i)

Pos(Ab1, Cin, Co) Pos(Ab1, Co, i)

Zero(Co, i− 1)

Pos(Norm,Cin,Co) Invalid Edge
Pos(Ab0, Cin, Co) Invalid Edge
Pos(Ab1, Cin, Co) Invalid Edge
Pos(Norm,Cin,Co) Pos(Norm,Co, i)

Pos(Ab0, Cin, Co) Pos(Ab0, Co, i)

Pos(Ab1, Cin, Co) Invalid Edge

Before calculating the desired portion of MED at bit position i,
we must know how to compute the contributed EDs from parents 420

and their edges to the desired portion. Based on Eq. 3, the error
of a child node can be considered as the absolute summation (or
subtraction) between the term ej(i− 1) and the term 2i−1 × El.
Our approach for computing the error of each interaction is to
calculate each of the two terms separately, and then add them 425

together.
In Eq. 3, the left hand side term, e4j+l(i) is the total error of a

specific interaction, which is also referred to as a child error. In the
quad-tree representation, this error is written inside a child node
at level i. The term, ej(i− 1) is the error of the parent which also 430

indicates that the errors of the parents are propagated to the lower
levels. In other words, this term contains the error that the parent
is contributing.The term, 2i−1×El, is the multiplication between
the error of an edge and its corresponding weight. This is because
when calculating the variables related to edges (Figure 10), we 435

neglect their bit-positions. This term contains the error that the
edge (or the current block) contributes. After computing each
term, if they do not have same signs, the error of the child
is equal to the absolute amount subtraction between ej(i − 1)
and 2i−1 × El. Otherwise, the error of the child is the absolute 440

summation of the them.
Now for each of the interactions shown in Table 8, we

first calculate the parent error. Then, we show how to compute
the edge errors, at their bit-position (i.e., the term 2i−1 × El).
Form row 1 in Table 8, we understand that trough an interaction 445

between a P (Ab0, Co, i− 1) parent and a P (Norm,Cin,Co),
a positive abnormal0 child node with a carry-out is formed at
level i. Therefore, to calculate the parent errors, we need two

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 9

TABLE 8
Interactions that lead to a positive abnormal0 children with carry-out of

1

] Parent Edge

1 Positive(Ab0, Co, i− 1) Positive(Norm,Cin,Co)

2 Negative(Ab0, Co, i− 1) Positive(Ab1, Cin, Co)

3 Zero(Co, i− 1) Positive(Ab0, Cin, Co)

4 Zero(Co, i− 1) Positive(Ab0, Cin, Co)

values; (1) the sum of all P (Ab0, Co, i − 1) parents; (2) and,
the occurrence probability of a P (Norm,Cin,Co) edges of the450

current adder. By multiplying both of them, we can compute
the error amount that all the P (Ab0, Co, i − 1) parents con-
tribute trough their P (Norm,Cin,Co) edges. The first value
is equal to MEDP (Ab0, Co, i − 1) and the second value is
CRNUMP (Norm,Cin,Co). We assume that we have all455

previous MED and EP portions, and the CR variables are all
computed in constant time and space. Therefore, the parent errors
of the first interaction of Table 8 can be calculated as Eq. (14).

MEDP (Ab0, Co, i−1)×CRNUMP (Norm,Cin,Co, i)
(14)

Similarly, the parent errors for row 2 can be calculated as Eq. 15.

MEDN (Ab0, Co, i− 1)×CRNUMP (Ab1, Cin,Co, i)
(15)

For rows 3 and 4, the MEDZ(Co, i−1) and MEDZ(Co, i−1)
are both zero. Therefore, for these two rows the parent errors
are zero. To compute the errors caused by edges for the first
row, two values must be available; (1) the occurrence prob-
ability of all P (Ab0, Co, i − 1) parents; (2) and, the sum
of errors of P (Norm,Cin,Co) edges of the current block.
The product of these two is equivalent to calculating the edge
errors for all P (Ab0, Co, i − 1) parents. The first value is
equal to EPP (Ab0, Co, i − 1), and the second value refers to
CRP (Norm,Cin,Co). Thus, both values are available. There-
fore, the edge errors for row 1 of Table 8 are calculated as Eq 16.

EPP (Ab0, Co, i− 1)× CRP (Norm,Cin,Co, i)

× 2bitposition (16)

Similarly, Eq 17 shows the edge errors for row 2 of Table 8.

