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Abstract
The Hybrid Memory Cube (HMC) is a promising alterna-

tive to DDRx memory due to its potential to achieve signifi-
cantly higher bandwidth. However, the high static power of an
HMC device compromises power efficiency when the device
is lightly utilized. Activating a sleeping HMC takes over 2µs,
which makes it challenging to manage HMC power without a
substantial degradation in system performance.

We introduce a new technique that alleviates the long wake-
up penalty of an HMC by employing erasure codes. Inaccessi-
ble data stored in a sleeping HMC module can be reconstructed
by decoding related data retrieved from other active HMCs,
rather than waiting for the sleeping HMC module to become
active. This approach makes it possible to tolerate the latency
penalty incurred when switching an HMC between active and
sleep modes, thereby enabling a power-capped HMC system.
Simulations show that the proposed architecture outperforms
a current HMC-based multicore system by 6.2⇥, and reduces
the system energy by 5.3⇥ under the same power budget as the
multicore baseline.
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1. Introduction
The Hybrid Memory Cube (HMC) is a high bandwidth,

energy-efficient memory interface that has the potential to
replace the DDRx based DRAM modules in high perfor-
mance systems [1]. HMC can provide an order of magnitude
higher bandwidth than DDRx by leveraging narrow, high speed
SerDes links operating at tens of GHz [2]. HMC modules have
started to appear in servers and high performance computing
systems, such as the Intel Knights Landing [3] and the FU-
JITSU next generation HPC systems [4]. HMC modules, how-
ever, consume significant static power (25.5W per node in the
FUJITSU system1 [4–6]). For an average processor power dis-
sipation of 80W [4, 6, 7] and a 20% bandwidth utilization [8],
the static power of the HMC subsystem accounts for 22% of the
total system power.

The maximum allowable power consumption of high-
performance systems is often constrained by power delivery,
packaging, and cooling requirements. Power capping and
power shifting are two synergistic techniques that aim at max-
imizing system performance under a power budget [9]. Power
capping makes it possible to impose a maximum power budget
on different subsystems such as the processor, the main mem-
ory, and the I/O devices [10–12]. It allows the power supply

1Each node directly connects a processor to eight single-link HMC modules.

and the cooling subsystem to be provisioned for the average
rather than the worst case, which significantly reduces cost.
Power capping also provides the capability to upgrade a sys-
tem (e.g., increase the number of nodes, or hardware within a
node) without the risk of demanding more power than the sup-
ply can provide, and to tolerate the failure of a subset of the
power supply units. Many servers and high-performance sys-
tems (e.g., IBM Power [13], FUJITSU PRIMERGY [14], and
HP ProLiant [15]) adopt power capping and shifting techniques
to improve reliability, availability, and cost.

The HMC subsystem is a promising target for runtime power
management since (1) HMCs consume significantly lower
static power in sleep mode as compared to active mode (e.g.,
5.6W vs. 25.5W in an eight-HMC system), and (2) the load
on the memory system varies among different workloads and
among different phases of a given workload. The current HMC
standard provides the capability to transition an HMC into sleep
mode, but requires µs latencies to switch between sleep and ac-
tive modes. This high latency overhead makes it a significant
challenge to manage HMC power without incurring a substan-
tial performance degradation.

This paper examines a novel HMC power management solu-
tion based on erasure codes. The key idea is to encode multiple
data blocks in a single coding block that is distributed among
all of the HMC modules in the system, and storing the check
bits in a dedicated, always-on HMC. The data stored in a sleep-
ing HMC module can be reconstructed by decoding a subset of
the remaining memory blocks that reside in the active HMCs,
thereby avoiding the long power mode switching latency on the
critical path of the application. A novel data selection policy
is used to decide which data to encode at runtime, significantly
increasing the probability of reconstructing otherwise inacces-
sible data. The coding procedure is optimized by leveraging
the near memory computing capability of the HMC logic layer.
The result is a power-capped architecture that achieves a 6.2⇥
performance improvement and a 5.3⇥ energy reduction over a
current, power-capped HMC system.

Erasure coding requires extra storage space to store the check
bits. Alternatively, that extra storage space could be used to
cache parts of the working set that reside in the sleeping HMCs.
This alternative approach would make it possible to service a
memory request quickly by using the cached copies. The eval-
uation indicates that the proposed mechanism based on erasure
codes makes more efficient use of the extra storage space than
caching does, providing a higher probability of reconstructing
inaccessible data under a fixed storage overhead. Specifically,
compared to a power-capped HMC system that caches parts of
the working set in an always-on HMC, the proposed architec-



ture improves the performance by 2.2⇥ and reduces the energy
consumption by 2.0⇥.

