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Abstract—DRAM density scaling has become increasingly difficult due to challenges in maintaining a sufficiently high storage
capacitance and a sufficiently low leakage current at nanoscale feature sizes. Non-volatile memories (NVMs) have drawn significant
attention as potential DRAM replacements because they represent information using resistance rather than electrical charge.
Spin-torque transfer magnetoresistive RAM (STT-MRAM) is one of the most promising NVM technologies due to its relatively low write
energy, high speed, and high endurance. However, STT-MRAM suffers from its own scaling problems. As the size of the storage
element decreases with technology scaling, STT-MRAM retention error rates are expected to increase, which will require multi-bit
error-correcting code (ECC) and periodic scrubbing.
We introduce the Sanitizer architecture, which mitigates the performance and energy overheads of ECC and scrubbing in future
STT-MRAM based main memories. To reduce the scrubbing rate, a coarse-grained, multi-bit ECC mechanism with a 12.5% storage
overhead is used. To avoid fetching multiple blocks from memory and performing costly ECC checks on every read, the memory
regions that will likely be accessed in the near future are predicted and proactively scrubbed. Compared to a conventional STT-MRAM
system, Sanitizer improves performance by 1.22× and reduces end-to-end system energy by 22%.

Index Terms—STT-MRAM, Retention Errors, Main Memory, Hierarchical ECC
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1 INTRODUCTION

DRAM density scaling is jeopardized by two fundamen-
tal charge retention problems in deeply scaled technology
nodes: (1) the reduced storage capacitance of the DRAM
cell makes it difficult to store large amounts of charge,
and (2) the stored charge is lost faster due to increased
leakage through the access transistor. Emerging non-volatile
memory (NVM) technologies aim at skirting the charge
retention problem of deeply scaled DRAM by relying on
resistance—rather than electrical charge—to represent infor-
mation. NVMs do not consume leakage power within the
memory cells. However, each of the candidate NVMs comes
with its own set of shortcomings: phase change memory
(PCM) and resistive random access memory (ReRAM) ex-
hibit limited write endurance and high switching energy,
while STT-MRAM density lags multiple generations behind
that of current generation DRAM.

One important factor that limits the density of STT-
MRAM is the access transistor, which must be sufficiently
large to supply the write current required to switch the
device. Aggressively reducing the dimensions of the stor-
age element over successive technology generations can
reduce the required write current, removing one of the
major impediments to rapid capacity scaling1. Reducing the
size, however, inevitably results in lower thermal stability
and a higher probability of retention errors. Device level
innovations are fundamental to improving the scalability
without trading-off reliability; however, it is expensive and
time-consuming to invest on a new device or a new set

1. Other impediments include the conventional challenges of tech-
nology scaling, such as process variability and yield.

of manufacturing techniques every product cycle. Architec-
tural techniques that can tackle the high retention error rate
will allow STT-MRAM to scale to smaller dimensions before
an expansive device-level solution becomes economically
viable.

Prior work [1], [2] proposes using a combination of
multi-bit error correcting code (ECC) and periodic scrubbing
techniques to tolerate STT-MRAM retention errors. How-
ever, scrubbing operations are expensive, each of which
requires (1) reading out a codeword spanning one or more
memory blocks before the number of accumulated errors ex-
ceeds the correction capability of the underlying ECC mech-
anism, (2) checking and correcting any errors, and (3) writ-
ing back the corrected data. Employing a stronger ECC can
help tolerate more errors before a scrub operation becomes
mandatory, thereby reducing the scrubbing frequency and
the concomitant performance and energy overheads. For
a given ECC storage overhead, the ECC strength can be
improved by coarsening the ECC granularity (i.e., increasing
the size of a codeword) and increasing the number of errors
that can be corrected in each codeword. Figure 1 shows
that coarsening the ECC granularity from one to sixteen
blocks while maintaining a fixed storage overhead reduces
the required scrubbing frequency by more than 200× 2.
However, large codewords increase the access energy and
bandwidth usage due to over-fetching. Specifically, when a
codeword spans multiple cache blocks, (1) a read requires
fetching multiple blocks to decode the ECC, and (2) a write

2. Device and system configurations in Figure 1 are the same as the
configurations shown in Table 1.
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Fig. 1. Tradeoff between scrubbing frequency and ECC granularity un-
der a 12.5% storage overhead. The number of correctable errors are
respectively 6, 11, 21, 39, 73 for ECC granularity of 1, 2, 4, 8, 16 blocks.

requires reading the entire codeword and updating the
check bits.

We introduce Sanitizer—a low-cost, energy-efficient
memory system architecture that protects high-capacity,
STT-MRAM based main memories against retention errors.
To avoid fetching multiple blocks from memory and per-
forming costly ECC checks on every read, memory regions
(contiguous, 4KB sections of the physical address space)
that will be accessed in the near future are predicted and
proactively scrubbed.

The main contributions of this work include: (1) a viable
solution to scale STT-MRAM into smaller dimension before
an expansive device-level solution becomes economically
viable, (2) a novel usage of hierarchical ECC to protect
STT-MRAM against retention errors that follow a memory-
less distribution, (3) a proactive scrubbing mechanism to
increase the usage of lightweight ECC checks without de-
grading reliability, and (4) a set of write and data layout
optimizations to reduce the over-fetching overheads.

2 BACKGROUND AND RELATED WORK
Before taking an in-depth look at Sanitizer, it is instructive
to review DRAM error protection techniques, STT-MRAM
fault modeling, and known techniques for protecting STT-
MRAM against retention errors.

2.1 DRAM Error Protection
With technology scaling, maintaining DRAM reliability has
become increasingly challenging. To address the problem,
solutions that span novel devices, circuits, architectures, and
software have been devised.

2.1.1 Error Correcting Codes
The reliability of a memory system can be improved with
the help of ECC, which adds redundant bits to a group
of data bits to form a codeword. For a specified ECC con-
figuration, the smallest Hamming distance between any
pair of valid codewords is called the minimum distance of
the ECC; any number of errors fewer than the minimum
distance changes a valid codeword into an invalid one. For
example, the single error correction double error detection
(SECDED) Hamming code has a minimum distance of four.
On a single bit error, the original data can be restored

by finding the valid codeword closest to the invalid bit
pattern. Two-bit errors can be detected but not corrected
by SECDED, because an erroneous word with two errors
can have the same minimum Hamming distance to multiple
valid codewords.

Protecting against STT-MRAM retention errors necessi-
tates an ECC with multi-bit error correction capability [1],
[2]. BCH [3] and Reed Solomon codes [4] are two widely
used ECC schemes for multi-bit error correction. Sanitizer
builds upon a binary BCH code because the symbol-based
Reed Solomon code is optimized for correcting bursts of
errors, which are not a common retention failure pattern in
STT-MRAM [1], [2]. A binary BCH code with k data bits,
capable of t-bit error correction and (t + 1)-bit error detec-
tion, requires r redundant bits to form an n-bit codeword,
in which n = k + r and r = t×dlog2(n+ 1)e+ 1.