EPN (Ab0, Co, i− 1)× CRP (Ab1, Cin,Co, i)

× 2bitposition (17)

And the edge errors for rows 3 and 4 are calculated as Eq 18 and
Eq 19.

EPZ(Co, i − 1) × CRP (Ab0, Cin,Co, i) × 2bitposition

(18)

EPZ(Co, i − 1) × CRP (Ab0, Cin, Co, i) × 2bitposition

(19)

So far, the total parent errors and total the edge errors of all
four interactions have been calculated using Eq. 14 to Eq. 19.460

For each interaction, the parent and the edge errors must be

added/subtracted with/from each other. If they have the same
signs, the total error of that interactions is equal to the absolute
amount of their summation. Otherwise, they are subtracted from
each other. For the first row, both the parent and the edge are 465

positive. Therefore, the total error that row 1 contributes to
MEDP (Ab0, Co, i) is equal to absolute summation of Eq. 14
and Eq 16. For the interaction in the second row of Table 8, the
parent and the edge have different signs. Thus, the total error that
this interaction is contributing to MEDP (Ab0, Co, i) is equal to 470

the absolute difference of Eq. 15 and Eq. 17. For row 3 and row
4, the parent errors is zero, hence, the contributed errors of these
interactions is equal to their corresponding edge errors, Eq. 18 and
Eq. 19, respectively. Finally, the MEDP (Ab0, Co, i) is equal to
the summation of total error of all four interactions. 475

In above equations, we assume that we have all MED and
EP portions for the previous level i-1, and we demonstrate
how to calculate MED at level i. Here we show the calcu-
lation of EPP (Ab0, Co, i) portions for level i. By definition,
EPP (Ab0, Co, i) is the occurrence probability of positive ab- 480

normal0 nodes with carry-out at level i. Similar to computation of
MEDP (Ab0, Co, i), the first step is to identify all interactions
that lead to the desired group of nodes at level i (i.e., positive
abnormal0 nodes with carry-out), which is shown in Table 8.
Now we start calculating the contribution of each of the four 485

rows/interactions in Table 8 to EPP (Ab0, Co, i).
For row 1 of Table 8, to compute this portion of EP, we need

two values; (1) the occurrence probability of all P (Ab0, Co) par-
ents at level i-1; and, (2) the probability of a P (Ab0, Co) generat-
ing a P (Ab0, Co) child. The amount that the first row/interaction
is contributing to EPP (Ab0, Co, i) is equal to the product of
these two values. The first value is equal to EPP (Ab0, Co, i).
Based on Table 8, a P (Ab0, Co) parent at level i-1 generates
a P (Ab0, Co) node at level i through its P (Norm,Cin,Co)
edges. Therefore, the second value is equal to the occurrence
probability of P (Norm,Cin,Co) edges of the ith single-bit
adder. The amount row 1 contribute to EPP (Ab0, Co, i) can be
calculated as Eq 20.

EPP (Ab0, Co, i − 1) × CRNUMP (Norm,Cin,Co, i)
(20)

Similarly, for rows 2, 3, and 4 of Table 8, we need to multiply
the probability of the parent to the probability of its specific edge.
Eq 21, 22, and 23, shows the amounts rows 2, 3, and 4 contribute
to EPP (Ab0, Co, i), respectively.

EPN (Ab0, Co, i−1)×CRNUMP (Ab1, Cin,Co, i) (21)

EPZ(Co, i − 1) × CRNUMP (Ab0, Cin,Co, i) (22)

EPZ(Co, i − 1) × CRNUMP (Ab0, Cin, Co, i) (23)

By applying the same method to all other 13 portions and adding
them together, we can calculate EP with O(n). Thus, for MED
calculation, at first, we calculate all portions of EP with O(n).
Then, we use EP portions to compute MED, again with O(n). 490

4 EVALUATIONS

In this section we evaluate the proposed framework for generating
approximate circuits automatically. Four experiments have been
conducted to thoroughly demonstrate the benefits of the proposed

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 10

framework. The first experiment shows the speed-up of our pro-495

posed method for MED and EP calculation over existing Monte
Carlo sampling methods. The second experiment demonstrates the
benefit of fast error metric calculation in automatic generation
tools dealing with a huge design space. Since our framework
can explore the design space much faster than the other ones500

employing the existing Monte Carlo sampling methods.
In the third experiments, LPAAs are automatically generated

in an input pattern-aware manner for a given image processing
application that achieves better results in circuit and image pro-
cessing metrics than the state-of-the-art approximate adders. To505

demonstrate the generality of the results, the fourth experiment
evaluates the generated adders of the third experiment over a
wider range of input images. Also, the adders are evaluated in an
edge detection application. To conduct fair comparisons between
the baseline and AxMAP, all programming and simulations are510

carried out in MATLAB. Circuit metrics are evaluated using Ver-
ilog description alongside with the well-known Synopsys Design
Compiler synthesis tool using the NanGate FreePDK45nm library
[25].