2. Background and Related Work
HMC takes advantage of three dimensional (3D) integration

and SerDes links to achieve high bandwidth at the expense of
high static power dissipation (Section 2.1.). Erasure codes, dis-
cussed in Section 2.2., are leveraged to manage HMC power
with a minimal impact on performance.

2.1. Hybrid Memory Cube
HMC relies on high-speed SerDes links to increase the band-

width between the memory controller and the processor. How-
ever, related work [1,5] shows that a large fraction of the HMC
power is due to the SerDes links. Since NULL FLITs have to
be generated, scrambled, and transmitted when no other pack-
ets are pending [2], the SerDes link power in the active mode
is constant at all times [16]. This static link power constitutes a
large percentage of the total power when the memory is under-
utilized. The current HMC standard provides two low-power
modes, sleep and power down. Both of them suffer from long
wake-up latencies (e.g., 2µs from the sleep mode, and hundreds
of µs from the power down mode [2]). Due to the significant
latency to exit the power down mode, only the sleep mode is
considered in this paper.

Ahn et al. [17] design a mechanism to disable the HMC links
according to the queuing delay observed at runtime. However,
this approach requires maintaining connectivity to each HMC
at all times. Under a power budget in which full connectivity
cannot be maintained, or in a power-capped system in which
each HMC module has a single link connected to the proces-
sor (such as the FUJITSU [4] system), the long power mode
switching latency becomes difficult to hide.

Malladi et al. [18] introduce a DRAM interface modifica-
tion to support low power modes with short wake-up latencies.
This is a solution at the circuit level; however, it requires a non-
trivial hardware change to the interface circuitry, and requires
support from both the memory and the processor vendors. The
proposed approach, which solves the power problem at the ar-
chitecture level, requires no changes to the underlying link cir-
cuitry.

2.2. Erasure Codes
Erasure codes are a type of error correcting code (ECC) that

are broadly applicable to large, distributed storage systems [19].
In contrast to SECDED codes, an erasure code is based on an
erasure channel model in which data at a specific, known lo-
cation is lost. Therefore, an erasure code has a higher (2⇥)
correction capability as compared to an ECC based on a bi-
nary symmetric channel with the same amount of redundant
data. Among all of the erasure codes, the Reed-Solomon (RS)
code [20] is chosen to reduce the capacity overhead of the pro-
posed HMC system. Figure 1 shows an example of the en-
coding and decoding procedures for a systematic (n, k) RS
code [20]. A distribution matrix contains an identity matrix
in the first k rows, and the rest of the rows are chosen such
that any k ⇥ k sub-matrix is invertible. Encoding is accom-
plished by multiplying the distribution matrix by a source data

vector. Since the codeword is 2w-bits long (23-bits in the ex-
ample), the data is partitioned into 2w-bit codewords, and the
matrix-vector multiplication is performed separately for each
codeword. To recover the lost data, the corresponding rows are
deleted from the distribution matrix, and the remaining rows
are selected to form a k ⇥ k matrix. The generated matrix is
inverted and multiplied by the surviving data vector that cor-
responds to the selected rows. Let ai,j (i 2 [0, n � k � 1],
j 2 [0, k � 1]) represent an element in the lower (non-identity)
part of the distribution matrix. On a write, the new value of Ci

is computed as follows [19]:

C 0
i = Ci + ai,j(B

0
j �Bj), (1)

where B0
j and C 0

j respectively are the new values that replace
Bj and Cj . The RS code requires Galois Field arithmetic,
which makes a hardware encoder/decoder expensive to imple-
ment. The Cauchy Reed-Solomon (CRS) code, a variant of
the RS code that converts all of the Galois Field operations to
XORs, is employed to reduce the coding overhead [20]. Fig-
ure 2 shows the CRS version of the encoding example in Fig-
ure 1 (a).
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Figure 1: Illustrative example of RS encoding and decoding (k
= 5 and n = 7).

kw

(n-k)w

B0

B1

B2

B3

B4

B0

B1

B2

B3

B4

C0

C1

Distribution
Bit Matrix

Source
Data

Source Data &
Check Bits

b
w

Figure 2: CRS version encoding of the same coding scenario
in Figure 1 (assuming the size of data block is b bits). The dark

unit in the bit matrix represents 1; the light one represents 0.

