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Abstract— In this paper, we propose a multiprocessor DSP 
simulation toolkit suitable for performance evaluation of data-
parallel applications like voice processing. The proposed toolkit 
uses the benefits of multi-level parallelism and clustering. 
Different DSP clusters are considered for the multiprocessor DSP 
simulation engine in which the DSP processors are grouped to 
cooperate. Satisfying the communication requirements, two 
global and local communication engines (GCE and LCE) 
implement the real behavior of intra- and inter-cluster 
communications. Using efficient abstraction levels for 
interconnections reduces the simulation time significantly. 
Abstract communication modeling, cycle-accurate behavior, and 
multi-level controlling are the most important features of the 
proposed simulation platform. Performance of the simulator is 
verified by standard single- and multi-channel voice processing 
applications such as ITU-T G.729a speech codec. 
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I. INTRODUCTION

Architecture designers tend towards harnessing many 
processing cores instead of increasing the chip frequency to 
achieve higher performances. For example, in 2004 Intel 
announced it is moving its PC processor development towards 
multiprocessor solutions and away from a sole focus on 
increasing chip frequency. Also, in the field of digital signal 
processing, multiprocessor DSP architectures become 
compelling solutions for high-performance applications such as 
packet telephony, 3G wireless infrastructure, and WiMAX  [1]. 
Therefore, the designers proposed many multiprocessor DSP 
systems  [2]- [8]. 

High quality voice communications is achieved by using an 
IP network that have low delay, low jitter, low packet loss, and 
high reliability even during congestion conditions  [9]. Voice 
processing applications such as speech codecs and echo 
cancellation are major domain in which highest computational 
power is a dominant requirement. Multiprocessor DSP systems 
are the most efficient source of computation for such systems. 
Industry vendors such as Texas Instruments, Zarlink, 
MindSpeed, Cradle, and Freescale have released 
multiprocessor DSP solutions for voice applications  [10]- [14]. 

Like single core architectures, multiprocessor systems 
require suitable and reliable tools and environments in all 
levels of system design and verification. This way, simulation 

environments are recommended by the designers to address the 
real design issues. In the literature, there are many 
multiprocessor simulators with performance modeling and 
simulation techniques ranged from several parallel computers 
down to chip multiprocessors. Each of them particularly 
targeted with their existed architectural issues. Existing 
simulation environments are like that SimpleScalar  [15], 
SimOS  [16], SimICS  [17], RSIM  [18], and ML-RSIM  [19]. 
Realizing the performance, accuracy, and limitations of 
simulators are critical issues during selecting a tool to be 
employed for desired research questions. Especially in the 
domain of multiprocessor systems for digital signal processing 
applications there are only few existing simulators that are 
restricted to the underlying architecture. An instance of such 
simulators is software developed for Daytona multiprocessor 
architecture  [20]. These software tools are specially developed 
for a specific architecture; hence, they cannot consider all 
required aspects of simulation and design. Therefore, a 
generalized simulation platform which targets the special DSP 
application still remains as a necessary tool for researchers.  

This paper proposes a multiprocessor DSP simulation 
toolkit for evaluating performance of different data-parallel 
applications. Rest of the paper is organized as follows. In 
Section II, the simulation toolkit including all implemented 
components, application mapping and scheduling will be 
described. Experimental results and conclusion are presented in 
Section III and IV, respectively. 

II. SIMULATION TOOLKIT

Simulation of a high-performance voice processing 
application requires a platform which supports multiple 
autonomous and powerful processing engines and also requires 
specific communication engines for efficient program and data 
transfer. Addressing these issues, this paper proposes MDST as 
a multiprocessor DSP simulation toolkit for voice processing 
applications. Overall block diagram of MDST system consists 
of the blocks shown in Fig.1. In addition to the multiprocessor 
DSP model, following units are defined and implemented: User 
Interface Unit (UIU), Application Mapping and Task 
Scheduling Unit (AMTSU) and Statistical Reporting and 
Monitoring Unit (SRMU).  
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Figure 1. MDST: Multiprocessor Simulation Toolkit 

A. Multiprocessor DSP Model 
Inside MDST a multiprocessor DSP model plays an 

important role for simulating the real behavior of processing 
environment. The system consists of several parts: memory 
modules (global and local), communication engines (global and 
local), DSP cores and interfaces. The proposed system provides 
a multi-cluster environment in which every cluster is composed 
of a multiple autonomous DSP cores. Communication engines 
are responsible for all kinds of global and local transfers 
between memory and processing modules. Each 
communication engine consists of: abstract model of 
interconnection, controller, and interfaces. The proposed 
model supports two levels of communications: global and 
local. From the viewpoint of DSP clusters, global and local 
communication engines handle the inter- and intra-cluster 
traffics, respectively. 