4.1 AxMAP Methodology515

To demonstrate the superiority of the proposed formulae over the
MC sampling method, we develop AxMAP that automatically
generates efficient application-specific and input-aware approxi-
mate adders. AxMAP serves as a framework for evaluating the
potentials of input-aware error calculation in the quality of result520

(QoR). The AxMAP tool takes five input parameters. Power,
area, and delay are considered as the designers circuit budget
constraints. The tolerable MED over a given pair of input patterns
is considered as the error constraint. AxMAP explores the design
space and generates approximate adders using the random search525

algorithm. In each iteration, the selected design satisfying the
constraints is considered as a valid output.

Figure 11 shows the input parameters and the proposed basic
building blocks for AxMAP. The input parameters to AxMAP are
as follow:530

1) Adder Length (L). The bit-width of adders to be gener-
ated by AxMAP.

2) Delay Constraint. A natural number referring to the
maximum length of the carry chain allowed for the adders
generated by AxMAP.535

3) Input Patterns. Two L-bit sequences indicating the bit
probability distributions of the two inputs of the adders
generated by AxMAP.

4) MED and EP constraints. Two real numbers specifying
the maximum amount of error allowed for a specific540

application or input patterns.
5) Power and area constraints. Two real numbers repre-

senting the maximum amount of the power consumption
and area occupation of the adders generated by AxMAP.

As illustrated in Figure 11, AxMAP employs six basic building545

blocks and a Basic Library that contains all possible (i.e., 65536)
single-bit approximate adders. During the first stage, AxMAP
performs a Random Search for selecting L single-bit samples
from the Basic Library to form an L-bit adder object. Delay
Estimation is performed in the second stage, where the longest550

carry chain of the adder object is compared with the input delay
constraint. If the latency of carry chain is less than or equal

to the input delay constraint, the adder object is passed to the
next stage. Otherwise, the tool restarts from the first stage, and
it attempts to form another L-bit adder object. We consider a 555

user-defined limit for the total number of restarts in AxMAP.
The limit is necessary because of two reasons: (1) an exhaustive
search amongst all potential designs is extremely time-consuming
and (2) exceedingly optimistic bounds for the power, area, delay,
and MED requirements of a design may be impractical within the 560

available technology nodes, thereby making the search impossible
to converge. In all our experiments, this restart limit is set to
100000 that forces AxMAP to conclude after 100000 iterations.

An Accurate MED/EP Calculation is carried out during the
third stage. The MED (or EP) of the adder object is calculated 565

on a given pair of input patterns. Then, the calculated MED is
compared with the MED constraint input. If the calculated MED is
not less than the MED constraint, AxMAP returns the first stage.
Otherwise, it proceeds to the fourth stage for Power and Area
Estimation by extracting the type and number of gates used for the 570

adder object. If the power or area is more than what user demands,
AxMAP returns to the first stage for a new design attempt. The
fifth stage is employed to Generate Verilog HDL Code for the
adder object using a gate-level circuit description stored in a file
called adder.v. In the sixth stage, the generated Verilog file is 575

passed to the Design Compiler for synthesis and a more accurate
estimation of circuit characteristics. If the generated adder still
satisfies all of the input circuit constraints, it will be considered as
a valid output adder. Therefore, AxMAP records the generated
Verilog file along with its circuit and error characteristics. If 580

the circuit constraints are not satisfied, the tool starts the design
process over from the first stage to form a new L-bit LPAA.

4.2 Experiment 1: Speedup over the existing methods

Often, in automatic approximate circuit (e.g., adders) generation
tools, calculating error metrics takes much more time than that 585

of the circuit and electrical parameters (i.e., power, area and the
delay). Thus, a fast error computation method makes the tool much
more efficient. Moreover, as the size of generated adders grow, the
MC method needs more samples to estimate the error behavior
which slows down the tool. Besides, the results that are calculated 590

using the MC are just estimates while accurate evaluations are
indeed more reliable.

