
MDST: Multiprocessor DSP Simulation Toolkit for
Voice Processing Applications

Naser Sedaghati-Mokhtari, Mahdi Nazm Bojnordi, and Sied Mehdi Fakhraie
Silicon Intelligence and VLSI Signal Processing Laboratory,

School of ECE, University of Tehran, Tehran 14395-515, Iran
{n.sedaghati,m.bojnordi}@ece.ut.ac.ir, fakhraie@ut.ac.ir

Abstract— In this paper, we propose a multiprocessor DSP
simulation toolkit suitable for performance evaluation of data-
parallel applications like voice processing. The proposed toolkit
uses the benefits of multi-level parallelism and clustering.
Different DSP clusters are considered for the multiprocessor DSP
simulation engine in which the DSP processors are grouped to
cooperate. Satisfying the communication requirements, two
global and local communication engines (GCE and LCE)
implement the real behavior of intra- and inter-cluster
communications. Using efficient abstraction levels for
interconnections reduces the simulation time significantly.
Abstract communication modeling, cycle-accurate behavior, and
multi-level controlling are the most important features of the
proposed simulation platform. Performance of the simulator is
verified by standard single- and multi-channel voice processing
applications such as ITU-T G.729a speech codec.

Keywords- MDST, Multiprocessor DSP Simulation toolkit,
Voice processing applications

I. INTRODUCTION

Architecture designers tend towards harnessing many
processing cores instead of increasing the chip frequency to
achieve higher performances. For example, in 2004 Intel
announced it is moving its PC processor development towards
multiprocessor solutions and away from a sole focus on
increasing chip frequency. Also, in the field of digital signal
processing, multiprocessor DSP architectures become
compelling solutions for high-performance applications such as
packet telephony, 3G wireless infrastructure, and WiMAX [1].
Therefore, the designers proposed many multiprocessor DSP
systems [2]- [8].

High quality voice communications is achieved by using an
IP network that have low delay, low jitter, low packet loss, and
high reliability even during congestion conditions [9]. Voice
processing applications such as speech codecs and echo
cancellation are major domain in which highest computational
power is a dominant requirement. Multiprocessor DSP systems
are the most efficient source of computation for such systems.
Industry vendors such as Texas Instruments, Zarlink,
MindSpeed, Cradle, and Freescale have released
multiprocessor DSP solutions for voice applications [10]- [14].

Like single core architectures, multiprocessor systems
require suitable and reliable tools and environments in all
levels of system design and verification. This way, simulation

environments are recommended by the designers to address the
real design issues. In the literature, there are many
multiprocessor simulators with performance modeling and
simulation techniques ranged from several parallel computers
down to chip multiprocessors. Each of them particularly
targeted with their existed architectural issues. Existing
simulation environments are like that SimpleScalar [15],
SimOS [16], SimICS [17], RSIM [18], and ML-RSIM [19].
Realizing the performance, accuracy, and limitations of
simulators are critical issues during selecting a tool to be
employed for desired research questions. Especially in the
domain of multiprocessor systems for digital signal processing
applications there are only few existing simulators that are
restricted to the underlying architecture. An instance of such
simulators is software developed for Daytona multiprocessor
architecture [20]. These software tools are specially developed
for a specific architecture; hence, they cannot consider all
required aspects of simulation and design. Therefore, a
generalized simulation platform which targets the special DSP
application still remains as a necessary tool for researchers.

This paper proposes a multiprocessor DSP simulation
toolkit for evaluating performance of different data-parallel
applications. Rest of the paper is organized as follows. In
Section II, the simulation toolkit including all implemented
components, application mapping and scheduling will be
described. Experimental results and conclusion are presented in
Section III and IV, respectively.

II. SIMULATION TOOLKIT

Simulation of a high-performance voice processing
application requires a platform which supports multiple
autonomous and powerful processing engines and also requires
specific communication engines for efficient program and data
transfer. Addressing these issues, this paper proposes MDST as
a multiprocessor DSP simulation toolkit for voice processing
applications. Overall block diagram of MDST system consists
of the blocks shown in Fig.1. In addition to the multiprocessor
DSP model, following units are defined and implemented: User
Interface Unit (UIU), Application Mapping and Task
Scheduling Unit (AMTSU) and Statistical Reporting and
Monitoring Unit (SRMU).

