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Content Aware Refresh: Exploiting the
Asymmetry of DRAM Retention Errors to
Reduce the Refresh Frequency of Less

Vulnerable Data
Shibo Wang, Mahdi Nazm Bojnordi, Xiaochen Guo, and Engin Ipek.

Abstract—DRAM refresh is responsible for significant performance and energy overheads in a wide range of computer systems, from
mobile platforms to datacenters [1]. With the growing demand for DRAM capacity and the worsening retention time characteristics of
deeply scaled DRAM, refresh is expected to become an even more pronounced problem in future technology generations [2].
This paper examines content aware refresh, a new technique that reduces the refresh frequency by exploiting the unidirectional nature of
DRAM retention errors: assuming that a logical 1 and 0 respectively are represented by the presence and absence of charge, 1-to-0
failures are much more likely than 0-to-1 failures. As a result, in a DRAM system that uses a block error correcting code (ECC) to protect
memory, blocks with fewer 1s can attain a specified reliability target (i.e., mean time to failure) with a refresh rate lower than that which is
required for a block with all 1s. Leveraging this key insight, and without compromising memory reliability, the proposed content aware
refresh mechanism refreshes memory blocks with fewer 1s less frequently. To keep the overhead of tracking multiple refresh rates
manageable, refresh groups—groups of DRAM rows refreshed together—are dynamically arranged into one of a predefined number of
refresh bins and refreshed at the rate determined by the ECC block with the greatest number of 1s in that bin. By tailoring the refresh rate
to the actual content of a memory block rather than assuming a worst case data pattern, content aware refresh respectively outperforms
DRAM systems that employ RAS-only Refresh, all-bank Auto Refresh, and per-bank Auto Refresh mechanisms by 12%, 8%, and 13%. It
also reduces DRAM system energy by 15%, 13%, and 16% as compared to these systems.

Index Terms—Computer architecture, memory systems, DRAM.
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1 INTRODUCTION

ADRAM cell encodes information by the presence or
absence of electrical charge on a storage capacitor. The

data stored in a cell may be lost because the charge on the
capacitor leaks over time. To prevent such retention errors,
a DRAM cell must be periodically refreshed by sensing
and replenishing the stored charge. The refresh operations
introduce energy and performance overheads to the DRAM
system, which are expected to increase in future high-
capacity main memories [1].

In a typical DRAM system, Auto Refresh commands are
sent from the memory controller to the DRAM chips. During
an Auto Refresh operation, part of the DRAM system is
unable to serve memory requests, which increases average
memory access latency and degrades memory throughput.
An Auto Refresh operation can also interfere with row
buffer locality. Figure 1 shows the energy and bandwidth
overheads due to refresh on a set of twelve memory in-
tensive applications using 32Gb chips. The results indicate
that refresh consumes 33% of DRAM system energy and
degrades sustained memory bandwidth by 20%.1 In a future
DRAM system comprising 64Gb chips, refresh operations
are expected to reduce memory throughput by 50% and
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1. The experimental setup is explained in Section 6.
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Fig. 1: Effects of refresh operations.

consume 50% of the memory power [2].
This paper proposes content aware refresh, a new technique

that reduces the number of refresh operations by leveraging
the fact that retention errors are unidirectional. In a DRAM
system that uses a block error correcting code (ECC) to
protect memory from errors, blocks with fewer 1s exhibit
a lower probability of encountering an error. As a result,
to attain a target uncorrectable error probability, an ECC
block with fewer 1s can be refreshed less frequently than a
block with more 1s. Moreover, the lowest refresh rate that
can achieve the desired level of reliability can be calculated
based on the number of 1s within the block.

A refresh operation typically is performed simultaneously
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on a group of DRAM rows (i.e., on a refresh group), which
consists of multiple ECC blocks. In the proposed content
aware refresh mechanism, the refresh rate of a refresh group
is decided based on the most vulnerable ECC block in that
group, which is the block with the greatest number of 1s.
Naı̈vely tracking and enforcing the refresh rate for each
refresh group, however, would result in exorbitant energy
and storage overheads. Instead, content aware refresh assigns
each refresh group into one of a small number of refresh bins.
Each bin has a single refresh rate, and the assignment of a
refresh group to a bin is determined by whether the required
refresh rate of the group can be satisfied by the refresh rate
of the bin. To reduce the number of refresh operations, both
the refresh rates of the bins and the refresh group-to-bin
assignments are adaptively changed at runtime.

By avoiding unnecessarily refreshing blocks that are
dominated by 0s, content aware refresh improves both
the performance and the energy efficiency. Two types of
Auto Refresh are evaluated: all-bank Auto Refresh and per-
bank Auto Refresh. Content aware refresh improves end-
to-end system performance by 8% over all-bank Auto
Refresh, and by 13% over per-bank Auto Refresh, with
corresponding reductions in DRAM energy of 13% and
16%. It is also possible to apply the proposed technique to
RAS-only Refresh, in which the memory controller refreshes a
single DRAM row at a time by issuing a precharge command
followed by an activate. When applied to a high capacity
DRAM chip, RAS-only Refresh typically exhibits worse per-
formance and energy as compared to Auto Refresh, because
RAS-only Refresh does not exploit the internal subarray level
parallelism within the DRAM chips. When content aware
refresh is applied on top of RAS-only Refresh, however,
RAS-only Refresh achieves 12% higher performance and
15% lower energy as compared to a baseline system that
uses all-bank Auto Refresh.

RAIDR [2] is a recently proposed technique that reduces
DRAM refresh operations by exploiting cell-to-cell variations
in retention time. When applied to the evaluated baseline
system, RAIDR improves system performance by 8%, and
saves 11% of the memory energy as compared to all-bank
Auto Refresh. Without relying on profiling the retention
time of each physical cell as RAIDR does, content aware
refresh outperforms all-bank Auto Refresh by 20%, with
20% memory energy savings. Furthermore, content aware
refresh is orthogonal to RAIDR, and the two techniques can
be combined to achieve even greater benefits. When content
aware refresh is added on top of RAIDR, the combined
system achieves 13% higher system performance and 16%
lower memory energy as compared to RAIDR alone.

2 BACKGROUND AND MOTIVATION

This section reviews the basics of DRAM refresh, DRAM
errors, and error protection techniques.