Sanitizer employs a hierarchical error protection mech-
anism comprising local and global ECCs. The local ECC
protects a single data block, while the global ECC encodes
data that spans multiple blocks. Hierarchical ECC has been
proposed to reduce the over-fetching cost of chipkill in main
memories [5], [6] and to reduce refresh energy consumption
in eDRAM based last-level caches [7]. Yoon et al. [5] propose
a virtualized, multi-tier ECC architecture that decouples
the physical mapping of the data and its associated ECC.
Udipi et al. [6] propose a hierarchical ECC, which separates
error detection from correction by storing the checksum and
parity bits in each memory chip. Wilkerson et al. [7] propose
a multi-bit error correcting mechanism with local parity
checks to reduce refresh frequency of an eDRAM-based last
level cache. Unlike prior work, which relies on only hierar-
chical ECC to reduce the over-fetching overhead, Sanitizer
proactively scrubs memory locations that are predicted to be
accessed in the near future, so that more accesses can safely
rely on a simpler, local ECC check.

2.1.2 Refresh and Scrub Operations

A DRAM cell can retain sufficient charge for a limited
amount of time (typically 64 ms) after it is written; con-
sequently, cells must be refreshed periodically to protect
against information loss. Unlike DRAM, STT-MRAM does
not have a charge leakage problem. However, it suffers
from retention errors due to thermal fluctuations that may
abruptly and randomly change the contents of the memory
cells. Hence, unlike the case of DRAM retention errors
where charge is gradually removed from the cells, STT-
MRAM retention errors cannot be prevented using refresh.
This trait necessitates using error correcting codes in con-
junction with scrubbing in STT-MRAM systems [1].

A memory system protected by ECC can tolerate a fixed
number of errors per codeword. No matter how strong the
underlying ECC is, however, after a sufficiently long period
of time, the number of errors that accumulate in a block
can exceed the correction capability of the ECC, thereby
resulting in an uncorrectable error. Scrubbing is a standard
strategy to meet this challenge, in which a memory block
is periodically read, checked for errors, and restored to an
error-free state.
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2.2 STT-MRAM
STT-MRAM is a second generation magnetic random ac-
cess memory, which has been made DDR3 compatible in
a commercial product [8]. STT-MRAM is one of the most
promising candidates as a DRAM replacement due to its
fast read and write speeds (10ns [9]), low power (10µW
read [9], <50µW write power [10], [11]), and high write
endurance (1012 [12] to 1016 [13] write cycles). An STT-
MRAM cell comprises an access transistor and a magnetic
tunnel junction (MTJ). Writing a cell requires passing a
write current through the cell; the direction of the current
determines whether the cell is programmed to a ‘1’ or a ‘0’.
Reading a cell requires sensing the resistance of the MTJ and
comparing it to a reference resistance, which ideally is fixed
at (RHI +RLO)/2.

Current generation STT-MRAM exhibits low density due
to the large access transistor required to supply a sufficiently
high switching current. Industry projections indicate, how-
ever, that technology scaling will effectively address this
problem; for instance, a recent paper [14] from Everspin
shows that the saturation current of a minimum-sized tran-
sistor will be higher than the required switching current
below 28nm. As technology scales, the MTJ size has to be
shrunk as well, which inevitably results in an increase in the
retention error rate. The best known technology [10], [11] at
22nm already exhibits a high retention error rate due to low
thermal stability. These retention errors are projected to be
the dominant type of error in deeply scaled STT-MRAM [1].
The retention error rate can be calculated using a closed
form analytical expression:

Pret(∆, t) = 1− exp
(
− t

τ0
exp(−∆)

)
, ∆ =

Eb

kBT
(1)

where t is the time elapsed since the last write, τ0 is
a process-dependent constant (typically 1ns), ∆ is is the
thermal stability factor, Eb is the temperature-independent
activation energy, kB is the Boltzmann constant, and T is the
absolute temperature in Kelvins [1]. As technology scales,
∆ is predicted to decrease since IC0

must be reduced to
allow reliable write operations with lower current [2]. A
perpendicular MTJ, in which the magnetization direction of
the fixed and free layers are both orthogonal to the tunneling
barrier, achieves a lower IC0

with a higher ∆ compared
to a conventional in-plane MTJ [10]; however, even for a
perpendicular MTJ, the ∆ at 20 nm is in the range of 29 to
34 [10], [11], which is lower than the required ∆ (>60 [1])
for a 1GB memory without ECC. Note that these are the ∆
values measured at room temperature; ∆ further decreases
at higher temperatures.

Due to process variations, ∆ is not uniform across all
of the cells on a single chip. Specifically, if ∆ follows a
distribution characterized by a probability mass function
f(∆), the probability that a random cell has a retention error
at time t is:

P (t) = Σ∆max

∆min
Pret(∆, t)f(∆). (2)

This equation is used in the rest of this paper for calculating
the raw bit error rate (BER).

Naeimi et al. [1] and Del Bel et al. [2] propose to use
ECC and scrubbing to protect STT-MRAM based caches
against retention errors. They restrict the ECC granularity

to one cache line. Protecting STT-MRAM based main mem-
ory against retention errors poses a greater challenge than
protecting caches, because (1) it takes longer to scrub a high
capacity main memory system, and (2) scrubbing contends
with demand misses for the limited off-chip memory band-
width. Awasthi et al. [15] propose the light array read for
PCM resistance drift detection (LARDD) technique, which
places simple ECC logic on the memory chips to detect the
first sign of a PCM resistance drift. This scheme would not
work for STT-MRAM retention errors, because the occur-
rence of one STT-MRAM retention error does not change
the probability of the next one (Equation (1)), whereas the
observation of one PCM resistance drift error increases the
likelihood of subsequent drift errors.

Errors can also occur during the read or the write
operations in STT-MRAM. A read error occurs when the
resistance range of the high and low states overlap due
to process variability [1]. Advanced sensing schemes [9],
[16] and reference resistance tuning [9] can reduce the read
errors. A write error occurs when either the amplitude of
the write current is not sufficiently high, or its duration is
not sufficiently long. Write errors can be detected by read-
after-write, which compares the written values with the
values in the write buffer. However additional writes re-
quired to correct the errors introduce latency overheads. As
technology scales, reducing the MTJ diameter and thickness
can reduce the critical current IC0 and the thermal stability
factor ∆, which lowers the amplitude of the required write
current [17], thereby reducing write errors [1]. Repeated
writes can also lead to hard errors. However, the endurance
of STT-MRAM is a less pressing issue as compared to other
non-volatile memory technologies such as ReRAM and
PCM. Nevertheless, if the endurance of STT-MRAM were to
become a concern, techniques proposed for PCM [18] could
be adopted to alleviate the problem. Such techniques are
orthogonal to Sanitizer, and are beyond the scope of this
paper.