173

Figure 1. MDST: Multiprocessor Simulation Toolkit

A. Multiprocessor DSP Model
Inside MDST a multiprocessor DSP model plays an

important role for simulating the real behavior of processing
environment. The system consists of several parts: memory
modules (global and local), communication engines (global and
local), DSP cores and interfaces. The proposed system provides
a multi-cluster environment in which every cluster is composed
of a multiple autonomous DSP cores. Communication engines
are responsible for all kinds of global and local transfers
between memory and processing modules. Each
communication engine consists of: abstract model of
interconnection, controller, and interfaces. The proposed
model supports two levels of communications: global and
local. From the viewpoint of DSP clusters, global and local
communication engines handle the inter- and intra-cluster
traffics, respectively.

Fig. 2 demonstrates the overall block diagram of the
multiprocessor DSP simulation model. At the center of the
model, global communication engine (GCE) performs the
inter-cluster traffics (program, data, and control transfers)
between global memory, protocol processor, I/O system and
DSP clusters through special interfaces. The system consists of
two types of interfaces: protocol processor and I/O subsystem.
Protocol processor interface is a starting point for generating all
the controlling signals which must be applied to other parts of
the platform, according to application behaviors.

The memory interface (PI and DI) provides different kinds
of program and data transfers between memory and other
requesting/granted components such as DSP clusters. Each
cluster is communicated with the global system through three
program (PI), data (DI) and control (CI) interfaces. In order to
have a suited top-level controlling, a global controller (GC) is
proposed managing inter-cluster transfers. From the application
perspective, all DSP-dependent parts of the user application
(program/data transfers and computation tasks) are directly
controlled by the GC module. GC handles two kinds of
transfers: top-down (program/data read) and bottom-up (data
write).

1) DSP Core Simulation Model
In order to setup a multiprocessor DSP modeling

environment, a DSP core model is needed as a cycle-accurate
computational model. The core model in [27] is a cycle-
accurate VLIW DSP model employing a specific pipeline
modeling technique called reverse execution. It has been

verified by the Texas Instruments C62xx [21] processor
architecture. We develop the simulator using C++
programming language. For bit-accurate implementation of
signal processing operations, we design and implement a DSP-
specific data type, called DSPDT. The simulator handles
pipeline resources (memories and register files) during
concurrent accesses by an updating method.

The simulator consists of several numbers of classes
familiar to the hardware modeling concepts. The hierarchical
design for classes makes the coding and implementation of the
simulator easier and less complicated. Each block of a pipeline
stage is considered as an independent class with its own
methods and attributes.

Fig. 3 shows the DSP core pipeline stages regarding the
data flow. Each block shown in this figure is an object
instanced from a corresponding C++ class. While each class is
model of a sub-module of DSP core. Blocks in each stage, only
use outputs coming from the predecessor stage in order to
generate the output values.

For the DSP core, four major functions are considered
during each round of the simulation loop.

Global Memory

LCE

DSP0 DSPn-1

DSP
Cluster

L2
Memory

LCE

DSP0 DSPn-1

DSP
Cluster

L2
Memory

Protocol Processor InterfaceGlobal I/O Interface

CIDI
GCE

PI

PIDICIPIDICI

Figure 2. Multiprocessor DSP model

Fe
tc

hP
G

Fe
tc

hP
S

Fe
tc

hP
W

Fe
tc

hP
R

Di
sp

at
ch

D
PA

_D
ec

od
e

D
PB

_D
ec

od
e

D
PA

_E
xe

cu
te

1
D

PB
_E

xe
cu

te
1

D
PA

_E
xe

cu
te

2
D

PB
_E

xe
cu

te
2

D
PA

_E
xe

cu
te

3
D

PB
_E

xe
cu

te
3

Ex
ec

ut
e4

Ex
ec

ut
e5

Figure 3. Pipeline stages of the DSP core model

174

1) Provide back up of the controlling and state signals
which are use by the blocks. This is necessary to
preserve them for using as inputs to every desired
block.

2) Call run function of all blocks in reverse order of the
pipeline data flow. Reverse order must be considered
to preserve output of stages until they are used by the
successors.

3) Synchronize all data with global clock and capture in
the sequential parts. This step is considered as
register/memory updating, as well.

4) Provide execution statistics and internal state reports.

Each DSP core in a cluster environment follows some
specific operations. The DSP core state machine depends to the
core pipeline and cluster controlling modes. Fig. 4 shows
required finite state machine (FSM) for controlling each DSP
core. The FSM follows a cycle-accurate procedure of signal
management and each transition takes place after several delay
elements (simulation cycles).