2.1 DRAM Refresh

DRAM devices require periodic refresh to preserve data
integrity. A typical refresh interval—i.e., time between succes-
sive refresh operations to a given cell—is 64ms below 85oC
or 32ms for 85-95oC [2]. In a modern DDRx DRAM system,

the memory controller spreads out the refresh operations
to different DRAM rows evenly over a refresh interval. In
Auto Refresh, the DRAM device maintains an internal address
counter that points to the next group of rows to be refreshed;
the memory controller initiates a refresh operation by issuing
an Auto Refresh command every tREFI µSec.

Auto Refresh. Auto Refresh can be issued in either an
all-bank or a per-bank fashion.2 In all-bank Auto Refresh, all of
the banks are refreshed during a refresh operation, and the
entire rank is unavailable for tRFCab µSec. Per-bank Auto
Refresh refreshes only those rows in the addressed bank and
occupies the bank for tRFCpb µSec. By allowing the banks
that are not being refreshed to service memory requests,
per-bank Auto Refresh offers greater bank-level parallelism.

RAS-only Refresh. RAS-only Refresh is a technique that
was supported by earlier asynchronous DRAM devices [5].
Under RAS-only Refresh, the memory controller explicitly
issues refresh commands to each DRAM row. Although
the DDR standard no longer explicitly supports RAS-only
Refresh, RAS-only Refresh can still be implemented by
sending a precharge command followed by an activate
command to the row that needs to be refreshed. Compared to
Auto Refresh, the fine-grained control provided by RAS-only
Refresh offers greater flexibility.

2.2 DRAM Retention Errors
A DRAM retention error occurs when the stored data is
lost due to charge leakage. The retention time, which is
the time between when the data is stored and when a
retention error occurs, varies among cells within a device
due to process variability. Previous studies [6], [7] show
that the retention time of the cells is characterized by a
bimodal distribution: 1) over 99% of the cells exhibit a long
retention time characterized by a main distribution, and 2)
the remaining, leaky cells exhibit a much shorter retention
time characterized by a tail distribution. Those cells that are
characterized by the tail distribution determine the DRAM
reliability because these include the weakest functional
cells in the device. The tail distribution, which governs
the relationship between the retention error probability and
the refresh interval, has been shown to fit an exponential
distribution [7].

2.2.1 Asymmetry of Retention Errors
Notably, DRAM retention errors are asymmetric: assuming
that a logical 1 is represented by a charged cell, the probabil-
ity of a 1-to-0 retention error is significantly higher than that
of a 0-to-1 retention error [8], [9]. Figure 2 illustrates three
of the possible leakage paths in a DRAM cell. Subthreshold
leakage current can flow into or out of the cell depending on
whether the cell and the bitline are charged or discharged
(Figure 2 (a)). However, both the gate-induced drain leakage
(GIDL) current and the junction leakage current flow from
the storage node into the substrate, which discharges the
cell. The asymmetry of the DRAM retention errors is due to
the fact that the GIDL current (Figure 2 (b)) constitutes the

2. Although current DDRx devices support only all-bank Auto Refresh,
LPDDRx type per-bank Auto Refresh support should be non-intrusive
because it requires only simple changes, as suggested and evaluated in
recent studies [3], [4].



0018-9340 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2018.2868338, IEEE
Transactions on Computers

TRANSACTIONS ON COMPUTERS 3

dominant leakage mechanism for the weakest DRAM cells
(DRAM cells that follow the tail distribution) [10], [11]. For
DRAM cells that follow the main distribution, the junction
leakage (Figure 2 (c)) constitutes the main leakage path [10],
[11].
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Fig. 2: Leakage paths within a DRAM cell.

Patel et al. [9] leverage this unidirectional feature of the
DRAM retention errors to avoid refreshing row or column
segments that contain only zeroes in DRAM arrays. This
approach adds special circuitry to DRAM arrays to prevent
blocks with only zeros from consuming energy during
refresh. However, it cannot improve system performance
since the number of issued refresh operations is not reduced.
In addition, it requires nontrivial DRAM array modifications.
In contrast, by modeling the refresh rate as a function
of the data content, the proposed content aware refresh
approach can improve both the system performance and
energy, without changing the DRAM array structure.

Emma et al. [8] note the unidirectional nature of retention
errors and use the Berger code [12] to detect the errors in
eDRAM caches with low overhead. However, the Berger
code cannot correct unidirectional errors, and this refresh
reduction scheme cannot be applied to conventional DRAM
systems.

2.2.2 True- and Anti-cells
In DRAM circuit design, a true-cell and an anti-cell respec-
tively refer to DRAM cells that represent a logical 1 with the
charged and discharged states [13]. Naturally, in DRAM ICs
that comprise a mixture of true- and anti-cells, the asymmetry
between the 1-to-0 and 0-to-1 retention error probability may
be absent or diminished [14]. For these memory ICs, content
aware refresh can still be applied to true- and anti-cell regions
individually. For inverted bits stored in anti-cells, 0s and 1s
will be treated respectively as 1s and 0s while counting the
number of 1s in the stored data blocks 3. For convenience
and without loss of generality, the following discussion and
the evaluation are based on the true-cell regions.

2.2.3 Retention Time Variation
Previous studies exploit retention time variation among
different DRAM cells to reduce the number of refresh
operations. Similarly, RAIDR [2] groups DRAM rows into
different bins based on the weakest cell in each row, and
refresh each bin at a different rate. Unlike these proposals,
content aware refresh conservatively assumes the worst
case retention time (i.e., that of the weakest DRAM cell)
for all of the DRAM cells. Prior work that exploits retention

3. The internal architecture of true- and anti-cells is vendor specific
and usually unknown as a proprietary of each DRAM vendor. Further
analysis and research will leave as future work.

time variations can be combined with content aware refresh
to reduce the number of refresh operations further. A detailed
comparison of content aware refresh to RAIDR can be found
in Section 7.5.

2.2.4 Effect of Temperature
By accounting for the temperature dependence of DRAM
retention times [6], some mobile DRAMs provide tempera-
ture compensated self refresh mechanisms that reduce the
refresh overheads [15]. These schemes are orthogonal to the
proposed approach and can be combined with it. Specifically,
content aware refresh is able to set the default refresh rate
based on the temperature sensor within a DRAM module,
and scales the refresh rate of each bin accordingly (Sections
3 and 4).