Erasure codes are widely used in RAID systems to provide
reliability and serviceability [19, 21], but these systems do not
rely on erasure codes to manage power. In these systems, the
number of active disks is always greater than or equal to the
number of disks that hold the source data; thus, these meth-
ods cannot be applied to a power-capped HMC system whose
power budget does not permit activating all of the HMCs simul-
taneously.

The RAIM system from IBM [22] protects a server from
single-channel DRAM errors by using erasure codes. Different



from prior work, the proposed encoded HMC system employs
CRS codes to enable efficient power capping.

3. Overview
The proposed approach hides the long latency to activate a

sleeping HMC by retrieving and decoding a subset of the data
within the same coding block from active HMCs. Figure 3
shows an example HMC system with and without the proposed
encoding mechanism, in which the memory power budget al-
lows only two of the HMCs to be active at any time. Two mem-
ory requests, one to HMC 0 and the other to HMC 1, are shown
in the example. Initially, HMC 1 is in sleep mode, and HMC 0
is active. In a standard HMC system, after the completion of the
first request, the second request must wait until the power man-
ager turns off HMC 0 and subsequently turns on HMC 1, which
incurs a 2.6µs latency. However, in the proposed encoded HMC
system, the second memory request does not have to wait: the
system retrieves and decodes a part of the coding block from
HMC 0 and HMC 3, and incurs a latency much shorter than the
standard HMC system does.
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The Standard HMC System

acc 0 sleep
HMC 1 activate acc 1

HMC 0 acc 0 acc 1' 
HMC 1

The Proposed Encoded HMC System 

time
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Figure 3: Illustrative example of the key idea.

Figure 4 illustrates an example multicore system connected
to four single-link HMCs using the proposed architecture. In a
system with k+1 HMCs, a coding block is formed by encoding
k data chunks (cache blocks B0, B1, B2), each of which comes
from a different HMC. The cache blocks storing the check bits
(C0, C1) are stored in the (k + 1)st HMC, called the always-
on HMC. This always-on HMC is always active to support the
coding capability. A centralized control unit, comprising an en-
coding/decoding manager and a power manager, controls the
power mode of the individual HMCs, and services memory re-
quests based on the current power mode of each HMC.

When a memory request is received, the HMC manager first
checks whether the HMC that stores the data is active. If so,
the memory request is sent to the destination HMC controller.
If the destination HMC is sleeping and the memory request is a
read operation, the encoding/decoding manager checks whether
the data is decodable. If so, the memory request is serviced
immediately by decoding. Otherwise, the encoding/decoding
manager sends an HMC wake-up request to the HMC power
manager, and waits until the HMC is active.

4. Implementation
An HMC power manager that transitions the HMCs between

active and sleep modes (Section 4.1.) is employed by all of
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Figure 4: An example multicore system comprising a shared
L2 cache and four single-link HMCs using the proposed block

encoding mechanism.

the evaluated systems. An encoding/decoding manager (Sec-
tion 4.2.) supports the coding related operations with the opti-
mizations described in Section 4.3..

4.1. Power Manager
The power manager receives wake-up requests. It decides

which HMC to activate or put to sleep based on the current
state of the HMCs, and the HMC power allocated by an upper-
level power manager (e.g., an OS power manager). In addition
to the links, the DRAM layers on a sleeping HMC are also put
into the low power, self-refresh mode to reduce the HMC static
power consumption. The operation of the HMC power man-
ager is based on related work [11, 12], and is decoupled from
the memory controller by a simple interface. The power man-
ager implements wake-up, sleep, and time-out logic. A status
block records the number of active HMCs, and the number of
cycles for which the oldest pending request to each HMC has
been waiting. Algorithm 1 gives an overview of the power man-
agement procedure. 2 The wake-up logic picks the head entry in
the wake-up queue, and sends an activate request to the corre-
sponding HMC controller when the number of active HMCs is
less than the power budget permits. When the number of active
HMCs equals the maximum number allowed under the HMC
power budget, and there are HMCs with no pending memory
requests (free HMCs), the sleep logic puts the least-recently-
used (LRU) HMC to sleep before activating a sleeping HMC.
The sleep logic blocks new requests to the LRU (active) HMC
to prevent starvation when the head entry of the wake-up queue
has been waiting for a period longer than a configurable time-
out threshold, and all of the active HMCs are busy.