2.3 Reliability Target

The failure in time (FIT) is a standard industrial metric to
measure the reliability of a device (e.g., a DRAM die [19]).
FIT measures the number of failures in one billion device
hours. We use 1 FIT (uncorrectable errors in one billion
device hours) per Gbit as a reliability target, so that if
the hard failure rate of STT-MRAM is similar to that of
DRAM (22 to 33 FIT [20]), the retention failures have a
minimum impact on system reliability. To achieve this 1 FIT
reliability target, an appropriate ECC code must be chosen
for a desired scrubbing frequency. For a given scrubbing
frequency (fscrub), the raw BER can be calculated from
equations (1)3 and (2), and an ECC code is chosen so that
the failure probability is below 1 FIT. For a specific ECC
code that respectively detects and corrects t + 1 and t
errors, the failure probability of a single ECC codeword is
Pcodeword =

(
n

t+1

)
pt+1(1 − p)n−t−1, where n is the num-

ber of bits in a codeword. The number of failures in one
billion data bits and one billion hours follows a binomial

3. Temperature T in equation (1) is the worst case operation temper-
ature. When working temperature is above the operation temperature,
the target FIT is not guaranteed.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TC.2017.2779151

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779151, IEEE
Transactions on Computers

4

B0
Read B0 Read B1

(a) Frequent scrubbing 
     with a simple ECC     
(b) Infrequent scrubbing
     with a strong ECC

(c) Sanitizer

Time

Time

Time

B0 B1

B1 B1B0 B0

B0 B1

B0 B1 B0 B1

B0

B0 B1

B1

B0 B1 B0 B1

Scrub Read Request Read ECC Codeword Read

Fig. 2. Illustrative example of Sanitizer and conventional scrubbing mechanisms.

distribution, and the expected number of failures caused by
retention errors is Fretention = Pcodeword × Ncodeword × Nscrub
FIT, where Ncodeword is the number of codewords that cover
one billion data bits, and Nscrub = 109hours

fscrub
.

The performance penalty due to scrubbing increases in
proportion to the capacity

bandwidth ratio of the memory system.
Using a stronger ECC mitigates the bandwidth overhead.
Table 1 shows the off-chip memory bandwidth consumed by

TABLE 1
Bandwidth overhead due to scrubbing. FIT/Gbit<1, ∆=34 [11],

T=45◦C [21], raw BER=3.4×10-5/s and block size=64B.

System Capacity / 4-blk 8-blk 16-blk
configurations bandwidth ECC ECC ECC
Evaluated (Sec. 5) 2.16 GB/GBps 9.89% 4.41% 2.73%
SPARC M5 2.50 GB/GBps 11.64% 5.23% 3.23%
Xeon E7-8800 2.56 GB/GBps 11.99% 5.35% 3.31%
Power S822 2.67 GB/GBps 12.70% 5.48% 3.45%

scrubbing under progressively stronger ECC configurations,
normalized to the peak memory bandwidth of the system.
(Note that the 1- and 2-block configurations are not practical
because the bandwidth overhead is greater than 50%.) The
scrubbing rates of all of the configurations in Table 1 are
below 0.05 Hz, which is much lower than the typical DRAM
refresh rates ( 1

64 ms = 15.6 Hz). However, scrubbing an STT-
MRAM page is more expensive than refreshing a DRAM
page because scrubbing requires reading the data out of the
memory system. A sensitivity analysis on the capacity

bandwidth ratio
is presented in Section 6.4.2.

3 OVERVIEW
Sanitizer reduces the scrubbing frequency by applying BCH
codes with strong error tolerance to long codewords span-
ning multiple cache blocks. Figure 2 illustrates the op-
eration of three different memory protection techniques:
(a) frequent scrubbing combined with a simple ECC, (b)
infrequent scrubbing combined with a strong ECC, and (c)
Sanitizer. All three techniques perform scrubbing to remove
errors from blocks B0 and B1. Since the strong ECC can
correct more errors than the simple ECC, it allows more er-
rors to accumulate in a codeword before scrubbing becomes
mandatory. As a result, the strong ECC requires scrubbing
less frequently than the simple ECC. However, the strong
ECC has to be applied to longer codewords spanning two
cache blocks to achieve the same storage overhead as the
simple ECC, which requires reading an extra cache block
with every memory access. As shown in Figure 2 (b), both
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Fig. 3. An illustration of the Sanitizer architecture.

B0 and B1 must be accessed to perform error correction
on every read. Sanitizer addresses this problem using (1) a
hierarchical error protection mechanism, in which the strong
ECC is used for infrequent scrubbing, while the simple
ECC is used for most of the ordinary memory accesses;
and (2) a novel prediction mechanism for scheduling scrub
operations prior to ordinary accesses, reducing the error
correction cost.

Sanitizer relies on the observation that a recently
scrubbed memory block tends to accumulate relatively few
errors and can be protected using a simple ECC. It uses a
global ECC (GECC) for scrubbing, and a local ECC (LECC)
for detecting. When the LECC is applied within a short
period of time after a codeword is scrubbed, it can ensure
the same FIT as the GECC. If an error is detected by the
LECC, the GECC mechanism is invoked for correction.

Figure 3 shows the Sanitizer datapath. For every read
request, the system first checks a recently scrubbed table
(RST) 1 . On an RST hit, the memory block can be accessed
via LECC decoding; on a miss, multiple cache blocks must
be read to perform GECC decoding. Prior to decoding,
the requests are enqueued in a request queue 2 . A DDRx
controller services the memory requests, and after receiving
the corresponding data from memory in the data buffer,
either the LECC or the GECC decoder will be used for error
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control 3 .
Every write requires updating both the LECC and the

GECC bits. To reduce the number of updates to the GECC,
Sanitizer employs a GECC cache that stores a limited num-
ber of recently updated GECC bits. On every write, the
RST is searched first 1 . A hit in the RST indicates that the
write request can benefit from a fast block access via LECC;
therefore, the old data block is read from main memory via
a read request 2 . Next, the GECC cache is searched for the
relevant GECC bits 4 . If the GECC is found in the cache, it
is overwritten with the new GECC bits 5 ; otherwise, the old
GECC bits are retrieved from main memory, updated, and
placed in the GECC cache 6 . The GECC cache implements
a write-back policy to write the updated GECC bits to main
memory 7 .

Sanitizer determines the memory locations to be scru-
bbed based on an epoch-based runtime algorithm. A scrub-
bing epoch is a window of time whose precise duration
is computed as region size

channel capacity×scrubbing frequency , which ranges
from 2 µs to 10 µs. Sanitizer determines the minimum
scrubbing rate based on the ECC strength and the error rate.
The number of RST hits and misses during the current epoch
are tracked in separate counters. At the beginning of each
scrubbing epoch, a scrub generator consults these counters
to determine the new memory regions to be scrubbed 8 .

4 SANITIZER ARCHITECTURE
Designing a reliable, high-performance, and energy-efficient
memory system with scrubbing and strong ECC requires
addressing three challenges: (1) scrub operations should not
block ordinary reads and writes; (2) the majority of the read
requests should hit in the RST; and (3) writes should trigger
few extra read and write accesses to main memory.

4.1 Scheduling Scrub Operations
Every scrub operation for a GECC codeword is scheduled
from a scrub queue (Figure 3), which holds scrub requests
that are either issued by a scrub generator, or are due to
evictions from the GECC cache. The following steps are
taken on every scrub operation: (1) all of the required data
blocks are fetched from memory and placed in a data buffer;
(2) a check request is sent to the ECC hardware; and (3) if
the check fails, the codeword is corrected using global ECC.

As shown in Figure 3, an arbiter selects the DDR3 com-
mands from the request and scrub queues. When scheduling
the scrub operations, the arbiter follows a scheduling policy
similar to the defer-until-empty (DUE) policy [22], which
was originally proposed for lowering DRAM refresh over-
heads. Memory requests are prioritized over scrub opera-
tions until the number of deferred scrub operations exceeds
half of the queue capacity, 4 after which scrub operations are
prioritized until the queue is fully drained. Sanitizer allows
data forwarding from a recently scrubbed block in the data
buffer to read requests in the request queue.