2.3 DRAM Non-retention Errors
DRAM reliability is also affected by other types of errors,
which are considered by content aware refresh. A radiation
induced soft error [16] can occur in a DRAM cell. When alpha
particles and cosmic rays penetrate the silicon substrate, they
can generate electron-hole pairs along the path that they
traverse. The generated electrons, when collected by drift,
can discharge a cell capacitor and turn a previously stored
1 into a 0 [16]. The radiation induced soft errors can also
occur due to other failure mechanisms such as the ALPEN
effect [17], bitline strikes, and strikes at DRAM peripheral
circuits (such as sense amplifiers and registers), which may
result in either a 1-to-0 or a 0-to-1 error.

DRAM interference errors caused by noise coupling have
been extensively studied [18]. Recent studies [13] find that
DRAM disturbance errors can occur when a nearby row
is repeatedly activated. The cumulative effect of repeated
interference from a wordline can accelerate charge leakage
from the nearby cells due to coupling effects. The error
probability increases with an increased row activation rate.
MEMCON [19] proposed techniques to detect and mitigate
errors caused by coupling noise based on online testing.
Techniques for addressing DRAM coupling noise-induced
errors [19], [20] and the DRAM “row hammer” problem [13]
are orthogonal to content aware refresh, and can be com-
bined with it in designing energy-efficient, reliable DRAM
systems.4

Hard errors also contribute a large fraction of the DRAM
errors observed in the field [21]. These errors are caused by
circuit defects or wearout, such as metal electromigration,
metal stress migration, time dependent dielectric breakdown,
and thermal cycling, and are independent of DRAM retention
errors.

2.4 DRAM Error Protection
ECC-enabled commodity DRAM modules are employed
to maintain system reliability. Typically, the (72, 64) Single-
Error-Correction, Double-Error-Detection (SECDED) ECC is
used to correct up to one error and detect up to two errors
in each 72-bit word. More complex ECCs (e.g., the Reed-
Solomon codes [22]) can also be used to provide chipkill

4. If the default refresh rate increases due to DRAM disturbance errors
(as suggested by solutions in [20]), the refresh rates in the proposed
approach must be increased accordingly.
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protection, tolerating an entire memory chip failure [23]
without data loss. Wilkerson et al. [24] use ECC to reduce the
refresh rate in eDRAM caches. However, the employed ECC
is much stronger than the SECDED ECC, and is applied to
large codewords (1KB) to amortize the cost. The proposed
content aware refresh approach can work with existing (72,
64) SECDED ECC, which is widely adopted by modern
DRAM DIMMs.

3 KEY INSIGHT: SPARSE BLOCKS CAN BE RE-
FRESHED LESS FREQUENTLY

We define an ECC block with a large Hamming weight
(i.e., with more ones) as a dense block, and one with a small
Hamming weight as a sparse block. Since a sparse block
contains fewer vulnerable bits than a dense one, it is possible
to refresh a sparse block less frequently than a dense block
while achieving the same block error rate.

To model the reliability of a data block protected by
SECDED ECC, the DRAM errors are categorized as retention
errors, and non-retention errors that are independent of any
retention issues (e.g., soft errors induced by alpha particles
and cosmic rays, and different types of hard errors caused
by defects or wearout). With SECDED ECC, the reliability of
an ECC block, R(h, p), can be expressed as the probability of
observing no more than one error:

R(h, p) =(1− p)h(1− pnon-ret)
n+

hp(1− p)h−1(1− pnon-ret)
n+

hp(1− p)h−1pnon-ret(1− pnon-ret)
n−1+

npnon-ret(1− pnon-ret)
n−1(1− p)h,

(1)

where p is the probability that a retention error occurs at
a bit position, pnon-ret is the probability that a non-retention
error occurs at a bit position, n is the number of bits within
the ECC block, and h is the Hamming weight of the ECC
block. Of the four terms that are summed, the first term
represents the probability that the block has no error, which
requires each bit within the block to be free of errors (both
retention and non-retention ones). The second, third, and
fourth terms of the sum together represent the probability
that the block has a single error: the second term gives the
probability that the block has a single retention error but no
non-retention error; the third term represents the probability
that a retention error and a non-retention error overlap on the
same bit 5; the fourth term represents the probability that the
block has a single non-retention error but no retention error.
Since only those bit positions that contain ones are vulnerable
to the unidirectional retention errors, the Hamming weight
(h) of the block is used instead of the total number of bits (n)
in a block when calculating the error probabilities involving
a retention error. In a conventional system, the refresh rate to
achieve a specified reliability target is designed for the worst
case, in which all of the bits in an ECC block are assumed
to store 1s. This refresh rate, however, is overly conservative
for the blocks that contain fewer 1s. Under a constant refresh
rate, the reliability achieved by each block depends on its

5. We assume that there is a single error when a non-retention error
occurs at the same bit as a retention error.

content. It is possible to achieve the same reliability for every
ECC block by satisfying the following equation:

R(h, ph) = R(n, pn), (2)

where pn is the required retention error probability for an
ECC block with all 1s, and ph is the required retention error
probability for an ECC block with h 1s. When the Hamming
weight is reduced from n to h, we can achieve a higher
tolerable retention error probability (ph ≥ pn), and therefore
a lower refresh rate. Figure 3 illustrates the relationship
between the uncorrectable error probability and refresh
rate for ECC blocks with different Hamming weights. The
uncorrectable error probability is equal to one minus the
probability of observing a SECDED ECC block with no more
than one error. For a fixed reliability target 6, the ECC block
with the lower Hamming weight requires a lower refresh
rate.
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Fig. 3: The uncorrectable error probability of an ECC block
vs. refresh rate.

Since the probability of a DRAM retention error is a
function of the refresh rate (Section 2.2), the explicit relation-
ship between the required refresh rate and the Hamming
weight of an ECC block can be obtained by solving Equation
(2). The (72, 64) SECDED ECC, which is employed in both
the conventional and the proposed DRAM systems, was
used to generate the data plotted in Figure 4. The retention
error probability per bit for the conventional system, pn, is
assumed to be 10−12 based on published results [2]. pnon-ret
is set to 5 × 10−8, which is obtained from published data
gathered from DRAM field studies [21]. As can be seen
in Figure 4, the required refresh rate is an approximately
linear function of the Hamming weight, which provides
an opportunity to reduce the DRAM refresh overheads by
making refresh content-aware.
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Fig. 4: Refresh rate vs. Hamming weight.