4.2. Encoding/Decoding Manager
Directly applying the encoding mechanism to an HMC sub-

system cannot save any power, since the number of always-
on HMCs that store the check bits would equal the number of
HMCs that are allowed to sleep. Therefore, the proposed en-
coded HMC system must maintain a small encoded region to
which the erasure code is applied. An encoding/decoding man-
ager is implemented as shown in Figure 5. The decoding cache

2We made the conservative assumption that the HMC static power is the same
in stable and transition states.



Data: activeHMCs, sleepingHMCs
Result: power management commands to the HMC controllers
// Wake-up logic: FIFO selection policy
while wakeupQ 6= ? and |activeHMCs| < numHMCCap do
HMC  dequeue(wakeupQ);
wakeup(HMC);
sleepingHMCs sleepingHMCs� {HMC};
activeHMCs activeHMCs [ {HMC};

end
// Sleep logic: LRU selection policy
if wakeupQ 6= ? and 9 freeHMC 2 activeHMCs then
victimHMC  LRU(freeHMCs);
sleep(victimHMC);
activeHMCs activeHMCs� {victimHMC};
sleepingHMCs sleepingHMCs [ {victimHMC};

end
// Time-out logic: LRU selection policy
if waitTime > timeoutThreshold and @ freeHMC 2 activeHMCs then

block(LRU(activeHMCs));
end

Algorithm 1: HMC power management.
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Figure 5: Encoding/Decoding Manager. The numbered labels
are used for the encoding procedure.

is a small, set associative cache that is used to check whether
a memory request is accessing the encoded region, and if so,
to determine the address of the corresponding check bits. In
order to reduce the decoding cache overhead, encoding is done
at the page granularity. A group of encoded pages (including
the generated check bits) is called a coding group. Decoding is
performed at the individual cache line granularity.

4.2.1. Encoding

When a memory request can neither access a sleeping HMC
nor be decoded, the corresponding coding group ID is sent to
the Encoding Candidate Table (step 1 of Figure 5). Each en-
try of the table has a counter to keep track of the number of ac-
cesses to the corresponding coding group. Every few cycles, the
controller identifies the coding group with the highest counter
value as a candidate, and empties the table. This simple—yet
effective—scheme exploits data locality.

Encoding data too frequently not only increases the mem-
ory traffic, but also pollutes the decoding cache. Therefore, the
counter value associated with the candidate is compared to a
threshold to filter out data that are unlikely to be accessed in
the near future. If the counter value exceeds the threshold, the
encoding process begins (step 2 in Figure 5). A Finish Table
is used to keep track of the encoding status. When all of the
relevant data have been received and the check bits have been
generated, the coding group ID is inserted into the decoding
cache along with the address of the check bits (step 3 in Fig-

ure 5). The encoder consists of a set of AND and XOR gates.
The AND gates operate on the stored distribution matrix and
the source data, and feed the results into an XOR tree, which
produces the check bits. This simple encoding procedure is per-
formed in the background, and is not critical to performance.

4.2.2. Decoding

When a memory request cannot access a sleeping HMC, it
accesses the decoding cache to determine whether the required
data is decodable. On a hit, the decoding logic sends the mem-
ory request to the always-on HMC (which contains the check
bits), and to some of the other active HMCs. After all of the
related data are retrieved, the source data block is decoded, and
the memory request is serviced.