The key to designing an efficient scrub scheduler is to
issue scrub requests to the memory controller at a rate
slightly above the minimum scrubbing frequency, thereby

4. The scrub frequency is sufficiently overprovisioned to ensure that
no timing violations can occur due to postponed scrub operations.

allowing sufficient slack for the controller to schedule scrub
accesses to maximize performance. However, a highly over-
provisioned scrubbing rate hurts both the performance and
energy effeciency. The solution that Sanitizer adopts is to
incorporate a sanitizer scrubber on top of a patrol scrubber
with slightly increased scrubbing rate: the patrol scrubber
linearly scans the physical address space to ensure that all
memory locations are scrubbed before a scrubbing deadline
is violated; the sanitizer scrubber, as a result, can freely
schedule extra scrub operations to any memory location
to improve performance. Section 4.2.3 will describe how to
generate extra scrub.

4.2 Reducing the Read Overhead
Reducing the read overhead requires scheduling scrub op-
erations in a timely fashion, so that most of the ordinary
requests hit in the RST, and hence can be handled using the
local ECC.

4.2.1 Local ECC
Sanitizer employs a two-level hierarchical ECC. A codeword
comprising multiple blocks is protected by a strong, BCH
based global ECC. In addition, each data block is protected
by a simple, local ECC. For a target error rate, a stronger
local ECC can prolong the expiration time of a block—the
time after which memory accesses can no longer avoid
using the global ECC. The expiration time is set so that
within the expiration time it is rare to have the number of
accumulated errors in a cache block exceeding the local ECC
protection capability. When calculating the system FIT rate,
we take into account both the local and the global ECC fail-
ures. In order to increase the local ECC protection strength
with an acceptable storage overhead, Sanitizer leverages the
SECDED code, which can be configured either to correct one
error and detect two, or to detect three errors and correct
none. Sanitizer adapts the latter configuration. The local
ECC adds an extra storage overhead of 11 bits to a 64B cache
block. In this configuration, the expiration time is calculated
by maximizing t that satisfies the following inequality:(

512 + 11

4

)
P (t)4(1− P (t))512+11−4 < PSDC, (3)

where P (t) is calculated by (2), and PSDC is the probability
of silent data correction (SDC) since the local ECC can only
detect error. In the evaluation, PSDC is set to 10−15.

4.2.2 Recently Scrubbed Table
The RST is used to record memory regions that can be
checked using the local ECC. Memory locations that recently
have been scrubbed by the in-order patrol scrubber do
not need to be added to the RST. Instead, two address
comparators are sufficient to delineate the boundaries of
the regions which the patrol scrubber has recently visited.
Memory locations that are scrubbed out-of-order need to be
recorded in the RST. To keep the hardware overhead low,
each entry of the RST represents a 4KB memory region.
The RST is implemented as a set-associative cache to strike
a balance between performance and energy. (A sensitivity
study on the RST parameters is presented in Section 6.4.3.)
As shown in Figure 4, every RST entry has a region identifier
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Add D

(a) Add a region

A 6 0
RID Cnt Time

B 3 1
C 10 5

Add E, F

(b) Evict two regions and add two new ones

A 5 0
RID Cnt Time

B 2 1
C 4 5
D 11 6

0

RID Cnt Time

E 0 7
F 0 7
D 0 6

Add 
Nothing

(c) Expire a region

A 4 0
RID Cnt Time

E 9 7
F 2 7
D 8 6

6

A 0 0
RID Cnt Time

B 0 1
C 0 5
D 0 6

7

A 0 0
RID Cnt Time

E 0 7
F 0 7
D 0 6

6

Circular
Counter

7

0

Circular
Counter

Circular
Counter

Circular
Counter

Circular
Counter

Circular
Counter

Fig. 4. An illustrative example of operations in a four-entry RST with an
expiration time of seven.

(RID), a counter (Cnt) recording the number of hits to the
corresponding region within the current epoch, and a time
stamp (Time) that records the expiration time.5

Every RST entry has to expire after a fixed expiration
time (in the range of 10 − 50ms), which is determined by
the thermal stability factor, the local ECC strength, and the
reliability target. A circular counter generates a time stamp
for each new region added to the RST. For example, when
region D is added (Figure 4 (a)), a counter value of six is
recorded as its time stamp. The counter is incremented by
one at the end of every scrubbing epoch, and is reset to zero
when it reaches the expiration time. All of the entries whose
time stamps match the counter are evicted, after which any
new entires are added. In Figure 4 (c), region A is evicted
because its time stamp matches the counter.

The recently scrubbed regions might not all fit in the RST.
If a particular set of the RST is full, the entry with the lowest
hit count is evicted, which is accomplished by comparing all
of the counters in the same set using comparators organized
in a tree topology. In Figure 4 (b), for example, region B
and C are evicted because they have the fewest number of
access counts. All of the hit counters are reset to zeroes at the
beginning of each scrubbing epoch to adapt to application
phase behavior.

4.2.3 Scrub Generator

At the end of each scrubbing epoch, the scrub generator
decides which memory regions to scrub next. For the patrol
scrubber, the region ID is incremented by one to generate
the next region. For the sanitizer scrubber, a missed region
table (MRT) (Figure 5) is used to record the misses in the
RST. The regions to be scrubbed next are determined by

5. Each entry also has a valid bit and a scrubbing direction bit, which
are omitted in the figure for simplicity.

A 5 fwd
RID Cnt Direction

B 2 bwd
C 4 fwd
D 11 fwd

Scrub Generator Recently Scrubbed Table

To be scrubbed:

RID Cnt Direction
G 3 6
F 7 12

Missed
Region
Table

F fwd
E fwd

G bwd

Fig. 5. An illustrative example of generating scrubbing regions using
eight as the direction threshold.

inspecting the MRT and the RST at the end of a scrubbing
epoch.

The MRT predicts the regions with frequent RST misses
using a sticky sampling algorithm. Every entry in the MRT
comprises (1) the address of the last read or write, (2) a
valid bit, (3) an access counter, (4) a sticky counter used to
avoid evicting the entry before it collects sufficient statistics,
and (5) a direction counter to predict the scrubbing direction.
All of the non-zero sticky counters are decremented by one
every time the MRT is accessed. When the MRT is full,
new entry is added probabilistically in order to use limited
storage to record and estimate the most frequent RST misses.
The following steps are required to decide whether a new
entry can be inserted: (1) a pseudo-random number R is
generated by a linear-feedback shift register (LFSR), and (2)
R is compared to the access counter of the least frequently
accessed entry with a value of zero in its sticky counter. If
R is greater than or equal to the access counter, the entry
is replaced by the new one. The MRT tracks whether the
accesses to a given region are in ascending or descending
order using the direction counter, which is a saturating
up/down counter. On every access to a valid MRT entry, the
previous address stored in the entry is compared to the new
address. If the new address is greater than the previous one,
the direction counter is incremented; otherwise, the counter
is decremented.

At the end of every epoch, the scrub generator must
accomplish two tasks: (1) determine the maximum number
of regions to be scrubbed for the next epoch, and (2) select
the memory regions to be scrubbed by inspecting the MRT
and the RST. Two counters in the RST track the total number
of accesses and the total number of misses. At the end of
each epoch, the counters are used to compute the miss rate.
The maximum number of regions to be scrubbed during the
next epoch is determined by comparing the miss rate to a
set of predefined thresholds. Adapting the scrubbing rate to
the RST miss rate allows a high scrubbing rate at the begin-
ning of a burst of memory accesses, and a low scrubbing
rate when most of the memory regions recently have been
scrubbed. The scrub generator prioritizes the MRT entries
over RST entries when selecting the memory regions to be
scrubbed, because the miss region can be predicted with
a higher accuracy. The following rules are followed when
selecting a memory region: (1) no duplicates are allowed in
the RST, and (2) the number of newly generated regions is
not allowed to exceed a threshold.