6. Content aware refresh uses the uncorrectable error probability as
the reliability target, and achieves the same target as a conventional
system by satisfying Equation (2). This requirement allows the proposed
approach to provide the same detectable error probability as a conven-
tional system. If the reliability target changes, the R(h, p) function in
Equation (1) can be changed accordingly.
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4 OVERVIEW

In content aware refresh, DRAM is organized into multiple
refresh groups, each of which is refreshed at one of multiple
refresh rates. A refresh group contains a single row for RAS-
only Refresh, and multiple rows for Auto Refresh. Figure 5
shows an example DRAM system with two rows, each of
which contains data blocks with different values. The dense
block requires the default, highest refresh rate, whereas the
sparse block needs to be refreshed at only one fourth of
that rate. The figure illustrates how conventional refresh and
content aware refresh are used by the DRAM system.

S Sparse block (ref. rate: 0.25)
Dense block (ref. rate: 1)D

Conventional Refresh:

tREFI

tREFI Time
REF1 REF2 REF1 REF2 REF1 REF2 REF1 REF2 REF1 REF2

DRAM System

Row 2 S S S S
Row 1 S SD D

Content Aware Refresh:
tREFI

Time
REF1 REF2 REF1 REF1 REF1 REF1 REF2

tREFI      4

Fig. 5: Illustrative example of the key idea.

Conventional refresh is oblivious to the contents of the
memory blocks; as a result, it is equivalent to a DRAM
system in which all of the rows are refreshed using the
default, shortest refresh interval (tREFI). Content aware
refresh maintains two refresh rates: DRAM rows that contain
a dense block need to be refreshed at the highest default
rate, whereas rows that contain only sparse blocks can be
refreshed at one fourth of the default refresh rate. Because
the densest block within row 1 requires the highest refresh
rate, under content aware refresh, row 1 requires the same
refresh interval (tREFI) as it does under conventional
refresh. However, the densest block in row 2 is a sparse
block; consequently, row 2 can be refreshed using an interval
of tREFI × 4.

The densest ECC block within each refresh group varies
during the execution. To achieve refresh reduction without
compromising reliability, each refresh group must be re-
freshed based on the Hamming weight of its densest block.
However, tracking and enforcing the refresh rate for every
refresh group individually would result in significant storage
and energy overheads. Instead, content aware refresh further
arranges the refresh groups into different refresh bins based
on the Hamming weight of the densest block within a refresh
group, and refreshes each bin at its own rate as determined
by the Hamming weight of the densest block in that bin.

Figure 6 illustrates an example system using the proposed
architecture. A content aware refresh unit, comprising a
metadata cache, a metadata update unit, a binning threshold
selection unit, and a refresh scheduler, determines the refresh
rate of each bin and schedules refresh requests. The metadata
cache contains a small portion of the metadata that is stored
in a dedicated region of the main memory. The metadata
update unit works with the metadata cache to keep track of
the densest block within each refresh group. The Hamming
weight of the densest block is used to determine the bin
to which a refresh group belongs. The binning threshold
selection unit periodically recomputes the binning thresholds

to adapt to program behavior as data are written into the
memory. The refresh scheduler is responsible for generating
and scheduling the refresh requests for each bin based on
the assigned refresh rate.

When a write request is received, in addition to inserting
the request into the request queue, the memory controller
sends the address of the request to the metadata cache
to obtain the metadata. The controller also sends the new
contents (which are to be written to memory) to the metadata
update unit (step 1 in Figure 6). The metadata returned by
the metadata cache is sent to the metadata update unit, which
checks whether the new contents require a metadata update
(step 2 in Figure 6). If so, the updated metadata is written
back to the metadata cache, and is also sent to the binning
threshold selection unit to keep up-to-date information there
(step 3 in Figure 6). To adapt to the changing contents of
main memory and to find the optimal binning thresholds
over time, the binning threshold selection unit periodically
recomputes the thresholds for each bin, and sends them to
the refresh scheduler (step 4 in Figure 6). Given the assigned
binning thresholds and the up-to-date metadata, the refresh
scheduler dynamically determines the refresh bin that the
next refresh group belongs to, generates the refresh requests
at the appropriate times, and inserts them into the refresh
request queue (step 5 in Figure 6).

Main 
Memory

CPU

DDR4

Memory 
Controller

BT: Binning Threshold

BTSelect 
Unit

Write Request

Metadata 
Cache

Metadata 
Update Unit

1

2

Refresh 
Scheduler

Refresh Request Q

Refresh

4

5

Content Aware Refresh Unit

3

Fig. 6: An example system using the proposed content
aware refresh mechanism.

5 CONTENT AWARE REFRESH

Content aware refresh maintains metadata to track the dense
blocks. Based on the metadata and the binning thresholds,
refresh requests for each bin are dynamically generated and
scheduled. To permit the binning process to adapt to the
changes in the contents of the DRAM system over time,
the proposed approach periodically reselects the binning
thresholds.

5.1 Tracking the Dense Blocks

Tracking the densest block in each refresh group during
program execution is critical to deciding the refresh rate of
that group, since the Hamming weight of the densest block
determines the lowest refresh rate that satisfies the reliability
requirements.
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5.1.1 Metadata Organization
An efficient metadata organization should maintain a min-
imum amount of data to provide accurate information for
binning threshold selection and refresh group assignment.
The proposed metadata organization is designed to track only
the densest block within each refresh group. The metadata
of each refresh group consists of the Hamming weight of
the densest ECC block within that group (DB), the location
of the weakest line (i.e., a cache line sized region of data that
contains the densest ECC block) within the refresh group,
and a valid bit indicating whether the metadata is up to
date. Initially (at boot time), there is no useful data stored
in the refresh groups, and all of the DB values are invalid.
Consequently, all of the refresh groups are initialized at the
lowest refresh rate. The metadata are updated as the DRAM
pages are written.