For the first experiment, we generate seven hundred approx-
imate adders with variable configurations and bit-widths, from 8
to 128-bit (one hundred for each bit-width) wide for AxMAP and 595

the baseline (the baseline is similar to AxMAP but it employs the
MC method for MED calculations). The MED of each one of the
adders is computed with the MC (with 10000 samples) and the
proposed formula over uniform and a randomly generated pair of
input patterns. Table 9 shows that AxMAP, while being entirely 600

accurate, is able to calculate the MED over 150x faster than the
baseline.

To further clarify the performance of the proposed approach,
Figure 12 present its computational cost scalability. We generate
more than 150 approximate adders with different bit-width (ten 605

different adders for each bit-width). Then, we calculate their MED
and report their corresponding average runtime. Figure 12a shows
the average runtime of MED calculation of one adder in the range
4 to 12 bits, with an increment step of 2. As shown in the figure,
the runtime of the proposed approach grows linearly with respect 610

to the size of the adder, which supports the claim about the linear

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 11

Random Search (With

Pruning Criteria):

form an L-bit LPAA

 using Basic Library Accurate MED/EP

Calculation

Delay (Carry

Chain) Estimation

Power and Area

Estimation

Adder

Object

Generate Verilog

HDL Code

Synthesize With

Synopsys DC

Adder Length (L)
Delay

Constraint

Input Patterns

[p(aL), … , p(a1)]

[p(bL), … , p(b1)]

MED & EP

Constraint

Power and Area

Constraints

(1)

(2) (4)

(5)

Basic Library:

Contains 65536

single-bit

LPAAs

Basic Library:

Contains 65536

single-bit

LPAAs

(3)
Adder.v

Adder.v

(6)

Fig. 11. Block diagram flow of the implemented framework, AxMAP.

TABLE 9
Comparing the speed-up runtime execution of AxMAP over the

baseline for 8bit to 128bit wide LPAAs

Length 8 16 24 32 48 64 128

AxMAP (s) 4.09 9.06 10.79 15.39. 22.99 30.35 62.12
Baseline

(min) 13.45 24.7 32.3 45 65 77 170

Speed-up 197 163 183 175 169 151 164

0

0.01

0.02

0.03

0.04

0.05

4 6 8 10 12

R
u

n
ti

m
e

(s
)

Bit-width

(a)

0

0.05

0.1

0.15

0.2

0.25

16 24 32 40 48

R
u

n
ti

m
e

(s
)

Bit-width

(b)

0

0.3

0.6

0.9

1.2

1.5

64 128 192 256 320

R
u

n
ti

m
e

(s
)

Bit-width

(c)

Fig. 12. Cost-scalability analysis. (a) 4 to 12 bits; (b) 16 to 48 bits; (c) 64
to 320 bits.

time complexity of MED calculation. As shown in Figure 12a, a
2-bit growth in the length of adders adds almost 0.01 seconds
to the MED computation runtime. Figure 12b and Figure 12c
demonstrate the MED runtime of adders in range 16 to 48 and 64615

to 320, with steps of 16 and 64, respectively. Based on Figures 12b
and 12c, a 16-bit and a 64-bit growth adds 0.05 and 0.3 seconds
to the runtime, respectively.

4.3 Experiment 2: More efficient design space explo-
ration620

As mentioned in Section 3, the design space of approximate
adders is enormous which makes automatic design space ex-
ploration tools more crucial than ever. Moreover, an automatic
circuit generation tool equipped with a fast quantitative error
analysis method can find the desired circuit much faster than625

the regular ones relying on the MC method-based error analysis.
Thus, to illustrate the efficiency that the proposed method grants
the automatic adder generation tool (AxMAP), this experiments
focuses on exploring the design space of approximate adders to

find suitable and efficient approximate adders regarding MED- 630

Power and MED-Area trade-off.
In [26] which is the most complete study in terms of com-

paring and evaluating the well-known approximate adders, LOA
is considered to be one of the best designs, especially when it
comes to hardware efficiency (i.e., power consumption and die 635

area occupation). In [27] by A. Najafi et al. which is another
comprehensive work in terms of comparing various approximate
adders from a refreshing view point, again, LOA is chosen as the
best design. Therefore, in our experiments, we choose a set of
circuit (power and area) and error characteristics slightly lower 640

than LOA as the constraints of AxMAP. In this case, the outputs
of AxMAP surely outperform LOA at least in two or three of the
metrics. During the configuration process of AxMAP, we consider
the delay constraint equal to delay of a single-bit full adder.
Therefore, in the delay-related worst case scenario, the output 645

design delay is at least slightly less than the delay of a single-
bit full adder. In less than 12 hours, in a Corei5 2.5GHz processor
and 8 GB of RAM, for uniform input patterns, AxMAP was able
to generate more than 150 8-bit approximate adders that perform
better than LOA in terms of MED, area, and power consumption, 650

only using random searching, which clearly shows the benefit of
the proposed fast error analysis method alongside the fact that
the design space is filled with useful approximate adders that has
never been found.