Before the core simulation started, at the start stage, the
DSP core is initiated by the applied configuration parameters.
The configurations are applied from cluster controller and
mainly affect the core simulation. The parameters have no
changes on the pipeline stages and core architecture. After core
configuration, four independent procedures may be happened
during the core operation: program read (pr), data read (dr),
data write (dw), and core process (cp). These operations
construct 4-bit transition signal in this order: (pr-dr-dw-cp).
From the simulation rules, for each DSP core model:

� The program and data transfers (read or writes) could
not be occurred concurrently.

� Data transfer only happens once at time (read or write).

� There is no overlapping between core processing and
program/data transfer in a single core.

According to the mentioned rules, there are several
undefined states which are not shown at the Fig. 5 FSM is
changed from one state to another according to the defined 4-
bit input. For example, being in the core process state, input
value 0100 (i.e. pr(0), dr(1), dw(0), cp(0))direct the FSM to
data read state. When none of four mentioned operations are
performed, the FSM finishes the processing.

Figure 4. FSM for Controlling a DSP core

2) DSP Cluster
A DSP cluster is composed of DSP cores, cluster memory

(L2) and local communication engine (LCE). LCE connects
DSP cores to the cluster memory module through a cluster
interconnect model and cluster controller. Fig. 5 shows block
diagram of the DSP cluster model beside the system
components.

The model consists of three different communication
interfaces which are specified for each DSP core, as follows:

� Control Interface (CI): Manages the transfer of
controlling signals between DSP cores and the cluster
controller.

� Data Interface (DI): Is used for DSP cores to handle
their local read/write operations from/to L2 memory
(cluster memory).

� Program Interface (PI): Each DSP core used this
interface for handling the program read operations
from L2 memory.

In general, LCE performs the following transfer operations:

� Intra-cluster read/write transfers between cluster
memory and DSP cores,

� Inter-cluster memory transfers between global and
cluster memories using the cluster controller.

According to the controlling mechanism inside each DSP
core, the cluster controller manages all cluster communications
regarding the FSM shown in Fig. 6.

Figure 5. DSP cluster model

program transfer

start finish

data transfer

program/data
transfer hold

Figure 6. FSM of the cluster controller.

175

As depicted in this figure, the following states are defined
for cluster controller (CC):

� Start: This is an initialization state for preparing the
simulation environment affected by two kinds of
configuration parameters: application-oriented and
user-defined. Application parameters are extracted
from application and applied to the system
components. Such configuration is applied to both
GCE controller and memory unit. GCE controller’s
configuration hierarchically affects low-level
components such as clusters and LCE controllers.
Another type of configuration is user defined and
applied to several components such as DSP clusters,
LCE controller.

� Program transfer: CC goes to program transfer state
when program requests arrive. If the program code
exists in L2 memory, CC coerces the L2 controller to
the control the requested transfer. Otherwise, the CC
provides an inter-cluster transfer from global memory
to the desired DSP cluster. While completing the
program transfer for a block code, other program
requests await in the pending state (in separated
queues). Both program and data transfers are allowed
in the same simulation cycle.

� Data transfer: In contrast to the program, data transfer
occurs in two directions: from DSP to global memory
(write) and from global memory to DSP cores (read).
Only one transfer occurs in a simulation cycle because
of limitation in data addressing and transfer
controlling.

� Program/data transfer: For simultaneous transfers of
data and program code, the controller is transited to
this state when both data and program transfer requests
are arrived from the cluster. When each of the program
or data transfers is completed, the controller leaves this
state to the single transfer states: program or data
transfer.

� Hold: This state is reached if the controller becomes
idle while no request from DSP cores is delivered. In
this state, CC manages non-transfer controlling tasks
for DSP cluster. Also, in the case of any request, the
controller transits to the proper transfer states.

� Finish: The controller reaches this state at the end of
simulation time or when the GC indicates the
termination for the cluster.

When the program is transferred from global memory to the
DSP cores, the broadcasting and multicasting capabilities are
applicable. By checking the current pending requests, the
cluster controller sends program to requesting DSP core and all
other requesting cores with the same requests. Such capabilities
significantly reduce the response time for multiple-transfer
when there are equivalent requests in the pending states.

B. User Interface Unit (UIU)

User of MDST is provided by several simple simulation
facilities. Configuring the simulation environment and also

providing initializations for the system is performed using the
user interface. The MDST user communicates with the
simulation core using input (instruction for simulation) and
output (information from simulation) interfaces provided by a
GUI program. The unit is also interfaced with the
multiprocessor DSP simulation model for basic configurations.
At the end of simulation, the collected statistical simulation
information is provided by SRMU.