Fig. 2 demonstrates the overall block diagram of the 
multiprocessor DSP simulation model. At the center of the 
model, global communication engine (GCE) performs the 
inter-cluster traffics (program, data, and control transfers) 
between global memory, protocol processor, I/O system and 
DSP clusters through special interfaces. The system consists of 
two types of interfaces: protocol processor and I/O subsystem. 
Protocol processor interface is a starting point for generating all 
the controlling signals which must be applied to other parts of 
the platform, according to application behaviors. 

The memory interface (PI and DI) provides different kinds 
of program and data transfers between memory and other 
requesting/granted components such as DSP clusters. Each 
cluster is communicated with the global system through three 
program (PI), data (DI) and control (CI) interfaces. In order to 
have a suited top-level controlling, a global controller (GC) is 
proposed managing inter-cluster transfers. From the application 
perspective, all DSP-dependent parts of the user application 
(program/data transfers and computation tasks) are directly 
controlled by the GC module. GC handles two kinds of 
transfers: top-down (program/data read) and bottom-up (data 
write). 

1) DSP Core Simulation Model 
In order to setup a multiprocessor DSP modeling 

environment, a DSP core model is needed as a cycle-accurate 
computational model. The core model in  [27] is a cycle-
accurate VLIW DSP model employing a specific pipeline 
modeling technique called reverse execution. It has been 

verified by the Texas Instruments C62xx  [21] processor 
architecture. We develop the simulator using C++ 
programming language. For bit-accurate implementation of 
signal processing operations, we design and implement a DSP-
specific data type, called DSPDT. The simulator handles 
pipeline resources (memories and register files) during 
concurrent accesses by an updating method. 

The simulator consists of several numbers of classes 
familiar to the hardware modeling concepts. The hierarchical 
design for classes makes the coding and implementation of the 
simulator easier and less complicated. Each block of a pipeline 
stage is considered as an independent class with its own 
methods and attributes.  

Fig. 3 shows the DSP core pipeline stages regarding the 
data flow. Each block shown in this figure is an object 
instanced from a corresponding C++ class. While each class is 
model of a sub-module of DSP core. Blocks in each stage, only 
use outputs coming from the predecessor stage in order to 
generate the output values. 

For the DSP core, four major functions are considered 
during each round of the simulation loop. 
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Figure 2. Multiprocessor DSP model 
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Figure 3. Pipeline stages of the DSP core model 
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1) Provide back up of the controlling and state signals 
which are use by the blocks. This is necessary to 
preserve them for using as inputs to every desired 
block. 

2) Call run function of all blocks in reverse order of the 
pipeline data flow. Reverse order must be considered 
to preserve output of stages until they are used by the 
successors. 

3) Synchronize all data with global clock and capture in 
the sequential parts. This step is considered as 
register/memory updating, as well. 

4) Provide execution statistics and internal state reports. 

Each DSP core in a cluster environment follows some 
specific operations. The DSP core state machine depends to the 
core pipeline and cluster controlling modes. Fig. 4 shows 
required finite state machine (FSM) for controlling each DSP 
core. The FSM follows a cycle-accurate procedure of signal 
management and each transition takes place after several delay 
elements (simulation cycles). 

Before the core simulation started, at the start stage, the 
DSP core is initiated by the applied configuration parameters. 
The configurations are applied from cluster controller and 
mainly affect the core simulation. The parameters have no 
changes on the pipeline stages and core architecture. After core 
configuration, four independent procedures may be happened 
during the core operation: program read (pr), data read (dr), 
data write (dw), and core process (cp). These operations 
construct 4-bit transition signal in this order: (pr-dr-dw-cp). 
From the simulation rules, for each DSP core model: 

� The program and data transfers (read or writes) could 
not be occurred concurrently. 

� Data transfer only happens once at time (read or write). 