The scrub generator uses the region ID of the most
frequently accessed MRT entry to scrub in the next epoch.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TC.2017.2779151

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779151, IEEE
Transactions on Computers

7

When this region is scrubbed, its region ID and a direction
flag (computed based on the direction counter) are recorded
in the RST.6 To select a region based on the RST, the scrub
generator computes a new region ID based on the current
region ID and the direction flag of the most frequently
accessed entry. If the flag indicates the forward direction, the
closest region in ascending order is selected; otherwise, the
closest region in descending order is scrubbed. As shown in
Figure 5, region D in the RST is frequently accessed during
the current epoch; therefore, the scrub generator selects one
of its neighboring regions (i.e., C or E) to be scrubbed in the
next epoch. In the example, due to the forward scrubbing
flag of D, region E is selected.

4.3 Reducing the Write Overhead
In a memory system protected by large BCH codewords, a
write generates more traffic than a read. On every write, an
entire local codeword, as well as the global ECC bits, need
to be updated. These updates require generating new local
and global ECC bits for the corresponding blocks. Therefore,
all of the data blocks that are part of the same global
codeword must be present at the memory controller before
a write can complete, which creates extra memory traffic
and degrades the overall bandwidth efficiency. Sanitizer
significantly reduces these overheads by (1) eliminating the
need for fetching the entire global codeword by generating
differential global ECCs, (2) adopting a careful data layout
that allows for parallel access to global ECC bits, and (3)
eliminating most of the read accesses by caching global
ECCs at the memory controller.

4.3.1 Global ECC Cache.
Writes are optimized by caching the global ECC bits. Our ex-
periments show that 92% of the writes are to previously up-
dated global codewords. Sanitizer exploits this phenomenon
by adding a 256-entry, 16-way set associative SRAM cache
to each memory channel. Every cache entry contains a valid
bit, tag bits, global ECC bits, and flag bits for implementing
the least recently used (LRU) replacement policy.

4.3.2 Global ECC Update.
Figure 6 shows an example application of Sanitizer to a con-
ventional nine-chip DIMM.7 A global codeword comprising
four data blocks A, B, C, and D is stored in memory. A
block is spread across the nine chips; it consists of a local
codeword (comprising 512 data and 11 local ECC bits),
and a part of the global ECC. Using a single block access,
the memory controller can read or update an entire local
codeword; however, accessing a global codeword requires
multiple reads and writes.

To update the global codeword, all of the four blocks (i.e.,
A, B, C, and D) must be read from memory. Then, a new
GECC is written to memory via multiple accesses. Sanitizer
eliminates the block reads by performing a differential up-
date to global codewords. For instance, a write to block A
requires the following steps: (1) the old contents of A are
retrieved from memory, (2) a differential global codeword is

6. The scrubbing flag is set to backward if the direction counter is
below a predefined threshold; otherwise, it is set to forward.

7. All of the chips are ×8 and transfer data in bursts of eight.

...
A0
B0

D0

C0

Chip 0
A5
B5

ECCD

C5

Chip 5
A6
B6

D5

ECCC

Chip 6
ECCA

B7

D7

C7

Chip 8
A7

ECCB

D6

C6

Chip 7
A4
B4

D4

C4

Chip 4

Block[4] Block[5] Block[6] Block[7] Block[8]Block[0] ...

Chip 4 Chip 5 Chip 6 Chip 7 Chip 8Chip 0 ...

(a) Chip Organization

(b) Data Selection

Fig. 6. An illustrative example of the proposed memory layout for a four-
block codeword.

formed by computing the bitwise XOR between the old and
new contents of A, (3) a parity matrix is used to generate the
differential ECC bits used for updating the global ECC, (4)
the old global ECC bits are read from memory, (5) the new
global ECC bits are generated by XORing the differential
ECC and the old global ECC bits, (6) the new value of A
and the updated local ECC are written back to memory in
one write access, and (7) the newly generated global ECC
bits are written to the GECC cache.

When a global ECC is evicted from the GECC cache, the
latency of updating the global ECC bits depends on where
the global ECC bits are stored. If all of the global ECC bits
are stored on the same DRAM chip, updating the global
ECC bits will take the same amount of time as updating
the entire global ECC codeword. Sanitizer performs a fast
update to the global ECC bits in main memory by leveraging
an optimized data layout. As shown in Figure 6 (a), parts
of each block are shifted to ensure that the ECC bits of a
global codeword are spread across the chips. (For example,
B7 is shifted right by one chip and ECCB is stored in
chip 7.) Moreover, every chip supports a base and offset
addressing mode, where the base is the block address and
the offset is either zero or the chip ID. Instead of relying
multiple memory accesses to read or write the global ECC
bits, the offset addresses are sent to each chip to coalesce
the accesses to different portion of the global ECC bits in a
single memory access. A simplified crossbar at the memory
controller ensures the right order of bits for both the local
and the global codewords (Figure 6 (b)).

4.4 Support for Chipkill ECC
The goal of chipkill-level error protection is to recover data
from a failed chip. In addition to pin failures, chipkill can
protect against a burst of errors due to wordline, bitline,
or interconnect wire failures. As explained in Section 2.1,
multi-bit symbol codes [4], [23] are optimized for bursty
errors. For example, a commercial chipkill ECC [6] can
protect against the failure of a ×4 chip by adding four check
symbols to 32 data symbols, where each symbol consists
of four bits, the block size is 128B, and the burst length is
eight. When both random and bursty errors are prevalent,
two ECCs can be concatenated: one code (e.g., BCH) protects
against random errors; the other code (e.g., a symbol code)
protects against bursty errors. An example of combining
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Sanitizer with a single-symbol correction double-symbol
detection (SSCDSD) ECC [6], [23] is shown in Figure 7.
Similar approaches can be applied to other chipkill ECCs.

Blockn

Block1

Data01 GECC01 Chipkill

Data02 GECC02 Chipkill

Data07 GECC07 Chipkill

Block0

4x4 bits4x32 bits

Fig. 7. An example of supporting chipkill ECC.

For each group of 128 data bits, a subset of the Sanitizer
GECC bits (BCH ECC) are appended to the data bits, and the
SSCDSD ECC bits are computed by treating the BCH ECC
bits as data. For example, Data01 and GECC01 are together
protected by four four-bit redundant symbols against chip
failures. Note that a four-check SSCDSD code with four-
bit symbols can protect codewords up to 256 symbols [23].
The local ECC of Sanitizer can be replaced by the chipkill
ECC because the correction capability of the SSCDSD code
is strictly greater than that of the SECDED code. However,
when calculating expiration time of local ECC protection for
sanitizer, the same three-bit local error detection capability
(as mentioned in Section 4.2.1) is conservatively used. The
failure rates due to bursty errors reported in field studies
range from 22 to 33 FIT per chip [20]. Assuming a 27.5 FIT
chip failure rate, the SSCDSD code can reduce the failure
rate of a DRAM system by a factor of 1.2×107. Table 2

TABLE 2
Required patrol scrubbing rates for combining Sanitizer with chipkill.