C. Application Mapping and Task Scheduling unit (AMTSU)

In order to handle the application mapping and task
scheduling issues, the MDST system employs a data parallel
programming model to support efficient implementation of
data-parallel algorithms.

1) Application Mapping

Fig. 7 shows structure of a telecommunication application
mapping in the proposed simulation model. According to this
figure, a telecommunication application covers both DSP- and
protocol-oriented parts. For example, packetization and
depacketization in voice over IP applications had better to be
handled by a powerful RISC processor. According to the nature
of data-parallel programming model, the environment needs to
be provided by specific controlling mechanisms.

The proposed procedure maps non-protocol-related tasks to
the MDST model in the proposed platform. The proposed
mapping strategy, shown in Fig. 7, demonstrates how to map
the tasks to the related implementation modules. DSP-related
tasks are divided to two major parts: computation and
communication. The computation part is indirectly mapped to
the DSP cores. On the other hand, communication tasks are
directly mapped to the communication engines (GCE and
LCE). These two parts are not completely separated because
they are handled concurrently during the MDST operation
steps. Distinction between computation and communication
decrease the complexity of the application mapping in the
programming model. As mentioned in the figure, the MDST
model is also concerns about the DSP-related tasks and only
interface with the protocol-related part via specific interface
module.

2) Task Scheduling

Scheduling the DSP part of the telecommunication
application, as a first solution, thread-level or task-level
partitioning are proper volunteers selecting most efficient
parallelizable block codes of the application and assign them to
the functional units for software-execution. For applications
which are not inherently parallelizable, this approach injects
task-level dependencies in terms of execution and data.

Figure 7. Mapping telecommunication application to the MDST

176

Execution dependencies increase latencies (a pipeline
structure) while data dependencies increase implementation
overheads such as capabilities for shared-memory coherence
and consistency. Also, task-dependencies make completion of
total program execution dependent on the completion of all the
tasks mapped to the functional units.

For data-parallel applications, such as voice processing,
where multiple independent flows (channels) of data are
concurrently processed, the alternative solution is data-level
partitioning. In this approach, in contrast to the former one,
each channel-processor (DSP core) is executing the whole
program code image for a particular data channel. Therefore,
each DSP core completes its own execution of program code
independent of other cores. The data-level partitioning is a
fundamental concept proven in the simulation model. Error!
Reference source not found.Fig. 8 shows sample data-parallel
scheduling and code distribution for a cluster with 4 DSP
cores.

According to the DSP core characteristics, addressing range
and cache sizes, a program code is partitioned into several
block codes (BC). There is only one real copy of the code in
the main memory, but each DSP core is virtually scanning the
whole program code in the terms of blocks to complete the
code execution. Data-dependencies in an execution of a code
cause changing the executing BC in each DSP core. As shown
in this figure, since each DSP core requests for the next
required BC, it is not needed for each DSP core to keep the
whole code in the local memory. Therefore, in a simulation
cycle, each DSP core executes its related BC. If more than one
DSP cores request for the same BC, and when a program code
is read, the corresponding BC will be broadcasted to the
requesting units. This broadcasting feature in program
distribution is significantly degraded the rate of redundant BC
transfers in the communication engines.

III. EXPERIMENTS

Coding of speech signals is a necessary requirement in
mobile communication networks, IP telephony systems, and
VoIP applications. Several different coding and decoding
algorithms have been developed and standardized. The most
common speech codecs used are the ITU-T G.723.1, G.728,
and G.729 for VoIP applications, and GSM Full- Rate (FR),
Half-Rate (HR), and Enhanced Full-Rate (EFR) for mobile
communications. Speech coding algorithms are usually
computationally intensive and need a significant amount of
signal processing power. Conventionally, either special-
purpose DSP processors with codec-customized architectures
have been designed to perform the speech signal processing
tasks [22] or general-purpose DSP processors with highly
optimized codec software [23]- [26] have been suggested.

This work chooses the second solution by experiencing the
effects of computational power growth through the
multiprocessor DSP platform. In order to experience the
maximum processing power by a single DSP core [27], we
demonstrate the G.729a execution results in TABLE I.

Figure 8. Sample data-parallel scheduling for a cluster with 4 DSP core.