The metadata storage capacity depends on the number
of refresh groups in a DRAM device. We evaluated DRAM
chips from 8Gb to 32Gb. The storage overhead of metadata is
less than 7MB for a 72GB memory system (less than 0.01%).

5.1.2 Updating the Metadata
Figure 7 shows how the metadata of a refresh group is
updated in response to a write request. If the new data
contains an ECC block that is denser than the current densest
block within the corresponding refresh group, the update
procedure is simple: 1) the Hamming weight of the densest
block and the location of the weakest line are overwritten by
the new values, and 2) the valid bit is set. This mechanism
guarantees that the increase in the refresh rate of a refresh
group is accurately reflected in the metadata.

Write Request

The nDB 
denser than the 

DB?

Yes No

Update the DB 
information; 

set the valid bit.

The same 
location as the  

DB?

Yes No

Do nothing.

DB: the current densest block 
within the refresh group

nDB: the densest block 
within the new data line

Reset the valid bit; 
recalculate the DB.

Is the DB valid?
Yes No

Notify the 
recalculation unit.

Fig. 7: Procedure for updating the metadata.

Decreasing the Hamming weight of the densest block
within a refresh group requires weight recalculation, which
involves reading out the entire refresh group to identify
the new densest block within the refresh group.7 To avoid
unnecessary weight recalculations, the valid bit and the
location of the densest block are checked. If the valid bit
is not set, indicating that the densest block recalculation for
the refresh group may already be in progress, the new data
must be included in the ongoing weight recalculation. If the
metadata is valid, the location of the new data line within the
refresh group is compared to that of the current densest block.
If the locations do not match, the metadata does not need
an update, because the new data does not affect the current

7. Notably, the bit position of a 1 does not affect the error probability
of the ECC block.

densest block within the refresh group. Otherwise, the valid
bit is reset to indicate the need for a recalculation. While
the recalculation is in progress, the location of the densest
block is kept at its original value to ensure correctness.
To reduce the performance impact of weight recalculation,
the memory requests issued for weight recalculation wait
in a queue and are opportunistically scheduled at times
when the memory bus is idle. Simulation results on twelve
memory intensive benchmarks indicate that the additional
DRAM accesses increase total memory traffic by less than
1%. Moreover, the number of DRAM cycles consumed by
the additional memory requests is 5000× smaller than the
number of DRAM cycles saved by reducing the refresh rate.

5.1.3 The Metadata Cache
A small, dedicated region of main memory is allocated for the
metadata by setting the kernel parameter memmap in the boot
loader’s configuration file. Accessing the metadata region
in main memory on every write request would significantly
degrade performance and energy. A metadata cache is
therefore proposed and placed inside the memory controller,
which is 4-way set associative, write-allocate, managed with
an LRU replacement policy, and less than 7KB in all of the
evaluated configurations. Each metadata read brings in a
block of data that contains metadata for 18 to 36 refresh
groups.8 Due to the high spatial and temporal locality in
metadata accesses, the metadata cache has a high hit rate
(from 94% to 99% depending on the application), which
significantly reduces the extra memory requests caused by
metadata accesses and the associated overheads. A sensitivity
analysis on the size of the metadata cache is presented in
Section 7.6.1.

5.2 Refresh Scheduling
Each refresh bin has a single refresh rate, and is controlled
by a dedicated refresh scheduler (Figure 8). Each refresh
scheduler needs to identify the refresh groups that belong
to the corresponding bin, and refresh them at a specified
rate. Tracking the addresses of all of the relevant refresh
groups is impractical since the refresh groups that belong
to a particular bin can reside in arbitrary locations within
the memory. Instead, each refresh scheduler independently
traverses the entire memory space at a pace determined
by the refresh rate, and refreshes only the groups that are
assigned to its bin.

A refresh scheduler comprises a timer, an address counter,
a densest block Hamming weight buffer, and a refresh request
generator (Figure 8). The timer controls the refresh rate. The
address counter sequentially traverses the refresh groups in
memory, pointing to the address of the refresh group that is
going to be refreshed next if it is assigned to this bin. The
densest block Hamming weight buffer stores the Hamming
weights of the densest blocks within the refresh groups,
which are filled by sequentially prefetching the metadata.
The prefetching overhead is amortized over multiple refresh
operations (e.g., one 64B prefetch operation is required every
85 all-bank Auto Refresh operations). The refresh generator
compares the binning thresholds with the Hamming weight

8. The precise number of refresh groups that can be covered by a fixed
size metadata block depends on the size of the refresh group.
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Fig. 8: Illustrative example of the refresh scheduler with four

bins.

of the densest block within a refresh group to decide whether
the candidate refresh group is assigned to this bin, and thus
should be refreshed. If so, a refresh request is generated and
sent to the refresh request queue, which employs an FCFS
policy.

5.3 Selecting the Binning Thresholds

Selecting the right binning thresholds can significantly in-
crease the benefits obtained from content aware refresh. The
evaluation indicates that compared to simple fixed binning
with evenly distributed thresholds, the optimal binning
scheme proposed here can reduce the number of refresh
operations by 12-28% (Section 7.6.3). Content aware refresh
employs dynamic programming to generate these optimal
binning thresholds.

5.3.1 Selection Algorithm
The goal of the binning threshold selection is to minimize
the total number of refresh operations generated by each
refresh bin. Because the refresh rate is a linear function of the
Hamming weight (Section 3), this goal can be reformulated
as the problem of finding all of the binning thresholds by
minimizing

N−1∑
i=0

(y(ti+1)− y(ti))ti+1, (3)

where N is the number of refresh bins, ti is the ith binning
threshold, and y(ti) is the total number of DRAM refresh
groups whose densest block has a Hamming weight less
than or equal to ti. Since the number of bits in an ECC block,
tN , and the total number of refresh groups in the DRAM
system, y(tN ), are both constants, this optimization problem
can in turn be expressed as the problem of maximizing the
left Riemann sum [25].