� There is no overlapping between core processing and 
program/data transfer in a single core. 

According to the mentioned rules, there are several 
undefined states which are not shown at the Fig. 5 FSM is 
changed from one state to another according to the defined 4-
bit input. For example, being in the core process state, input 
value 0100 (i.e. pr(0), dr(1), dw(0), cp(0))direct the FSM to 
data read state. When none of four mentioned operations are 
performed, the FSM finishes the processing. 

Figure 4. FSM for Controlling a DSP core 

2) DSP Cluster 
A DSP cluster is composed of DSP cores, cluster memory 

(L2) and local communication engine (LCE). LCE connects 
DSP cores to the cluster memory module through a cluster 
interconnect model and cluster controller. Fig. 5 shows block 
diagram of the DSP cluster model beside the system 
components.  

The model consists of three different communication 
interfaces which are specified for each DSP core, as follows: 

� Control Interface (CI): Manages the transfer of 
controlling signals between DSP cores and the cluster 
controller. 

� Data Interface (DI): Is used for DSP cores to handle 
their local read/write operations from/to L2 memory 
(cluster memory).  

� Program Interface (PI): Each DSP core used this 
interface for handling the program read operations 
from L2 memory. 

In general, LCE performs the following transfer operations: 

� Intra-cluster read/write transfers between cluster 
memory and DSP cores, 

� Inter-cluster memory transfers between global and 
cluster memories using the cluster controller. 

According to the controlling mechanism inside each DSP 
core, the cluster controller manages all cluster communications 
regarding the FSM shown in Fig. 6. 

Figure 5. DSP cluster model 

program transfer

start finish

data transfer

program/data 
transfer hold

Figure 6. FSM of the cluster controller. 
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As depicted in this figure, the following states are defined 
for cluster controller (CC): 

� Start: This is an initialization state for preparing the 
simulation environment affected by two kinds of 
configuration parameters: application-oriented and 
user-defined. Application parameters are extracted 
from application and applied to the system 
components. Such configuration is applied to both 
GCE controller and memory unit. GCE controller’s 
configuration hierarchically affects low-level 
components such as clusters and LCE controllers. 
Another type of configuration is user defined and 
applied to several components such as DSP clusters, 
LCE controller.  

� Program transfer: CC goes to program transfer state 
when program requests arrive. If the program code 
exists in L2 memory, CC coerces the L2 controller to 
the control the requested transfer. Otherwise, the CC 
provides an inter-cluster transfer from global memory 
to the desired DSP cluster. While completing the 
program transfer for a block code, other program 
requests await in the pending state (in separated 
queues). Both program and data transfers are allowed 
in the same simulation cycle. 

� Data transfer: In contrast to the program, data transfer 
occurs in two directions: from DSP to global memory 
(write) and from global memory to DSP cores (read). 
Only one transfer occurs in a simulation cycle because 
of limitation in data addressing and transfer 
controlling. 

� Program/data transfer: For simultaneous transfers of 
data and program code, the controller is transited to 
this state when both data and program transfer requests 
are arrived from the cluster. When each of the program 
or data transfers is completed, the controller leaves this 
state to the single transfer states: program or data 
transfer. 

� Hold: This state is reached if the controller becomes 
idle while no request from DSP cores is delivered. In 
this state, CC manages non-transfer controlling tasks 
for DSP cluster. Also, in the case of any request, the 
controller transits to the proper transfer states. 

� Finish: The controller reaches this state at the end of 
simulation time or when the GC indicates the 
termination for the cluster. 

When the program is transferred from global memory to the 
DSP cores, the broadcasting and multicasting capabilities are 
applicable. By checking the current pending requests, the 
cluster controller sends program to requesting DSP core and all 
other requesting cores with the same requests. Such capabilities 
significantly reduce the response time for multiple-transfer 
when there are equivalent requests in the pending states. 

B. User Interface Unit (UIU) 

User of MDST is provided by several simple simulation 
facilities. Configuring the simulation environment and also 

providing initializations for the system is performed using the 
user interface. The MDST user communicates with the 
simulation core using input (instruction for simulation) and 
output (information from simulation) interfaces provided by a 
GUI program. The unit is also interfaced with the 
multiprocessor DSP simulation model for basic configurations. 
At the end of simulation, the collected statistical simulation 
information is provided by SRMU. 