Figure 13 demonstrates the MED and power-area product 655

diagram of all generated adders of the second experiment. Both
MED and power-area product are normalized based on those of
LOA. Compared to LOA, all adders demonstrate better perfor-
mance in terms of MED and power-area product. Three Pareto
optimal structures, with IDs #1, #12, and #146, are chosen 660

(distinguished with a red dashed oval in Figure 13) as the best
designs. Figure shows the gate-level implementations of these
designs (since this experiment was performed over uniform inputs
the chosen designs names start with U followed by their IDs).
Out of three chosen designs, U 1 has the best accuracy with 665

33% better MED than LOA; and U 146 is the most power-area
efficient demonstrating 65% improvements when compared with
LOA. U 12 is a trade-off point between U 1 and U 146; and it
shows 30% better MED, and 39% less power-area, compared to
LOA. 670

4.4 Experiment 3: Input pattern-aware automatic gen-
eration of LPAAs for image addition
Usually, the benefits of employing approximate units are investi-
gated on a real-life benchmark, e.g., an image processing applica-
tion, such as many of the previous well-known papers including 675

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 12

0.65

0.7

0.75

0.8

0.85

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
o

rm
al

iz
ed

 M
E

D

Normalized Power-Area Product

#146

#12

#1

Fig. 13. MED Power-Area Product of generated adders normalized
based on those of LOA for uniform input patterns.

a0 b0

S0

a1 b1

S1S1S2S2S3S3S4S4S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7 a0 b0

S0

a1 b1

S1S2S3S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

a0 b0

S0

a1 b1

S2S2S4S4S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S1S3S3

a0 b0

S0

a1 b1

S2S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S1S3

a0 b0a1 b1

S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S2S2S3S3S4S4 S5S5S1S1

a0 b0a1 b1

S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S2S3S4 S5S1

(a)

(b)

(c)

Fig. 14. Gate-level implementation of the chosen designs. a) U 1; b)
U 12; c) U 146.

[10], [15], and [8]. Moreover, based on the motivational example
given in Section 2.2.2, when dealing with different applications,
the impact of input patterns should be taken into considerations.
Therefore, the third experiment aims at using the first two benefits
of the proposed method (i.e., speed up gains and efficient design680

space exploration) to generate energy-area-efficient approximate
adders in an image addition problem. In this experiment, more
than two hundred different images were randomly selected from
ImageNet [28] database with the keywords ”Nature”, ”Natural”,
”Plants”, ”Flowers”, ”Food”, ”Vegetables”, and ”Salad”.685

Similar to the second experiment, power and area constraints
of AxMAP are set to an amount slightly lower than those of LOA.
The delay is set the delay of a single-bit full adder. The pair of
input patterns is set to the average pair of input patterns of all two
hundred images from the selected images of ImageNet database.690

This average pair of input patterns is called ”Centroid” (for this
experiment, only two images ,with input patterns similar to the
Centroid, were selected for all adders). So, the outputs which
perform the best on the addition of the specified input pattern
candidate of the two hundred images is chosen, unlike the second695

experiment in which AxMAP was looking for near optimal adders
on uniform input patterns. After about 12 hours, AxMAP was
able to generate more than 50 adders that are entirely superior to
LOA regarding both circuit, power consumption, area occupation,
and application dictated metrics, i.e., MED, PSNR (Peak Signal700

to Noise Ratio), MSE (Mean Squared Error), and MAE (Mean
Absolute Error) for all the given pair of input patterns.

The trade-off between the normalized power-area products and
the PSNR improvements of the generated adders over LOA is

55

60

65

70

75

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

P
S

N
R

 I
m

p
ro

v
em

en
ts

 (
%

)

Normalized Power-Area Product

Fig. 15. Normalized MED-Power-Area.