TABLE I. ACHIEVED PERFORMANCES FOR G.729A SPEECH CODEC ON
SINGLE-CORE DSP MODEL

Measure Instruction Count Simulation Cycles
Encoder 213526 81565
Decoder 905411 34823

The obtained results show that a single DSP core model
supports up to 10 real-time voice channels while theoretically
the architecture should be able to process more real-time voice
channels [27]. This limitation has been imposed for the sake of
inefficiency of the application code, many frequent memory
accesses and context-switching overheads during multichannel
operations.

According to achieved single-core DSP results, and also
extreme achieved performance for single-core DSP systems
with highly-optimized program code for speech codec
applications [23]- [26], there is needed more parallelism by
increasing the number of computational units (DSP cores).
 TABLE II. and TABLE III. show achieved performances by
MDST for different number of DSP cores in single- and
multiple-channel conditions. We remember that the DSP core
model is compatible to [21] and considered to be operable in
the real implementation working at 200 MHz with maximum
performance of 1600 MIPS.

According to the obtained results, during G.729 speech
coding on the MDST, 22% and 71% of the maximum available
processing performance is consumed for DSP related tasks in
single- and multiple-channel modes, respectively. Employing
multichannel speech coding results in more efficiency and
harnessing more processing power. Single-core simulation
supports up to 10 voice channels while multi-core DSP degrade
the performance of each DSP core down to 8 voice channels.
This performance degradation is because of communication
overheads in each DSP cluster and also waiting delays for
program/data transfers.

TABLE II. MULTIPROCESSOR DSP PERFORMANCES VIA DIFFERENT
NUMBER OF CORES AND CLUSTERS FOR SINGLE-CHANNEL G.729A CODEC

No. of DSP
clusters

DSP cores
per cluster

Maximum
performance

(MIPS)

Achieved
Performance

(MIPS)
1 2 3200 709
1 4 6400 1236
2 2 6400 1385
2 4 12800 2736
3 2 9600 2152
3 4 19200 3976

177

TABLE III. MULTIPROCESSOR DSP PERFORMANCES VIA DIFFERENT
NUMBER OF CORES AND CLUSTERS FOR MULTIPLE-CHANNEL G.729A CODEC

No. of
DSP

clusters

DSP
cores per

cluster

No. of voice
channels for

each DSP

Maximum
performance

(MIPS)

Achieved
Performance

(MIPS)
1 2 2 3200 437
1 2 4 3200 1330
1 2 8 3200 2163
1 2 16 3200 6126
1 4 2 6400 825
1 4 4 6400 1807
1 4 8 6400 6422
1 4 16 6400 10392
2 2 2 6400 922
2 2 4 6400 2819
2 2 8 6400 4573
2 2 16 6400 12986
2 4 2 12800 1737
2 4 4 12800 3804
2 4 8 12800 8949
2 4 16 12800 21876

IV. CONCLUSION

A multiprocessor DSP simulation toolkit for efficient
performance evaluation of data-parallel applications, especially
voice processing, has been presented. The proposed toolkit
uses the benefits of multi-level parallelism and clustering of the
DSP cores. Different clusters are considered for the
multiprocessor DSP simulation engine in which the DSP
processors are grouped to cooperate together. In order to meet
the communication requirements, two proper global and local
communication engines (GCE and LCE) implement the real
behavior of intra- and inter-cluster communications.
Employing various levels of abstraction for interconnections
reduces the simulation time significantly. Abstract
communication modeling, cycle-accurate behavior, and multi-
level controlling are the most important features of the
proposed simulation platform. Performance of the simulator
has been verified by the standard voice processing applications
such as ITU-T G.729a speech codecs. Simulation results
indicate that for single- and multiple-channel voice processing
in G.729a speech codec, 22% and 71% of the DSP
performance is consumed for computation goals, respectively.

REFERENCES

[1] I. Scheiwe, “The shift to multiprocessor DSP solutions”, online available
at: http://www.dsp-fpga.com/articles/scheiwe/, retreived April 2007

[2] T. P. Barnwell, V. K. Madisetti, and S. J. A. McGrath, “The Georgia
Tech digital signal multiprocessor”, IEEE Trans. on signal processing.
vol. 41. no. 7, July 1991

[3] Srinath V. Ramaswamy and Gerald D. Miller, “Multiprocessor DSP
architectures that implement the FCT based JPEG still pictures image
compression algorithm with arithmetic coding,” IEEE Transactions on
Consumer Electronics, vol. 39, no. 1, Feb. 1993

[4] H. Igura, S. Narita, Y. Naito, K. Kazama, c. Kuroda, M. Motomura, M.
Yamashina, “An 8OOMOPS 11 OmW 1.5V parallel DSP for mobile
multimedia processing,” ISSCC , pp: 292-293, CA, Feb. 1998.