Storage Overhead 2 Blocks 4 Blocks 8 Blocks
18.75% 0.095 Hz 0.048 Hz 0.027 Hz

25% 0.026 Hz 0.014 Hz 0.010 Hz

reports the patrol scrubbing rates for an STT-MRAM system
with both the SSCDSD code and Sanitizer, configured to
achieve the same failure rate as a DRAM system protected
only by the SSCDSD code.

5 EXPERIMENTAL SETUP
Architecture and circuit level tools are used to evaluate
the performance, area, latency, and power characteristics of
Sanitizer. We evaluate a Sanitizer-enabled system on twenty-
two applications.

5.1 Architecture
We extended the SESC simulator [24] with a in-house cycle-
accurate memory simulator to model 4 GHz, eight-core
processors with either DRAM or STT-MRAM based main
memories. We use McPAT [25] to evaluate the area and
power for the individual components of the processor. We

TABLE 3
Architecture parameters.

Processor Parameters
Technology and frequency 22nm, 4 GHz

Number of cores 8 out-of-order cores
Fetch/issue/commit width 4/4/4
Int/FP/LdSt/Br/Mult units 2/2/1/2/1

Int IQ/FP IQ/loadQ/storeQ 32/32/24/24
Int/FP registers/ROB entries 96/96/96

Branch predictor Hybrid
Local/global/meta tables 2K/2K/8K

BTB/RAS entries 4K/32
IL1 cache (private) 32KB, direct-mapped

64B block, 1-cycle hit time
DL1 cache (private) 32KB, 4-way, LRU

64B block, 2-cycle hit time
Cache coherence MESI protocol

L2 cache (shared) 8MB, 8-way, LRU, 64B block
16-cycle hit time

Memory Controller Parameters
Address mapping page interleaving
Scheduling policy FR-FCFS

Request queue 64 entries
Memory System Parameters (Total Capacity: 144GB)

Technology and frequency 22nm, 1066 MHz
Chip capacity 16 Gb

Number of chips 9 chips per rank
Number of banks 8 banks per rank
Number of ranks 2 ranks per channel

Number of channels 4
Row buffer size 8 KB

Timing (memory cycles) tRCD: 14, tCL: 14, tRAS: 36
tBURST: 4, tCCD: 4, tWTR: 8
tRTP: 8, tRRD: 6, tFAW: 27

TABLE 4
Memory cell parameters at 22nm [12], [27].

Area Read Write Write
current current energy

STT-MRAM 6 F2 10 µA 35 µA 0.18 pJ
DRAM 6 F2 20 µA 20 µA 0.004 pJ

modify Cacti-3DD [26] to simulate the area, power, and
access latency of the STT-MRAM based main memory, as
well as the GECC cache, the scrub queue, the RST, and
the MRT (Section 4). Logic and memories are modeled
based on 22nm technology using parameters from ITRS
2013 [12]. STT-MRAM has the potential to achieve a density
comparable to DRAM [14], [27] at the 22nm technology
node. We therefore assume that the array, bank, rank, and
chip organizations of an STT-MRAM based memory system
are similar to those of a DRAM based memory system.
Architectural parameters that are kept the same for both
the DRAM and the STT-MRAM based systems are listed in
Table 3.

TABLE 5
Memory controller and memory system parameters.

DRAM-based System
Timing (cycles) tRP:14, tRC:50, tWR:16 2
Refresh policy defer until empty
Refresh timing tRFC: 480ns, tREFI: 7.8µs

STT-MRAM-based System
Scrub queue 32 entries

Timing (cycles) tRP: 1, tRC: 37, tWR: 22

The differences between the cell parameters of STT-
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MRAM and those of DRAM are listed in Table 4. To ac-
commodate the timing characteristics of STT-MRAM, a set
of changes were made to the DDR3 parameter settings
of the STT-MRAM based systems; these are reported in
Table 5. The precharge time (tRP) has a value lower than
the corresponding DRAM timing since STT-MRAM does not
precharge the bitlines during the precharge operation. The
write recovery time (tWR) is higher than it is in DRAM due
to the additional switching latency (6.5 ns [12]) required by
STT-MRAM cells.

TABLE 6
Sanitizer parameters.

Recently scrubbed table 4-way, 16K entries
Missed region table 64 entries

GECC cache 16-way, 256-entries

TABLE 7
ECC codeword size configurations.

base-4 base-8 base-16
GECC 253 bits 508 bits 1023 bits

GECC detectable 22 bits 40 bits 74 bits
GECC correctable 21 bits 39 bits 73 bits

Overhead (total) 12.4% 12.4% 12.5%
Patrol scrub rate 0.047 Hz 0.021 Hz 0.013 Hz

sanitizer-4 sanitizer-8 sanitizer-16
LECC (per 64B) 11 bits 11 bits 11 bits

LECC detectable 3 bits 3 bits 3 bits
GECC 205 bits 417 bits 841 bits

GECC detectable 18 bits 33 bits 61 bits
GECC correctable 17 bits 32 bits 60 bits

Overhead (total) 12.2% 12.3% 12.4%
Patrol scrub rate 0.084 Hz 0.031 Hz 0.018 Hz

Parameters of the hardware structures specific to Sani-
tizer are listed in Table 6. We consider various ECC code-
word sizes that maintain approximately the same ECC
storage overhead (all under 12.5%). Table 7 shows the ECC
capability and the associated storage overheads for each
coding scheme for both baseline and sanitizer. The numbers
in the top row indicate the number of cache blocks that are
are guarded by a global ECC for each baseline and sanitizer
configuration. For the baseline, only global ECC is required.
Patrol scrubber linearly scans the physical addresses. Under
the same storage budget, increasing the size of a codeword
provides the benefit of a stronger ECC capability, and hence
requires less frequent scrubbing. The patrol scrub rates are
set so that a 1 FIT reliability target can be achieved. Note
that Sanitizer configurations require higher patrol scrub
rates than their corresponding baselines to compensate for
weaker GECCs.

5.2 Circuits
We evaluate the area, power, and latency for both global
and local ECC logic. The total number of gates (i.e., AND,
OR, XOR, and DFF) in each encoder and decoder unit is
calculated according to an analytical model of ECC logic
designs [28]. The delay and power consumption of the gates
are evaluated via SPICE simulations at 22nm [29]. The area
is estimated based on the FreePDK45 [30] standard cells, and
is scaled to 22nm. To meet system throughput requirements,
a parallel implementation with multiple XOR trees (similar

to [31]) is used to generate the local and global ECC check
bits. The decoding process comprises three major steps: (1)
syndrome generation, which reuses the XOR-tree organi-
zation from BCH encoding; (2) finding an error-location
polynomial using an iterative algorithm proposed in prior
work [28]; and (3) finding error-location numbers with a
serial implementation that alleviates the area and power.

5.3 Applications
We evaluate 22 benchmarks that are readily portable to our
simulator. These include six parallel applications from the
SPLASH-2 [32] and SPEC OMP2001 [33] suites, as well as
16 sequential applications from SPEC 2006. The parallel
applications are simulated to completion. To reduce the
simulation time of the sequential applications, we use Sim-
Point [34], selecting a representative 100 million instruction
region from each SPEC2006 benchmark.

6 EVALUATION
We first evaluate the performance, energy, and area of
Sanitizer. Next, we present sensitivity studies, compare an
STT-MRAM based main memory equipped with Sanitizer
to a conventional DRAM system, and evaluate how Sani-
tizer stacks up against a baseline STT-MRAM system that
combines scrubbing with hierarchical ECC and prefetching.