C. Application Mapping and Task Scheduling unit (AMTSU)

In order to handle the application mapping and task 
scheduling issues, the MDST system employs a data parallel 
programming model to support efficient implementation of 
data-parallel algorithms.  

1) Application Mapping 

Fig. 7 shows structure of a telecommunication application 
mapping in the proposed simulation model. According to this 
figure, a telecommunication application covers both DSP- and 
protocol-oriented parts. For example, packetization and 
depacketization in voice over IP applications had better to be 
handled by a powerful RISC processor. According to the nature 
of data-parallel programming model, the environment needs to 
be provided by specific controlling mechanisms. 

The proposed procedure maps non-protocol-related tasks to 
the MDST model in the proposed platform. The proposed 
mapping strategy, shown in Fig. 7, demonstrates how to map 
the tasks to the related implementation modules. DSP-related 
tasks are divided to two major parts: computation and 
communication. The computation part is indirectly mapped to 
the DSP cores. On the other hand, communication tasks are 
directly mapped to the communication engines (GCE and 
LCE). These two parts are not completely separated because 
they are handled concurrently during the MDST operation 
steps. Distinction between computation and communication 
decrease the complexity of the application mapping in the 
programming model. As mentioned in the figure, the MDST 
model is also concerns about the DSP-related tasks and only 
interface with the protocol-related part via specific interface 
module. 

2) Task Scheduling  

Scheduling the DSP part of the telecommunication 
application, as a first solution, thread-level or task-level 
partitioning are proper volunteers selecting most efficient 
parallelizable block codes of the application and assign them to 
the functional units for software-execution. For applications 
which are not inherently parallelizable, this approach injects 
task-level dependencies in terms of execution and data.  

Figure 7. Mapping telecommunication application to the MDST 
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Execution dependencies increase latencies (a pipeline 
structure) while data dependencies increase implementation 
overheads such as capabilities for shared-memory coherence 
and consistency. Also, task-dependencies make completion of 
total program execution dependent on the completion of all the 
tasks mapped to the functional units. 

For data-parallel applications, such as voice processing, 
where multiple independent flows (channels) of data are 
concurrently processed, the alternative solution is data-level 
partitioning. In this approach, in contrast to the former one, 
each channel-processor (DSP core) is executing the whole 
program code image for a particular data channel. Therefore, 
each DSP core completes its own execution of program code 
independent of other cores. The data-level partitioning is a 
fundamental concept proven in the simulation model. Error! 
Reference source not found.Fig. 8 shows sample data-parallel 
scheduling and code distribution for a cluster with 4 DSP 
cores. 

According to the DSP core characteristics, addressing range 
and cache sizes, a program code is partitioned into several 
block codes (BC). There is only one real copy of the code in 
the main memory, but each DSP core is virtually scanning the 
whole program code in the terms of blocks to complete the 
code execution. Data-dependencies in an execution of a code 
cause changing the executing BC in each DSP core. As shown 
in this figure, since each DSP core requests for the next 
required BC, it is not needed for each DSP core to keep the 
whole code in the local memory. Therefore, in a simulation 
cycle, each DSP core executes its related BC. If more than one 
DSP cores request for the same BC, and when a program code 
is read, the corresponding BC will be broadcasted to the 
requesting units. This broadcasting feature in program 
distribution is significantly degraded the rate of redundant BC 
transfers in the communication engines. 

III. EXPERIMENTS

Coding of speech signals is a necessary requirement in 
mobile communication networks, IP telephony systems, and 
VoIP applications. Several different coding and decoding 
algorithms have been developed and standardized. The most 
common speech codecs used are the ITU-T G.723.1, G.728, 
and G.729 for VoIP applications, and GSM Full- Rate (FR), 
Half-Rate (HR), and Enhanced Full-Rate (EFR) for mobile 
communications. Speech coding algorithms are usually 
computationally intensive and need a significant amount of 
signal processing power. Conventionally, either special-
purpose DSP processors with codec-customized architectures 
have been designed to perform the speech signal processing 
tasks  [22] or general-purpose DSP processors with highly 
optimized codec software  [23]- [26] have been suggested.  