73

74

75

76

77

78

79

80

81

57 59 61 63 65

M
S

E
 I

m
p

ro
v
em

en
ts

 (
%

)

MAE Improvements (%)

Fig. 16. MSE and MAE Improvements.

depicted in Figure 15. As shown in the figure, all adders have 705

better performance over LOA, concerning their output PSNRs,
ranging from 73 to 81%. Also, Figure 15 shows reductions in
power-area products of outputs over LOA, in range 10 to 50%.
To clarify more, it should be mentioned that in a single metric
comparison, each of the adders are superior to LOA in terms of 710

power, area, and MED. Since the output designs have better MED
when operating on the given input patterns, it is somehow expected
to perform better concerning several image metrics such as the
MSE and MAE, that their numerical computation is rather MED-
like [15]. As can be seen in Figure 16 the MSE and MAE of the 715

generated adders are at least 73% and 58% better than those of
LOA, respectively.

4.5 Experiment 4: Testing the input-aware generated
adders on different images
The previous experiment showed the benefits generated adders 720

performance regarding circuit characteristics and all the error char-
acteristics for a specified pair of input patterns. However, to show
the specialized adders performance in image addition problem, a
much more comprehensive comparison has to be accomplished.
Therefore, this experiment aims on comparing the image related 725

metrics with those of LOA, when they both employed for a
wider range of input images, instead of comparing them for a
single image addition problem over the Centroid input pattern. For
this experiment, for each of the adders, we randomly choose ten
different pair of images from the two hundred images of ImageNet 730

database and performed image addition for both the generated
adders and LOA.

Figure 17 shows the PSNR and normalized power-area product
diagram of generated adders (more than 50 novel adders). As
shown in the figure, in some cases, the generated adders have 735

up to 90% better PSNR than LOA, while having 33% less power-
area product (in the best case, the output PSNR is equal to 10.44

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 13

16.2

16.6

17

17.4

17.8

0.45 0.55 0.65 0.75 0.85 0.95

A
v
g.

 P
S

N
R

 (
d
B

)

Normalized Power-Area Product

#47

#58

#53

Im
p

ro
v

e
m

en
ts

 O
v

er
 L

O
A

 (
%

)

75

81

83

87

91

Fig. 17. Average PSNR and Normalized Power-Area Product.

80

81

82

83

84

85

86

0.45 0.55 0.65 0.75 0.85 0.95

M
S

E
 I

m
p

ro
v

em
en

ts
 (
%

)

Normalized Power-Area Product

Fig. 18. MSE Improvements and Power-Area Product.

(dB) when employing LOA). Figure 18 and Figure 19 depicts the
MSE/MAE power-area product diagrams for output adders. Based
on these to figures, the most power area efficient design has almost740

50% less power area product than LOA, while improving the MSE
and MAE 66% and 84%, respectively.

To further demonstrate the benefits of input-aware circuit
generation, the outputs are evaluated for an edge detection (i.e.,
the Sobel filter) application. We replaced the accurate adders in745

this filter with the proposed approximate adders (i.e., outputs
of AxMAP) and with LOA. For each design ID, we randomly
selected an image, and we calculated its corresponding PSNR,
MSE, and MAE. Figure 21a, 21b, and 21c show the PSNR,
MSE, and MAE of filtered outputs when implemented using750

the proposed adders and LOA. Based on Figure 21a, concerning
the PSNR metric, the proposed adders perform better than LOA
ranging from 18% (for design #18) to 85% (for design #25). Based
on Figure 21b and 21c, when the filter is implemented with the
proposed adders the MSE and MAE are reduced, compared to755

the LOA-based filter. In worst case, for design #18, the MSE and
MAE are 31 and 15% less than those of LOA-based filter. In the
best case, for design #25, the outputs has 69 and 46% lower MSE
and MAE.

62

63

64

65

66

67

68

69

0.45 0.55 0.65 0.75 0.85 0.95

M
A

E
 I
m

p
ro

v
em

en
ts

 (
%

)

Normalized Power-Area Product

Fig. 19. MAE Improvements and Power-Area Product.

a0 b0a1 b1

S1S1S4S4S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S0S0S2S3

a0 b0a1 b1

S1S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S0S2S3

(a)

(b)

(c)

a0 b0a1 b1

S1S1S4S4S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S3S3 S2S2 S0

a0 b0a1 b1

S1S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S3 S2 S0

a0 b0a1 b1

S1S1S4S4S5S5S6S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S0S0S2S3S3

a0 b0a1 b1

S1S4S5S6S7Cout

a2 b2a3 b3a4 b4a5 b5a6 b6a7 b7

S0S2S3

Fig. 20. Gate-level implementation of the chosen designs. (a) N 47; (b)
N 53; (c) N 58.