reqto-normal-HMC

B2 reqto-always-on-HMC

C0, C1, C2, C3

B2 

C0

C1

C2 

C3 

B3

Decoding

a0,0    a0,1    a0,2    a0,3   a0,4

a1,0    a1,1    a1,2    a1,3   a1,4

a2,0    a2,1    a2,2    a2,3   a2,4

a3,0    a3,1    a3,2    a3,3   a3,4

a4,0    a4,1    a4,2    a4,3   a4,4

HMC 
0

HMC 
1

HMC 
2

HMC 
3

HMC 
4

Ao
HMC

reqto-normal-HMC

B2 reqto-always-on-HMC

B''3

HMC 
0

HMC 
1

HMC 
2

HMC 
3

HMC 
4

Ao 
HMC

B3B'3 B''3+

B2 

0
0
0 

0 

B'3

Decoding Part 1
a0,0    a0,1    a0,2    a0,3   a0,4

a1,0    a1,1    a1,2    a1,3   a1,4

a2,0    a2,1    a2,2    a2,3   a2,4

a3,0    a3,1    a3,2    a3,3   a3,4

a4,0    a4,1    a4,2    a4,3   a4,4

0 

C0

C1

C2 

C3 

B''3

Decoding Part 0
a0,0    a0,1    a0,2    a0,3   a0,4

a1,0    a1,1    a1,2    a1,3   a1,4

a2,0    a2,1    a2,2    a2,3   a2,4

a3,0    a3,1    a3,2    a3,3   a3,4

a4,0    a4,1    a4,2    a4,3   a4,4

On always-on HMC
 logic layer

(a)

(b)

ACT SLEEP ACT SLEEP SLEEP ACT

ACT SLEEP ACT SLEEP SLEEP ACT

Ao HMC: Always-on HMC
ACT: ACTIVE

Figure 6: Illustrative example of the decoding procedure: (a)
without optimization; (b) with optimization.

Similar to the encoder, the decoder comprises a combination
of AND and XOR gates. The precomputed inverse matrices are
kept in memory. Because the size of an inverse matrix is small
and only a few such matrices are needed, the storage overhead is
insignificant. Because the address of the inaccessible cache line
is known, instead of reading the entire matrix and computing all
of the source data in the coding block, we only need to access
the row corresponding to the required cache line to perform the
decoding. This method efficiently reduces the decoding latency
and the associated energy overhead.

4.2.3. Updating

Since the check bits must be kept up-to-date, each write ac-
cess needs to check whether it is going to access the encoded
region. If so, the old and the new values are XORed, and the re-
sult is returned to the always-on HMC, which updates the check
bits. The update logic is neither complex nor on the critical
path. The evaluation indicates that its latency and power con-
sumption overheads are not critical to the viability of the pro-
posed system.



4.3. Memory Traffic Optimizations
Several optimizations are performed to reduce the extra cod-

ing memory traffic. These optimizations significantly reduce
the extra bandwidth requirement and energy consumption of
the coding process, thereby improving the performance and the
energy efficiency of the proposed system.

4.3.1. Encoding
Since a large amount of data must be read and written during

encoding, 128B reads and writes are employed to amortize the
packet header cost.

4.3.2. Decoding
When more HMCs are allowed to sleep at the same time

(Sections 2. and 4.2.2.), decoding an inaccessible cache line
requires reading more check bits from the always-on HMC,
which significantly increases the bandwidth pressure (Figure 6
(a)). To reduce the memory traffic, the decoding procedure is
split between the logic layer of the always-on HMC and the pro-
cessor, as shown in Figure 6 (b). The memory request sent to
the always-on HMC requires reading the check bits, producing
a partial result B00

3 (whose size is the same as the inaccessible
cache line), and sending it to the processor. At the same time,
the processor generates another partial result B0

3 based on the
parts of the coding block obtained from the other HMCs (B2).
The source data (B3) is recovered by XORing the two partial
results.

4.3.3. Updating
Two special memory requests are used to reduce the mem-

ory traffic generated by the updates; both requests leverage the
logic layer to provide a simple computational capability. The
first one is a read-XOR-update request, which reads the old
data, returns the XOR between the old and the new data, and
writes the new data into the memory array. The second special
request is an update-check-bits request, which transfers the re-
sult obtained from the read-XOR-update request to the always-
on HMC. When the update-check-bits request is received, the
check bits are read out, XORed with the updated value, and
written back to the memory array.

5. Experimental Setup
Assessing the performance, energy, and hardware overheads

of the proposed power management approach requires both
circuit- and architecture-level design and evaluation. The en-
coder and decoder logic is designed and verified in Verilog
RTL using Cadence NCSim, and synthesized using the Synop-
sys Design Compiler. We use a heavily-modified version of the
SESC simulator [23] to model the proposed system. (The sim-
ulation parameters are shown in Table 1.) We use McPAT to es-
timate the processor energy at the 22nm technology node [24].