This work chooses the second solution by experiencing the 
effects of computational power growth through the 
multiprocessor DSP platform. In order to experience the 
maximum processing power by a single DSP core  [27], we 
demonstrate the G.729a execution results in  TABLE I.  

Figure 8. Sample data-parallel scheduling for a cluster with 4 DSP core. 

TABLE I. ACHIEVED PERFORMANCES FOR G.729A SPEECH CODEC ON 
SINGLE-CORE DSP MODEL

Measure Instruction Count Simulation Cycles 
Encoder 213526 81565 
Decoder 905411 34823 

The obtained results show that a single DSP core model 
supports up to 10 real-time voice channels while theoretically 
the architecture should be able to process more real-time voice 
channels  [27]. This limitation has been imposed for the sake of 
inefficiency of the application code, many frequent memory 
accesses and context-switching overheads during multichannel 
operations.  

According to achieved single-core DSP results, and also 
extreme achieved performance for single-core DSP systems 
with highly-optimized program code for speech codec 
applications  [23]- [26], there is needed more parallelism by 
increasing the number of computational units (DSP cores). 
 TABLE II. and  TABLE III. show achieved performances by 
MDST for different number of DSP cores in single- and 
multiple-channel conditions. We remember that the DSP core 
model is compatible to  [21] and considered to be operable in 
the real implementation working at 200 MHz with maximum 
performance of 1600 MIPS. 

According to the obtained results, during G.729 speech 
coding on the MDST, 22% and 71% of the maximum available 
processing performance is consumed for DSP related tasks in 
single- and multiple-channel modes, respectively. Employing 
multichannel speech coding results in more efficiency and 
harnessing more processing power. Single-core simulation 
supports up to 10 voice channels while multi-core DSP degrade 
the performance of each DSP core down to 8 voice channels. 
This performance degradation is because of communication 
overheads in each DSP cluster and also waiting delays for 
program/data transfers. 

TABLE II. MULTIPROCESSOR DSP PERFORMANCES VIA DIFFERENT 
NUMBER OF CORES AND CLUSTERS FOR SINGLE-CHANNEL G.729A CODEC

No. of DSP 
clusters 

DSP cores 
per cluster 

Maximum 
performance 

(MIPS) 

Achieved 
Performance 

(MIPS) 
1 2 3200 709 
1 4 6400 1236 
2 2 6400 1385 
2 4 12800 2736 
3 2 9600 2152 
3 4 19200 3976 
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TABLE III. MULTIPROCESSOR DSP PERFORMANCES VIA DIFFERENT 
NUMBER OF CORES AND CLUSTERS FOR MULTIPLE-CHANNEL G.729A CODEC

No. of 
DSP 

clusters  

DSP 
cores per 

cluster 

No. of voice 
channels for 

each DSP  

Maximum 
performance 

(MIPS) 

Achieved 
Performance 

(MIPS) 
1 2 2 3200 437 
1 2 4 3200 1330 
1 2 8 3200 2163 
1 2 16 3200 6126 
1 4 2 6400 825 
1 4 4 6400 1807 
1 4 8 6400 6422 
1 4 16 6400 10392 
2 2 2 6400 922 
2 2 4 6400 2819 
2 2 8 6400 4573 
2 2 16 6400 12986 
2 4 2 12800 1737 
2 4 4 12800 3804 
2 4 8 12800 8949 
2 4 16 12800 21876 

IV. CONCLUSION

A multiprocessor DSP simulation toolkit for efficient 
performance evaluation of data-parallel applications, especially 
voice processing, has been presented. The proposed toolkit 
uses the benefits of multi-level parallelism and clustering of the 
DSP cores. Different clusters are considered for the 
multiprocessor DSP simulation engine in which the DSP 
processors are grouped to cooperate together. In order to meet 
the communication requirements, two proper global and local 
communication engines (GCE and LCE) implement the real 
behavior of intra- and inter-cluster communications. 
Employing various levels of abstraction for interconnections 
reduces the simulation time significantly. Abstract 
communication modeling, cycle-accurate behavior, and multi-
level controlling are the most important features of the 
proposed simulation platform. Performance of the simulator 
has been verified by the standard voice processing applications 
such as ITU-T G.729a speech codecs. Simulation results 
indicate that for single- and multiple-channel voice processing 
in G.729a speech codec, 22% and 71% of the DSP 
performance is consumed for computation goals, respectively. 
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