We propose a simple dynamic programming algorithm
to solve the problem. The proposed algorithm derives the
maximum left Riemann sum withN thresholds by examining
the solutions to a set of subproblems. The maximum left
Riemann sums with one, two, ... , N thresholds are computed
sequentially, by memoizing and using the results obtained in
a given step in the next step of the algorithm. Figure 9 shows
how the proposed algorithm finds the optimum binning
thresholds for a simple example. Three binning thresholds
(t1-t3) need to be selected in this example (t3 is forced to take
on the value of the largest Hamming weight, 5). Each node
A[h, i] represents the maximum left Riemann sum computed

for t0-ti, and h represents the Hamming weight threshold
selected for ti. The proposed algorithm comprises a forward
step, and a backtracking step. In the forward step, the left-
most column of nodes is initialized; each remaining column
is then computed sequentially, based on the previous column
(Figure 9-a). After computing the column t3, the best binning
thresholds are chosen in the backtracking step (Figure 9-b).
In this example, Hamming weights 5, 4, and 1 are identified
as the optimal binning thresholds for t3, t2, and t1.
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Fig. 9: Illustrative example of the proposed dynamic
programming algorithm.

5.3.2 Hardware Implementation
The proposed binning threshold selection is performed in
hardware at the memory controller, as shown in Figure 10.
The hardware implementation relies on a cumulative his-
togram table y, a maximum value table A, and a track-
ing table T that stores the thresholds that can achieve
the optimum value for each subproblem. To generate the
optimal solution to each subproblem A[h, i], the binning
threshold selection unit sequentially reads out the result of
each relevant subproblem, performs the computation, and
sends the result to the max A update unit (step 1 ), which
keeps track of the maximum result and the corresponding
Hamming weight (step 2 ). Table A and T are updated based
on the values stored in max A and the best Hamming weight
registers (step 3 ). When all of the subproblems have been
solved, the tracking table is used to trace back the series of
binning thresholds that lead to the optimum solution. The
proposed binning threshold selection unit requires less than
1KB of SRAM. The energy, latency, and area overheads are
evaluated by synthesizing an RTL model.

... ...

h - h'

A[h, i]

Tracking Table

T[h, i]

Max A 
Update 

Unit 

Cumulative 
Histogram Table Max Value Table

1

Comparator

Max A (Register)
Best HW (Register)

2

3

y(h')

Fig. 10: Binning threshold selection.

5.3.3 Periodic Adjustment of the Binning Thresholds
To maximize the benefits, the binning thresholds should
be adjusted at runtime based on the phase behavior of
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the applications. A set of counters is used to track a
histogram recording the Hamming weight of the densest
block in each refresh group. To amortize the overhead of
the binning threshold selection and assignment, the binning
thresholds are re-calculated periodically. At the end of each
execution interval, the binning threshold selection unit fills
the cumulative histogram table (Figure 10) based on the
latest values of the histogram counters, calculates a new set
of optimum binning thresholds in the background, and sends
the new binning thresholds to the refresh scheduler 9.

We conduct a thorough sensitivity study to find an appro-
priate execution interval for each application. Notably, the
best execution interval varies among different applications.
For simplicity, we choose a single interval (512 million cycles)
that results in the lowest DRAM energy across all of the
evaluated benchmarks. The evaluation indicates that the area,
latency, and energy consumption overheads of periodically
adjusting the thresholds are not significant.

5.4 Applying Content Aware Refresh on Top of RAS-
only Refresh and Auto Refresh

Content aware refresh can be combined with either RAS-
only Refresh or Auto Refresh. For RAS-only Refresh, the
refresh group contains a single DRAM row. Because the
refresh group of Auto Refresh contains multiple rows, Auto
Refresh is more likely to encounter a dense block in a refresh
group as compared to RAS-only Refresh. However, Auto
Refresh exhibits significantly lower metadata overhead than
RAS-only Refresh. In addition, recent studies [4] show that
as DRAM density increases, RAS-only Refresh exhibits lower
performance and consumes more energy as compared to
Auto Refresh. This is because RAS-only Refresh cannot
simultaneously refresh multiple rows that reside in different
subarrays as Auto Refresh does, and consumes greater
command bus bandwidth.

In order to apply the proposed approach to Auto Refresh,
the memory controller must tell the DRAM system where
to start refreshing. Since the address bus is not used by the
Auto Refresh command, the memory controller can use it to
write the start address of each Auto Refresh into an internal
address counter, and the internal counter can automatically
point to the rest of the rows that need to be refreshed as part
of the refresh operation (which is a built-in feature of Auto
Refresh).

5.5 Applicability to Memory Systems with Data Scram-
bling

Some memory controllers [26] incorporate data scrambling to
reduce the power supply noise due to successive 1s and 0s
on the data bus [27]. Content aware refresh is compatible
with data scrambling. Given a system with data scrambling,
content aware refresh relies on the Hamming weight of
each scrambled data block (rather than the original one) to
determine the refresh requirements. Notably, content aware
refresh is able to reduce the number of refresh operations as
long as the data are not all 1s. Since data scrambling tries to

9. Before setting the new binning thresholds, each bin needs to be
refreshed at the default refresh rate for one iteration to make sure that
refresh group meets the upcoming deadline.

balance the number of 1s and 0s, it leaves significant room for
the proposed approach to achieve performance and energy
benefits. A detailed evaluation of content aware refresh in
the presence of data scrambling is presented in Section 7.4.

6 EXPERIMENTAL SETUP

Analyzing the performance, energy, and the area of content
aware refresh requires both architectural and circuit-level
design and evaluation.

6.1 Architecture
We use a heavily-modified version of the SESC simulator [28]
with a cycle accurate DRAM model for evaluation. The
configuration parameters are shown in Table 1. The following
systems are modeled and evaluated: 1) a baseline system with
the all-bank Auto Refresh (AB); 2) a baseline system with
the per-bank Auto Refresh (PB); 3) content aware refresh
applied on top of the all-bank Auto Refresh (CAAB), the
per-bank Auto Refresh (CAPB), and the RAS-only Refresh
(CAROR); 4) an ideal system that eliminates refresh (IDEAL);
5) RAIDR; and 6) content aware refresh applied on top of
RAIDR (CAAB + RAIDR, CAPB + RAIDR, and CAROR +
RAIDR).

TABLE 1: Evaluated system configuration.