6.1 Performance
We study the performance of three baseline configurations
and three Sanitizer systems with the cycle-accurate archi-
tectural simulator mentioned in Section 5.1. Figure 8 com-
pares the performance of the evaluated Sanitizer systems
to the best baseline configuration (base-4). Due to the ad-
ditional read traffic for a GECC check on every memory
access, increasing the size of the GECC codeword results
in a performance degradation for the baseline systems.
This performance penalty effectively nullifies the benefits
of using longer codewords to lower the scrubbing rate.
Consequently, base-4 outperforms base-8 and base-16 (Fig-
ure 9). Sanitizer mitigates the undue data traffic by using the
LECC for most of the memory accesses (85% on average).
The sanitizer-4, sanitizer-8, and sanitizer-16 systems achieve,
respectively, average speedups of 1.11×, 1.22×, and 1.14×
over base-4. The corresponding scrubbing rates are 0.098 Hz,
0.043 Hz, and 0.027 Hz.

Figure 9 shows a breakdown of the performance im-
provements. The bars labeled as “read opt only” represent
the improvement after adding the RST and the MRT to
reduce the read overheads (Section 4.2). The bars labeled
as “read opt & GECC$” represent the results of adding
the GECC cache (Section 4.3.1) on top of the RST and
the MRT. This benefit is not achievable by GECC cache
alone, because every write requires reading the original
data block and computing the differential updates to the
GECC. For the evaluated benchmarks, an average of 34%
hit rate is observed in the GECC cache. Implementing the
layout optimizations discussed in Section 4.3.2 in addition
to the read optimizations and the GECC cache gives the full
benefit of Sanitizer. The four-block configuration of read opt
only exhibits a small performance loss compared to baseline
because Sanitizer requires a higher scrubbing frequency.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TC.2017.2779151

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779151, IEEE
Transactions on Computers

10

0	
  
0.5	
  
1	
  

1.5	
  
2	
  

2.5	
  

ar
t	
  

ch
ole
sk
y	
  

eq
ua
ke
	
  

fft
	
  

oc
ea
n	
  

sw
im
	
  

as
tar
	
  

bz
ip2
	
  

gc
c	
  

go
bm
k	
  

lib
qu
an
tu
m	
   mc

f	
  

om
ne
tp
p	
  

sje
ng
	
  

xa
lan
cb
mk
	
  

de
alI
I	
  

lbm
	
  

mi
lc	
  

na
md
	
  

po
vra
y	
  

so
ple
x	
  

sp
hin
x3
	
  

ge
om
ea
n	
  Sp

ee
du

p	
  
O
ve
r	
  
th
e	
  

Ba
se
lin

e	
  
(b
as
e-­‐
4)
	
  

saniDzer-­‐4	
   saniDzer-­‐8	
   saniDzer-­‐16	
  

Fig. 8. System performance comparison.
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Fig. 9. Performance improvement analysis.

6.2 Energy and Power

Figure 10 shows the end-to-end system energy. Energy con-
sumptions of ECC logics are included for both baseline and
sanitizer configurations. Energy consumptions for sanitizer
specific components are taken into account for calculating
total energy consumptions of sanitizer configurations. The
baseline systems suffer from two sources of energy ineffi-
ciency: (1) frequent scrubbing operations, and (2) excessive
memory traffic due to over-fetching. By addressing the over-
fetching problem, Sanitizer achieves lower energy consump-
tion as compared to the most energy-efficient baseline (base-
4). Sanitizer-4, sanitizer-8, and sanitizer-16 respectively reduce
the system energy down to 93%, 78%, and 88% of base-4.
This energy reduction is due to two effects: (1) Sanitizer
significantly reduces the data movement on memory reads
and writes, which results in lower energy; and (2) Sanitizer
accelerates the execution of the applications, which results
in leakage energy savings. The energy reduction is not
monotonic with the block size. Using larger blocks can
reduce scrubbing frequency. However, lager blocks require
more complex ECC logics, which consumes more energy.
Sanitizer can reduce some of the global ECC checks, but
for each of the remaining global ECC checks, sanitizer
configurations with larger block size require higher energy
in transferring the ECC codeword. Sanitizer-8 achieves the
best energy saving because this configuration can balance
the energy saving on scrubbing and additional energy con-
sumptions due to large block size. The energy breakdown
of the sanitizer-8 system is shown in Table 8.

TABLE 8
Sanitizer-8 system energy breakdown.

Cores and Memory Main Buses and Sanitizer
caches controller memory interfaces hardware
63.7% 7.4% 18.3% 7.9% 2.7%

Table 9 shows the peak dynamic power and the leakage
power of Sanitizer. The Sanitizer hardware consumes a

TABLE 9
Peak dynamic power and leakage of Sanitizer components (eight block

configuration).

ECC Scrub RST GECC Scrub Total
(mW ) Logic Gen. Cache Queue

Dynamic 280.5 18.1 77.6 28.8 5.9 410.9
Leakage 98.8 0.9 12.3 14.3 2.5 128.8

peak power of 539.7 mW. The average power of Sanitizer
represents less than 3% of the total system power. The global
and local ECC hardware together consistute the major con-
tributor (2.2%) to the power consumption of Sanitizer; this
is because of the high-performance design choices that were
made to achieve the required throughput.

6.3 Area
The total area of the Sanitizer hardware corresponds to less
than 1% of the processor die area. Table 10 shows a break-

TABLE 10
Area breakdown of the Sanitizer components.

ECC Scrub RST GECC Scrub Total
(mm2) Logic Gen. Cache Queue

Sanitizer 0.41 0.002 0.12 0.12 0.004 0.66

down of the area occupied by various system components.
The ECC logic, the scrub queue, the GECC cache, and the
recently scrubbed table together occupy an area of 0.79%
of the processor die. If hierarchical ECC [6], [7] is applied
alone without sanitizer support, a 0.41 mm2 area overhead
is required to implement the ECC logics.

6.4 Sensitivity Analysis
We study the sensitivity of Sanitizer to the raw bit error rate
(BER), the memory capacity

bandwidth ratio, and the RST parameters.

6.4.1 Raw BER
The raw BER has a profound effect on the required scrub-
bing frequency. Either a low thermal stability factor (∆)
or a high temperature can result in a high retention BER
and a high scrubbing overhead (Section 2.2). Retention BER
per second under different ∆ and temperature values are
reported in Table 11. The capability of tolerating higher
temperature provide the opportunity to save energy on cool-
ing. As shown in Figure 11, Sanitizer significantly improves
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Fig. 10. System energy comparison.

TABLE 11
Raw Retention BER per second. (5% variation on ∆.)

Temp.(C◦) ∆=36 ∆=35 ∆=34 ∆=33
25 7.4×10-7 1.8×10-6 4.6×10-6 1.2×10-5

35 2.2×10-6 5.3×10-6 1.3×10-5 3.2×10-5

45 6.0×10-6 1.4×10-5 3.4×10-5 8.1×10-5

55 1.6×10-5 3.6×10-5 8.4×10-5 2.0×10-4

65 3.8×10-5 8.7×10-5 2.0×10-4 4.5×10-4

75 9.0×10-5 2.0×10-4 4.4×10-4 9.8×10-4

85 2.0×10-4 4.4×10-4 9.5×10-4 2.1×10-3
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Fig. 11. System performance with different BERs.

the performance when the raw BER per second is between
10-5 and 2×10-4 (marked in bold in Table 11). If the raw
BER is less than 10-5, the scrubbing overhead of a baseline
system with a single 64B block is low, and Sanitizer does
not exhibit significant potential. When the raw BER exceeds
2×10-4, both the baseline and the Sanitizer systems require
the ECC codeword to span more than 16 blocks, which adds
significant area and power overheads due to the complex
ECC logic.