4

6

8

10

12

14

16

18

1 6 11 16 21 26 31 36 41 46 51 56
P

S
N

R
 (

d
B

)

Design IDs

Outputs PSNR LOA PSNR

(a)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 6 11 16 21 26 31 36 41 46 51 56

M
S
E

Design IDs

Outputs MSE LOA MSE

(b)

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46 51 56

M
A

E

Design IDs

Proposed MAE LOA MAE

(c)

Fig. 21. Comparison of the output designs with LOA in the Sobel filter.
(a) PSNR; (b) MSE; (c) MAE.

5 CONCLUSIONS 760

This paper examined a new method for calculating the error
metrics (MED and EP) alongside a new framework for automatic
generation and design space exploration of energy-area-efficient
high speed approximate multi-bit adders. The method for error
computation demonstrated more than 150x speed up in compar- 765

ison with the existing Monte Carlo method. Furthermore, the
method was able to accurately compute the MED and EP of adders
for any given pair of input patterns. For automatic generation
of adder circuits, the paper has presented a publicly available1

toolchain called AxMAP, that randomly explores the design space 770

and outputs the design with higher accuracy and circuit efficiency
regarding state-of-the-art designs.

REFERENCES

[1] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, and J. Henkel, “Proba-
bilistic error modeling for approximate adders,” IEEE Transactions on 775

Computers, vol. 66, no. 3, pp. 515–530, 2017.

1. https://github.com/mohrez86/AxMAP

0018-9340 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2968905, IEEE
Transactions on Computers

JOURNAL OF IEEE TRANSACTIONS ON COMPUTERS, VOL. XX, NO. X, AUGUST 20XX 14

[2] S. Tajasob, M. Rezaalipour, M. Dehyadegari, and M. N. Bojnordi, “De-
signing efficient imprecise adders using multi-bit approximate building
blocks,” in Proc. International Symposium on Low Power Electronics
and Design, 2018, pp. 13:1–13:6.780

[3] T. Yang, T. Ukezono, and T. Sato, “A low-power configurable adder for
approximate applications,” in Proc. 19th International Symposium on
Quality Electronic Design, 2018, pp. 347–352.

[4] T. Yang, T. Ukezono, and T. Sato, “A low-power yet high-speed config-
urable adder for approximate computing,” in Proc. IEEE International785

Symposium on Circuits and Systems, 2018, pp. 1–5.
[5] M. Osta, A. Ibrahim, H. Chible, and M. Valle, “Inexact arithmetic

circuits for energy efficient iot sensors data processing,” in Proc. IEEE
International Symposium on Circuits and Systems, 2018, pp. 1–4.

[6] W. Xu, S. S. Sapatnekar, and J. Hu, “A simple yet efficient accuracy-790

configurable adder design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 6, pp. 1112–1125, 2018.

[7] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs for
approximate low power addition by cell replacement,” in Proc. Design,
Automation & Test in Europe Conference & Exhibition, 2016, pp. 660–795

665.
[8] Z. Yang, J. Han, and F. Lombardi, “Transmission gate-based approxi-

mate adders for inexact computing,” in Proc. IEEE/ACM International
Symposium on Nanoscale Architectures, 2015, pp. 145–150.

[9] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic800

accuracy configurable adder,” in Proc. 52nd ACM/EDAC/IEEE Design
Automation Conference, 2015, pp. 1–6.

[10] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,805

no. 1, pp. 124–137, 2013.
[11] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate

xor/xnor-based adders for inexact computing,” in Proc. 13th IEEE
International Conference on Nanotechnology, 2013, pp. 690–693.

[12] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate810

arithmetic designs,” in Proc. Design Automation Conference, 2012, pp.
820–825.

[13] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-
computing applications,” IEEE Transactions on Circuits and Systems I:815

Regular Papers, vol. 57, no. 4, pp. 850–862, 2010.
[14] S. Dutt, S. Dash, S. Nandi, and G. Trivedi, “Analysis, modeling and

optimization of equal segment based approximate adders,” IEEE Trans-
actions on Computers, vol. 68, no. 3, pp. 314–330, March 2019.