[5] B. Ackland, A. Anesko, D. Brinthaupt, S. J. Daubert, A. Kalavade, J.
Knobloch, E. Micca, M. Moturi, C. J. Nicol, J. H. O'Neill, J. Othmer, E.
Säckinger, K. J. Singh, J. Sweet, C. J. Terman, and J. Williams, “A
single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP”, JSSC, vol.
35, no. 3, pp: 412-424, March 2000

[6] W. Zubin, T. Jun, W. Xiutan, and P. Yingning, “The structure and
application of a new multi-DSP parallel computing architecture based on
ADSP-2106x,” CIE International Conference on Radar, pp: 590-594,
China 2001.

[7] G. Zhong, F. Xu, and A. N. Willson, “A power-scalable reconfigurable
FFT/IFFT IC based on a multi-processor ring,” JSSC, vol. 41, no. 2, pp:
483:495, Feb. 2006

[8] OMAP product bulletin, Texas Instruments, available at: www.ti.com
[9] J. Davidson, J. Peters, B. Gracely, Voice over IP Fundamentals, Cisco

Press, 2000
[10] TNETV product series, Texas Instruments, available at www.ti.com
[11] Zarlink’s VoIP solutions, technical note, available at www.zarlink.com
[12] Comcerto product series, MindSpeed, available at www.mindspeed.com
[13] CT3600 MDSP Family, Cradle technologies, available at

www.cradle.com
[14] MSC8144 multi-core DSP, Freescale semiconductore, available at

www.freescale.com
[15] T. Austin, E. Larson, D. Ernst, “SimpleScalar: an infrastructure for

computer system modeling,” IEEE Computer, vol. 35, pp 59-67, 1998.
[16] M. Rosenblum, E. Bugnion, S. Devine, S. A. Herrod, “Using the SimOS

machine simulator to study complex computer systems,” ACM
TOMACS special issue on Computer Simulation, pp: 79-103, 1997.

[17] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, B. Werner, “SimICS: a
full system simulation platform”, IEEE Computer, vol. 35, no. 2, pp:50–
58, Feb. 2002.

[18] V.S. Pai, P. Rangnathan, S.V. Adve, “RSIM reference manual, version
1.0”, tech. report 9705, Department of Electrical Computer Engineering,
Rice University, Houston, TX, 1997.

[19] L. Schaelicke, M. Parker, “The design and utility of the ML-RSIM
system simulator”, Journal of Systems Architecture, vol. 52, no. 5, pp
283-297, May 2006.

[20] A. Kalavade, J. Othmer, B. Ackland, K. J. Singh, “Software
environment for a multiprocessor DSP”, ACM/IEEE Conference on
Design Automation (DAC), pp: 827-830, Louisiana, 1999.

[21] J. Turley and H. Hakkarainen. 1997. “TI’s new ‘C6x DSP screams at
1,600 MIPS,” Microprocessor Report, February 1997.

[22] H. Safizadeh, H. Noori, M. Sedighi, A. Jahanian, N. Zolfaghari,
“Efficient host-independent coprocessor architecture for speech coding
algorithms”, Digital System Design, pp: 227-230, 2005

[23] J. Kim, H. Kim, S. Choi, Y. You, “The implementation of G.729 speech
coder on a 16-bit DSP chip for the CDMA IMT-2000 system”, IEEE
Transactions on Consumer Electronics, vol. 45, no. 2, pp: 443-448, May
1999

[24] TI SPRA564B, “G.729/A speech coder: multichannel TMS320C62x
implementation”, Technical Reference, Feb-2000

[25] M. Arora, N. Lahane, and A. Prakash, “All assembly implementation of
G.729 Annex B speech codec on a fixed point DSP”, ICASSP, pp: 3780-
3783, 2002

[26] M. Banerjee, B. A. Vani, G. R. Krishna, “Optimal real time DSP
implementation of ITU G.729 speech codec,” IEEE VTC, pp: 3908-
3912, Sep. 2004.

[27] N. Sedaghati-Mokhtari, M. N. Bojnordi, and S. M. Fakhraie, "Efficient
simulation of VLIW DSP processors", in press.

[28] N. Sedaghati-Mokhtari, M. N. Bojnordi, and S. M. Fakhraie,
"Simulation of voice processing applications through VLIW DSP
architectures," in press.

178