Core 8 out-of-order cores, 3.2GHz,
fetch/issue/commit width 4/4/4

IL1 cache 32KB, direct-mapped, 64B line
DL1 cache 32KB, 4-way, 64B line
Coherence Snoopy bus with MESI protocol

L2 cache 4MB, 8-way, 8 banks, 64B line

Memory
controller

FR-FCFS scheduling, open-page policy, page-
interleaved address mapping, content aware refresh
for the proposed system, all-bank Auto Refresh
and per-bank Auto Refresh for baseline systems

DRAM
(Timing

parameters
are in

DRAM
cycles)

DDR4-1600, 2 channel, 2 ranks/channel,
16 banks/rank, 8KB rows, CL = 10, WL = 9,
tRCD = 10, tRP = 10, tRAS = 28, tRC = 38,
tFAW = 20, BL = 8, tREFI = 3120,
tRFCab = 280/424/712 (8/16/32Gb DRAM chips),
tRFCpb = 70/106/178 (8/16/32Gb DRAM chips)

All of the systems are evaluated with shared DRAM
systems that employ the widely used (72, 64) SECDED ECC
with 64B last level cache blocks (which matches the DRAM
data access granularity). A 32ms retention time is used for
the evaluation, which is a typical setting for servers [3].
Because commodity DDR4 DRAM does not support per-
bank Auto Refresh, we estimate the tRFCpb values based on
prior work [3]. Other timing parameters are also in line with
prior work [1], [3], [4]. McPAT 1.0 [29] is used to estimate
the processor energy at the 22nm technology node. DRAM
system energy is calculated following the methodology
described in [30], with parameters taken from [31].

6.2 Synthesis
The metadata update unit, the refresh scheduler, and the
binning threshold selection unit are designed and verified
in Verilog RTL, and synthesized with the FreePDK 45nm
library [32] using the Synopsys Design Compiler [33]. The
area, timing and power numbers are scaled from 45nm
to 22nm process technology using the scaling parameters
reported in prior work [34], [35]. The metadata cache is
modeled by CACTI 6.0 [36]. FabMem [37] is used to model
the buffers within the refresh scheduler.
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Fig. 11: Performance of the evaluated systems.
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Fig. 12: Energy consumption of the evaluated memory systems.

6.3 Applications
We evaluate twelve applications that are readily portable to
our simulator from the NuMineBench [38], Phoenix [39],
NAS [40], SPLASH-2 [41], SPEC OMP [42], and SPEC
2006 [43], as shown in Table 2.

The memory footprint of the evaluated applications
varies from 20MB to 460MB. Pages with all values equal
to zero constitute 13% of the total memory space on average,
which is similar to the results shown in prior work [44].10

We use SimPoint [45] to find a representative 1 billion
instruction region from each SPEC2006 benchmark to reduce
the simulation time. The memory is warmed up prior to
simulation, and the initial binning thresholds are computed
based on the data stored in the memory at the end of the
warm-up interval.

TABLE 2: Applications and data sets.

Benchmarks Suite Input
ScalParc NuMineBench A32-D125K

Linear Regression Phoenix 100MB key file
Ocean SPLASH-2 514×514 ocean

CG NAS OpenMP Class A
MG NAS OpenMP Class A

Art-Omp SPEC OpenMP MinneSpec-Large
Equake-Omp SPEC OpenMP MinneSpec-Large

Lbm SPEC 2006 Reference
Mcf SPEC 2006 Reference

Milc SPEC 2006 Reference
Omnetpp SPEC 2006 Reference

Soplex SPEC 2006 Reference

7 EVALUATION

In this section, we compare the performance and energy
of the proposed architecture to the baseline systems. We
also analyze the latency, area, and power overheads of the
components in the content aware refresh unit.

7.1 Performance
Figure 11 presents the system performance of all of the
evaluated systems with 32Gb DRAM devices. On average,
CAAB, CAROR and CAPB respectively outperform the AB
baseline by 8%, 12%, and 20%. Most of the performance
improvement comes from the reduction of refresh operations
(Figure 13). However, as CAPB is built on top of per-bank

10. We assume that the data residing in physical pages that are unused
by an application has the same Hamming weight distribution as that of
the physical pages that are used by the application.

Auto Refresh, it also benefits from the increased bank level
parallelism. Since PB has a 7% performance improvement
over AB, the actual speedup achieved by content aware
refresh for the CAPB system is 13%.

Among the three systems that use content aware refresh,
CAPB performs the best, which exhibits less than 5% perfor-
mance degradation as compared to the IDEAL system. When
the underlying refresh mechanism is changed from RAS-only
Refresh to per-bank Auto Refresh and all-bank Auto Refresh,
the granularity of the refresh group becomes coarser, which
increases the probability of finding a dense block within each
refresh group. Since the required refresh rate of each group
is determined based on the Hamming weight of the densest
block within the group, the likelihood of reducing the refresh
rate is lower for a larger refresh group. In Figure 13, we
see that applications such as mcf and soplex exhibit this
behavior, especially with the CAAB system.
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Fig. 13: Total number of refreshes.

7.2 Energy

The energy consumption of the memory system (DRAM
plus the memory controller) is shown in Figure 12. CAAB,
CAROR, and CAPB respectively reduce the energy consump-
tion of AB by 13%, 15%, and 20%. The energy reduction
comes from both the performance improvement and the
refresh reduction. The total energy overhead of the additional
hardware and the extra memory requests generated by
content aware refresh represent less than 1% of the memory
system energy for CAAB, CAROR, and CAPB.

Figure 14 illustrates the total system energy consumption
broken down between the processor (which includes the
cores and the shared L2 cache) and the memory system.
CAAB, CAROR and CAPB respectively reduce system energy
of AB by 6%, 9%, and 12%. In general, the energy reduction
due to the memory system is greater than that achieved on
the processor.
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Fig. 14: Total system energy consumption.

7.3 Delay, Area, and Power Overheads

Table 3 lists the latency, area, and power overheads of
different components within the content aware refresh unit.
The respective sizes of the metadata cache are 0.75KB, 1.25KB,
and 7KB for CAAB, CAPB, and CAROR. All of the data
shown in the table is based on a configuration with 16 bins.
As the number of bins decreases, the overhead decreases
as well. Since CAAB, CAPB, and CAROR support different
refresh group granularities, the overhead of the metadata
cache and the refresh scheduler differ significantly. Although
the latency of the binning threshold selection unit is large,
this latency is not on the critical path.