6.4.2 Sensitivity to the Capacity
Bandwidth Ratio

The capacity of a memory channel determines the minimum
amount of data that must be scanned during scrubbing.
Figure 12 shows the increase in the memory traffic when
increasing memory capacity per channel from 36 GB to 72
GB. Sanitizer is effective in suppressing the memory traffic
and reducing the number of reads and writes, which results
in average speedups of 1.40× to 1.42× over base-8. Sanitizer
achieves greater performance as the capacity

bandwidth ratio increases.

6.4.3 RST Parameters
An ideal RST should be able to track information on ev-
ery memory region until the region expires. However, this
capability would require a fully associative RST with up
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Fig. 12. Memory traffic of systems with 72GB per channel.
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Fig. 13. Performance impact of RST size and associativity.

to 80K entries, which would consume excessive power.
Figure 13 shows a comparison of set associative RSTs to
an ideal RST for sanitizer-8. The RST size has a larger
impact on performance than the RST associativity does for
the evaluated set of benchmarks. We choose the 4-way, 16K
entry RST because (1) at most four entries can be added into
the RST every epoch; and (2) the performance of a 16K RST
is close to the performance of an ideal RST, as shown in
Figure 13.

6.5 Comparison to Hierarchical ECC
Combined with Prefetching
We would like to analyze whether the performance of
Sanitizer can be matched by a straightforward combination
of existing ideas with simple extension: (1) prefetching, and
(2) hierarchical ECC [6], [7] extended to applied to STT-
MRAM based main memory. Sanitizer anticipates future
memory accesses and scrubs memory regions in advance;
this is analogous to prefetching, in which future memory
accesses are predicted and data are speculatively loaded
into the last level cache. Sanitizer leverages hierarchical
ECC to allow accesses to recently scrubbed memory regions
with low overheads; simple extension of hierarchical ECC
provides faster reads from DRAM cells that have been



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2779151, IEEE
Transactions on Computers

12

0	
  
0.5	
  
1	
  

1.5	
  
2	
  

2.5	
  

ar
t	
  

ch
ole
sk
y	
  

eq
ua
ke
	
  

fft
	
  

oc
ea
n	
  

sw
im
	
  
as
tar
	
  

bz
ip2
	
  

gc
c	
  

go
bm
k	
  

lib
qu
an
tu
m	
   mc

f	
  

om
ne
tp
p	
  

sje
ng
	
  

xa
lan
cb
mk
	
  

de
ali
i	
  

lbm
	
  
mi
lc	
  

na
md
	
  

po
vra
y	
  

so
ple
x	
  

sp
hin
x3
	
  

ge
om
ea
n	
  Pe

rf
or
m
an

ce
	
  

N
or
m
al
iz
ed

	
  to
	
  b
as
e-­‐
4	
  

base-­‐4	
  with	
  hierarchical	
  ECC	
   base-­‐4	
  with	
  hierarchical	
  ECC	
  &	
  prefetcher	
   saniHzer-­‐8	
  with	
  prefetcher	
  

Fig. 14. Comparison to hierarchical ECC and data prefetching.

refreshed recently by remembering the last time the data
were refreshed.

To compare sanitizer with these related work, we eval-
uate the performance of three systems as shown in Fig-
ure 14: (1) a base-4 system with hierarchical ECC that
remembers recently scrubbed memory regions and allows
low-overhead accesses to these regions; (2) a base-4 system
with hierarchical ECC and a prefetcher, which scrubs the
prefetched memory locations; and (3) a sanitizer-8 system
with the same prefetcher. The first system, which relies on
hierarchical ECC, can degrade performance. This is because
adding local ECCs under the fixed storage overhead will
reduce the strength of the global ECC, requiring more
frequent scrubbing to achieve the same reliability target.
We conduct a design space exploration of stream prefetch-
ers with different parameter settings [35], and report the
prefetcher that achieves the highest average speedup. The
prefetched data also is scrubbed and recorded. Using a
prefetcher on top of hierarchical ECC does not achieve
the same benefit as Sanitizer due to two reasons: (1) the
aggressiveness of a prefetcher is restricted by the last level
cache capacity, whereas the predictive scrubs issued by San-
itizer do not require any storage in the last level cache; and
(2) hierarchical ECC and prefetching reduce only the read
overhead, whereas Sanitizer applies write and data layout
optimizations (Section 4.3) to further reduce the bandwidth
overhead. Adding a prefetcher on top of the Sanitizer-8
system outperforms a base-4 system that uses hierarchal
ECC and scrubs the prefetched memory locations by 21%.

6.6 Comparison to DRAM
We compare an STT-MRAM based main memory with
Sanitizer to a DRAM-based system. Sanitizer closes the
performance gap between STT-MRAM and DRAM to 6%
in a four-channel, two-rank-per-channel system. Figure 15
shows a sensitivity study on the number of channels, in
which all of the configurations have two ranks per channel,
and all of the ranks have an 18GB capacity. The performance
gap between Sanitizer and DRAM is more pronounced for
the 1-channel systems than it is for the 4-channel ones.
This is because a scrub operation blocks the entire channel,
whereas a refresh operation blocks only one rank. Despite
the performance penalty, the 4-channel Sanitizer systems
achieve systematic energy reductions as compared to the 4-
channel DRAM system. The energy efficiency is due to three
effects: (1) STT-MRAM cells do not consume leakage energy;
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Fig. 15. Performance and system energy normalized to single-channel
DRAM.

(2) reading an STT-MRAM cell requires less current than
reading a DRAM cell, which translates into a lower activa-
tion energy; and (3) STT-MRAM has a reduced precharge
energy compared to a DRAM since precharging the bitlines
is not required. Sanitizer achieves greater energy reduction
over DRAM as the number of channels is increased. This is
because Sanitizer can save more leakage energy in systems
with higher memory capacity.

7 CONCLUSIONS

Sanitizer is a new error protection mechanism that uses
strong ECCs for an STT-MRAM based memory system. To
amortize the high storage overhead of a strong ECC, San-
itizer applies BCH codes to codewords spanning multiple
memory blocks. The storage overhead is kept comparable
to that of the commonly used SECDED ECC. A hierarchical
ECC structure and novel control mechanism allow for effi-
cient protection against errors. A global ECC is used to peri-
odically scrub the memory, while a majority of the memory
accesses are satisfied by a low-overhead, local ECC. Unlike
conventional memory scrubbing mechanisms, Sanitizer em-
ploys a novel prediction mechanism to remove errors from
memory blocks prior to reads and writes. This enables fast
and low-energy accesses to clean memory locations. When
compared to a conventional scrubbing mechanism, the re-
sult is a 1.22× improvement in overall system performance,
and a 22% reduction in system energy. As technology moves
from DRAM to non-volatile memories such as STT-MRAM,
where random errors become more critical, Sanitizer will
play a key role in mitigating the impact of expensive ECC
checks.
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