CACTI-3DD [25] is used to model the timing of the 3D
DRAM die stack within the HMC. A custom address mapping,
shown in Figure 7, is used to take advantage of spatial locality,
thereby increasing the idleness of the HMC links3. The pro-

3We evaluated different address mappings in which the cubeID was assigned
different bit positions, including page/block interleaving, and those in [2], and

Core 32 out-of-order cores, 2.2GHz, issue width 4, commit width 4
IL1 cache 64KB, 4-way, 64B line, hit/miss delay 2/2
DL1 cache 64KB, 4-way, 64B line, WB, hit/miss delay 2/2
Coherence Snoopy bus with MESI protocol
L2 cache 16MB, 16-way, 8 banks, 64B line, hit/miss delay 18/4
HMC Interface HMC manager including link power manager, link controllers
HMC 4GB/HMC, 256 banks/HMC
SerDes Link 15GHz, 2.1W/link (active) [5], 0.1W/link (sleep) [17]
Switching latency Power mode: active!sleep = 600ns, sleep!active = 2µs [2]
Vault controller FCFS, close-page policy
DRAM timing tCK=1ns, tRCD=4, tRAS=11, tRC = 21, tCAS=7, BL=8
DRAM power 0.47W background power [5], 3.7pJ/bit access energy [1]

Table 1: Simulated system parameters.

posed system has eight data HMCs, and one dedicated, always-
on HMC that stores the check bits. This system is compared
against two baselines. The first baseline employs a standard,
eight-HMC memory system with the same power management
mechanism as the proposed technique but no special provisions
to avoid the long power mode switching latency. The second
baseline architecture adds caching on top of the first baseline
to cache parts of the working set that reside in the inaccessible
HMCs. The memory capacity overhead of the second baseline
is the same as that of the proposed architecture. Two caching
policies are implemented and evaluated. The first, conventional
caching policy, treats the extra HMC as a page cache. The
second, enhanced caching policy, uses the data selection and
power mode switching mechanisms of the proposed approach,
with parameters and threshold values tuned to achieve high per-
formance. The maximum number of active HMCs (including
the always-on HMC in the proposed system) at any moment—
and thus the HMC power budget—is the same for all of the
evaluated systems. As the evaluated benchmarks are not large
enough to use the entire physical address space, the size of the
extra storage space is restricted to less than 1/9 of the actual
memory footprint of each application. 4

!"#$%&'( !"#$)"#*+,-$./ *"0+12$./ 3425$./ 64+07$./ *48(-$)&2-$9:;-7

Figure 7: Memory address mapping.

We evaluate a mix of twelve parallel applications that are
readily portable to our simulator from the NuMineBench [26],
Phoenix [27], SPLASH-2 [28], SPEC OpenMP [29], and
NAS [30] suites.

6. Evaluation

This section evaluates the performance, power, energy, and
area characteristics of the proposed architecture.

6.1. Hardware Overhead

Table 2 lists the power, area, and latency overheads of the
additional hardware units introduced by the proposed architec-
ture. The power overhead of the additional hardware represents
less than 0.03% of the entire power-capped HMC system. The
latencies are correctly modeled as processor cycles for perfor-
mance analysis.

chose the best performing one for the baseline.
4One always-on HMC out of nine total HMCs is used to store the check bits

or the cached data.



Power (mW) Area (mm2) Latency (ns)
Encoding Logic 4.9 0.004 3
Encoding Candidate
Selection Logic 0.4 0.0001 0.75
Decoding Logic 2.8 0.006 0.5
Decoding Cache 4.0 0.013 0.25
Decoding Logic
(on Always-on HMC) 8.2 0.017 0.5
Updating Logic
(on Normal HMC) 0.5 0.001 0.25
Updating Logic
(on Always-on HMC) 1.2 0.009 0.75

Table 2: Power, area and latency overheads of the additional
hardware on the processor and the HMC sides at 22nm.

6.2. Performance
Figure 8 shows the performance of the proposed architecture

and the baseline systems that use caching, normalized to the
standard HMC system. All of the results in this section and
Section 6.3. are based on the same power budget, which allows
four HMCs to be active simultaneously.

On average, the encoded HMC system achieves a 6.2⇥
speedup over the standard HMC system, a 2.9⇥ speedup over
the baseline system with the conventional caching policy, and
a 2.2⇥ speedup over the baseline system with the enhanced
caching policy. 99% of the inaccessible data can be decoded in
the proposed system. Among all of the benchmarks, raytrace
exhibits the least performance improvement (less than 10%).
The reason is that its memory access patterns allow most of the
HMCs to have long idle times, and the baseline system under-
goes only a small performance degradation under power cap-
ping, which leaves little room for improvement.
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Figure 8: Performance of the proposed architecture.