TABLE 3: Power, area, and latency at 22nm.

Power
(mW)

Area
(mm2)

Latency
(ns)

Metadata update unit 0.5 0.0004 0.5
Metadata cache (CAAB) 0.4 0.002 0.25
Metadata cache (CAPB) 1.1 0.003 0.25

Metadata cache (CAROR) 6.5 0.015 0.25
Binning thresholds selection unit 4.6 0.01 4822

Refresh scheduler (CAAB) 1.2 0.006 1.5
Refresh scheduler (CAPB) 1.2 0.006 1.5

Refresh scheduler (CAROR) 2.2 0.012 1.75

7.4 Effect of Data Scrambling

We evaluate content aware refresh on systems that use data
scrambling to reduce the electrical resonance on the DRAM
data bus [26], [27]. Three content aware refresh mechanisms
(CAAB, CAROR, and CAPB) are evaluated, and the results
are shown in Figure 15. Among the three mechanisms,
CAROR is affected most significantly by scrambling: the
performance improvement over AB falls from 12% to 9%,
and the memory energy improvement from 15% to 12%.
Due to the fine granularity of the refresh group in the
original CAROR, the Hamming weight of the densest block
can be very small for some refresh groups, resulting in
significant refresh reduction. With data scrambling, the
data are randomized, which decreases the probability of
finding light refresh groups. Unlike CAROR, CAAB benefits
from data scrambling. As discussed in Section 7.1, CAAB
has a greater chance of finding a dense block within each
refresh group due to the coarser granularity. Consequently, it
achieves only a modest reduction in refresh operations. Data
scrambling reduces not only those data blocks with many 0s,
but also those with many 1s. As a result, the densest block
within each refresh group tends to become lighter, which
results in fewer refresh operations. Since the original refresh
reduction of CAPB is close to 50% (Figure 13), the effect of
data scrambling on CAPB is small.
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Fig. 15: The effect of data scrambling.

7.5 Comparison to RAIDR
Content aware refresh does not rely on the variability in reten-
tion times due to the physical cell characteristics. Figure 16
shows the comparison to prior work, RAIDR [2], which
exploits such cell-to-cell variations. Without profiling the
retention time of each physical cell, CAAB achieves perfor-
mance and energy results that are similar to RAIDR. CAROR
and CAPB respectively improve the system performance by
4% and 12%, and reduce the memory energy consumption
by 5% and 12% over RAIDR. Since the proposed scheme is
orthogonal to RAIDR, it can also be combined with RAIDR to
achieve greater benefits. Indeed, CAPB + RAIDR outperforms
RAIDR by 13%, and reduces memory energy consumption
by 16% as compared to RAIDR.
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Fig. 16: Comparison to RAIDR.

7.6 Sensitivity Analyses
Sensitivity to important system parameters are studied in
this section.

7.6.1 Metadata Cache Size
Figures 17 and 18 show the effect of the metadata cache
size on the performance and energy consumption of the
proposed system. Since the metadata cache size is already
small for CAAB (0.75KB) and CAPB (1.25KB), the analysis
is presented for CAROR only. In the figure, the metadata
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Fig. 18: Energy vs. metadata cache size.

cache size is 1.75KB, 3.5KB, and 7KB for CAROR small,
CAROR medium, and CAROR large, respectively. Because
CAROR has a relatively small refresh group, it requires a
larger metadata cache. With a small metadata cache, both
the performance and the energy consumption of CAROR are
worse than those of CAPB and CAAB.

7.6.2 Number of Bins
The number of refresh bins is a design choice that directly
affects the duration of the required refresh intervals. We
examined three configurations with the performance and
energy results shown in Figures 19 and 20. The system
performance degrades slightly with fewer refresh bins. The
memory energy consumption is more sensitive to the number
of bins than system performance. Although a larger number
of bins requires a larger refresh scheduler, the energy benefit
of having fewer refresh operations outweighs the overhead
of the additional hardware.
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Fig. 19: Performance of systems with different
configurations.
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Fig. 20: Energy consumption of memory systems with
different configurations.

7.6.3 Binning Thresholds
In addition to the proposed dynamic programming approach,
we also evaluate content aware refresh with 16 evenly
distributed binning thresholds. As compared to this straight-
forward method that uses fixed binning thresholds, the
dynamic threshold selection algorithm respectively reduces
the number of refresh operations by 12%, 28% and 22% for
CAAB, CAROR, and CAPB (Figure 21). The superior results

come from (1) using the optimal binning thresholds rather
than suboptimal ones; (2) adaptation to the changes in the
contents of main memory over time.
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Fig. 21: The effect of binning thresholds.

7.6.4 DRAM Density
Figures 22 and 23 show how the performance and energy
consumption of the baseline and the proposed systems scale
with DRAM chip capacity. As the device capacity increases
from 8Gb to 32Gb, all of the evaluated systems suffer from
degraded performance and energy consumption. However,
the systems that use content aware refresh are less sensitive
to device capacity than the baseline systems that employ
Auto Refresh. CAPB scales better than CAROR and CAAB
because 1) CAROR is built on top of RAS-only Refresh, which
exhibits poor scalability as compared to Auto Refresh; and 2)
the coarser granularity of the refresh group used by CAAB
increases the probability of finding a dense block within a
refresh group when the device capacity is increased.
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Fig. 22: Performance vs. device capacity.
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Fig. 23: Energy vs. device capacity.

8 CONCLUSIONS

The unidirectional nature of DRAM retention errors allows
data blocks with fewer 1s to be refreshed less frequently
as compared to blocks with a greater number of 1s. Rather
than refreshing each DRAM row at the default refresh rate, a
system that employs content aware refresh groups DRAM
rows into different bins, and refreshes each bin at a rate
determined by the Hamming weight of the densest block in
that bin. A system that uses both content aware refresh and
per-bank Auto Refresh achieves the best performance with
the least energy consumption among all of the evaluated
systems. Overall, this system achieves a 13% performance
improvement and a 16% energy reduction over a baseline
system that employs per-bank refresh. We conclude that
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content aware refresh holds significant potential to improve
the performance and energy efficiency of future high-capacity
DRAM systems.
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