[15] C. Liu, J. Han, and F. Lombardi, “An analytical framework for evaluating820

the error characteristics of approximate adders,” IEEE Transactions on
Computers, vol. 64, no. 5, pp. 1268–1281, 2015.

[16] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on Computers,
vol. 62, no. 9, pp. 1760–1771, 2013.825

[17] J. Liang, J. Han, and F. Lombardi, “On the reliable performance of
sequential adders for soft computing,” in 2011 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems, Oct 2011, pp. 3–10.

[18] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-830

nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
Proc. Design Automation Conference, 2012, pp. 796–801.

[19] Y. Wu and W. Qian, “An efficient method for multi-level approx-
imate logic synthesis under error rate constraint,” in Proc. 53nd
ACM/EDAC/IEEE Design Automation Conference, 2016, pp. 1–6.835

[20] A. S. Roy and A. S. Dhar, “A novel approach for fast and accu-
rate mean error distance computation in approximate adders,” 2018,
arXiv:1803.08005 [cs.OH].

[21] Y. Wu, Y. Li, X. Ge, Y. Gao, and W. Qian, “An efficient method for
calculating the error statistics of block-based approximate adders,” IEEE840

Transactions on Computers, vol. 68, no. 1, pp. 21–38, 2019.
[22] M. K. Ayub, O. Hasan, and M. Shafique, “Statistical error analysis for

low power approximate adders,” in Proc. 54th ACM/EDAC/IEEE Design
Automation Conference, 2017, pp. 1–6.

[23] L. Li and H. Zhou, “On error modeling and analysis of approximate845

adders,” in Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2014, pp. 511–518.

[24] R. P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied
Introduction, Fifth Edition. Pearson, 2003.

[25] NanGate, Inc. NanGate FreePDK45 Open Cell Library. [Online].850

Available: https://www.silvaco.com/products/nangate/Library Creator
Platform/index.html?page id=2325

[26] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proc. 25th Edition on Great Lakes Symposium
on VLSI, 2015, pp. 343–348. 855

[27] A. Najafi, M. Weisbrich, G. Payá-Vayá, and A. Garcia-Ortiz, “A fair
comparison of adders in stochastic regime,” in Proc. 27th International
Symposium on Power and Timing Modeling, Optimization and Simula-
tion, 2017, pp. 1–6.

[28] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: 860

A large-scale hierarchical image database,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

Morteza Rezaalipour received the M.Sc. de-
gree in computer systems architecture engineer-
ing from K. N. Toosi University of Technology, 865

in 2019, under the supervision of Prof. M. De-
hyadegari. He is currently a researcher at the K.
N. Toosi University of Technology. His research
interests are approximate computing, low-power
circuits design, and computer architecture. 870

Mohammad Rezaalipour received the M.Sc.
degree in computer engineering - software from
Shahid Beheshti University. He is currently pur-
suing the Ph.D. in computer scinece at the Soft- 875

ware Institute, Faculty of Informatics, Università
della Svizzera italiana (USI). His research in-
terests include automated program repair and
software testing.

880

Masoud Dehyadegari received his Ph.D. de-
gree from University of Tehran, Tehran, IRAN,
in 2013 in computer engineering. He is cur-
rently an Assistant Professor of school of com-
puter engineering with the K. N. Toosi Univer- 885

sity of Technology, Tehran, IRAN. Form Septem-
ber 2011 until December 2012, he was a vis-
iting scholar in University of Bologna, Italy. His
research interests include Low-power system
design, Network-on-chips,and Multi-Processor 890

System-on-chip.

Mahdi Nazm Bojnordi received the Ph.D. de-
gree in electrical and computer engineering
from the University of Rochester, Rochester, NY,
USA, in 2016. He is currently an Assistant Pro- 895

fessor at the School of Computing, University of
Utah, Salt Lake City, UT, USA, where he leads
the Energy-Efficient Computer Architecture Lab-
oratory. His current research interests include
energy-efficient architectures, low-power mem- 900

ory systems, and the application of emerging
memory technologies to computer systems. Dr.

Bojnordi received the two IEEE Micro Top Picks Awards, the HPCA 2016
Distinguished Paper Award, and the Samsung Best Paper Award for his
research. 905

https://www.silvaco.com/products/nangate/Library_Creator_Platform/index.html?page_id=2325
https://www.silvaco.com/products/nangate/Library_Creator_Platform/index.html?page_id=2325
https://www.silvaco.com/products/nangate/Library_Creator_Platform/index.html?page_id=2325