The baseline systems with caching exhibit better perfor-
mance compared to the naı̈ve baseline without caching. How-
ever, their performance is still worse than the proposed system.
For the system with the conventional caching policy, when an
uncacheable HMC is temporarily transitioned into sleep mode
to satisfy the wakeup requests from the other HMCs, all of the
memory requests to the sleeping HMC are blocked. Because
of the long power mode switching latency, the system blocks
a significant number of memory requests that cannot be ser-
viced until the destination HMC is activated again. In order to
reduce the number of blocked memory requests, the enhanced
caching policy avoids having a fixed designation of cacheable
and uncacheable HMCs. Therefore, regardless of which HMC
is in sleep mode, a memory request can always be serviced if
the requested data resides in the always-on HMC. However, the
proposed approach can make more efficient use of the always-
on HMC than the enhanced caching since it stores the check

bits instead of replicating the source data. With the same ca-
pacity overhead, the proposed system achieves the highest hit
rate in the always-on HMC when the memory requests cannot
access the sleeping destination HMC. Therefore, the proposed
approach can deliver higher system performance compared to
caching under an iso-capacity requirement.

For the benchmark string, the hit rates observed under both
caching policies are close to that of the proposed approach.
This observation explains why the performance gap between
caching and the proposed approach is relatively narrow for
string. Since the enhanced caching policy achieves a better
performance than the conventional caching policy, we use the
system with the enhanced caching policy as the caching base-
line for the remainder of the evaluation.
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Figure 9: Energy consumption of the proposed architecture.
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Figure 10: Energy breakdown of the evaluated systems.
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Figure 11: Energy overhead to support the coding capability.

6.3. Energy

The energy consumption of the entire system (including the
cores, the shared L2 cache, the memory controller, and the
HMC modules) is shown in Figure 9. On average, the pro-
posed system respectively expends 19% and 49% of the energy
consumed by the naı̈ve and the caching baseline systems. The
baseline systems consume more energy due to the longer execu-
tion time, which is shown in Figure 10. The proposed architec-
ture does not save significant energy on raytrace, because the
naı̈ve baseline system does not degrade the performance of this
benchmark significantly. Figure 11 depicts the coding related
energy overhead, which is less than 0.15% of the total system
energy.



6.4. Sensitivity Studies
Sensitivity to the size of the memory region allocated to the

check bits, and to the HMC power budget, are studied in this
section.
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Figure 12: Performance of the proposed architecture with
different sizes of the check bits.
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Figure 13: Performance of the proposed architecture under
different HMC system power budgets.

6.4.1. Sensitivity to the Size of the Check Bits
Figure 12 shows how the performance of the proposed HMC

system changes with the size of the memory region allocated
to the check bits. Medium represents a system that restricts the
capacity of the space allocated to the check bits to less than 1/9
of the memory footprint of each application; large increases
the size of the allocated space by 25%; and small reduces it by
25%. For most of the benchmarks, the performance degrada-
tion increases as the capacity of the space allocated to the check
bits is decreased. Histogram, ocean, scalparc, and swim are
more sensitive to the space allocated to the check bits in the sys-
tem. These applications exhibit poor data locality, which ren-
ders the encoding candidate selection logic (Section 4.2.) less
effective. As one would expect, when the size of the encoded
region decreases, the likelihood of retrieving inaccessible data
by decoding also decreases.

6.4.2. Sensitivity to the Power Budget
Figure 13 shows the effect of the HMC power budget on both

the proposed and the baseline systems. On average, all of the
three systems perform worse when the HMC power budget is
reduced. However, the performance degradation is less severe
for the proposed HMC system. The benefits of the proposed
system increase as the power budget is lowered.

7. Conclusions
We introduce a power-capped HMC system that employs era-

sure codes to tolerate the long HMC power mode switching la-
tency. Rather than waiting for an HMC to become active, a

memory request to the unavailable data can be satisfied by de-
coding other data within the same coding block, which can be
retrieved from the active HMCs. Overall, the proposed archi-
tecture achieves a 6.2⇥ performance improvement and a 5.3⇥
energy reduction over a standard HMC system operating under
the same power budget. We conclude that erasure coding holds
significant potential to improve the performance and energy ef-
ficiency of future high-performance memory systems.
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