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THE PROPOSED MEMRISTIVE BOLTZMANN MACHINE IS A MASSIVELY PARALLEL,

MEMORY-CENTRIC HARDWARE ACCELERATOR BASED ON RECENTLY DEVELOPED RESISTIVE

RAM (RRAM) TECHNOLOGY. THE PROPOSED ACCELERATOR EXPLOITS THE ELECTRICAL

PROPERTIES OF RRAM TO REALIZE IN SITU, FINE-GRAINED PARALLEL COMPUTATION

WITHIN MEMORY ARRAYS, THEREBY ELIMINATING THE NEED FOR EXCHANGING DATA

BETWEEN THE MEMORY CELLS AND COMPUTATIONAL UNITS.

......Combinatorial optimization is a
branch of discrete mathematics that is con-
cerned with finding the optimum element of a
finite or countably infinite set. An enormous
number of critical problems in science and
engineering can be cast within the combinato-
rial optimization framework, including classi-
cal problems such as traveling salesman, integer
linear programming, knapsack, bin packing,
and scheduling problems, as well as numerous
optimization problems in machine learning
and data mining. Because many of these prob-
lems are NP-hard, heuristic algorithms are
commonly used to find approximate solutions
for even moderately sized problem instances.

Simulated annealing is one of the most
commonly used optimization algorithms. On
many types of NP-hard problems, simulated
annealing achieves better results than other
heuristics; however, its convergence may be
slow. This problem was first addressed by
reformulating simulated annealing within the
context of a massively parallel computational
model called the Boltzmann machine.1 The
Boltzmann machine is amenable to a massively
parallel implementation in either software or

hardware.2 With the growing interest in deep
learning models that rely on Boltzmann
machines for training (such as deep belief net-
works), the importance of high-performance
Boltzmann machine implementations is
increasing. Regrettably, the required all-to-all
communication among the processing units
limits these recent efforts’ performance.

The memristive Boltzmann machine is a
massively parallel, memory-centric hardware
accelerator for the Boltzmann machine based
on recently developed resistive RAM
(RRAM) technology. RRAM is a memristive,
nonvolatile memory technology that provides
Flash-like density and DRAM-like read
speed. The accelerator exploits the electrical
properties of the bitlines and wordlines in a
conventional single-level cell (SLC) RRAM
array to realize in situ, fine-grained parallel
computation, which eliminates the need for
exchanging data among the memory arrays
and computational units. The proposed
hardware platform connects to a general-
purpose system via the DDRx interface and
can be selectively integrated with systems that
run optimization workloads.
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Computation within Memristive Arrays
The key idea behind the proposed memory-
centric accelerator is to exploit the electrical
properties of the storage cells and the intercon-
nections among those cells to compute the dot
product—the fundamental building block
of the Boltzmann machine—in situ within
the memory arrays. This novel capability of
the proposed memristive arrays eliminates
unnecessary latency, bandwidth, and energy
overheads associated with streaming the data
out of the memory arrays during computation.

The Boltzmann Machine
The Boltzmann machine, proposed by Geof-
frey Hinton and colleagues in 1983,2 is a
well-known example of a stochastic neural
network that can learn internal representa-
tions and solve combinatorial optimization
problems. The Boltzmann machine is a fully
connected network comprising two-state
units. It employs simulated annealing for
transitioning between the possible network
states. The units flip their states on the basis
of the current state of their neighbors and the
corresponding edge weights to maximize a
global consensus function, which is equiva-
lent to minimizing the network energy.

Many combinatorial optimization prob-
lems, as well as machine learning tasks, can be
mapped directly onto a Boltzmann machine
by choosing the appropriate edge weights and
the initial state of the units within the net-
work. As a result of this mapping, each possi-
ble state of the network represents a candidate
solution to the optimization problem, and
minimizing the network energy becomes
equivalent to solving the optimization prob-
lem. The energy minimization process is typi-
cally performed either by adjusting the edge
weights (learning) or recomputing the unit
states (searching and classifying). This process
is repeated until convergence is reached.
The solution to an optimization problem
can be found by reading—and appropri-
ately interpreting—the network’s final state.
For example, Figure 1 depicts the mapping
from an example graph with five vertices to a
Boltzmann machine with five nodes. The
Boltzmann machine is used to solve a Max-
Cut problem. Given an undirected graph
G with N nodes whose connection weights

(dij) are represented by a symmetric weight
matrix, the maximum cut problem is to find a
subset S � {1, …, N} of the nodes that maxi-
mizes

X
i;j

dij, in which i � S and j 62 S. To
solve the problem on a Boltzmann machine, a
one-to-one mapping is established between
the graph G and a Boltzmann machine with
N processing units. The Boltzmann machine
is configured as wjj ¼

X
i
dji and wji¼ –2dji.

When the machine reaches its lowest energy,
(E(x)¼ �19), the state variables represent the
optimum solution, in which a value of 1 at
unit i indicates that the corresponding graphi-
cal node belongs to S.

In Situ Computation
The critical computation that the Boltzmann
machine performs consists of multiplying a
weight matrix W by a state vector x. Every
entry of the symmetric matrix W (wji) records
the weight between two units (j and i); every
entry of the vector x(xi) stores the state of a
single unit (i). Figure 2 depicts the funda-
mental concept behind the design of the
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Figure 1. Mapping a Max-Cut problem to the Boltzmann machine model. An

example five-vertex undirected graph is mapped and partitioned using a five-

node Boltzmann machine.
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Figure 2. The key concept of in situ

computation within memristive arrays.
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memristive Boltzmann machine. The weights
and the state variables are represented using
memristors and transistors, respectively. A
constant voltage supply (Vsupply) is connected
to parallel memristors through a shared verti-
cal bitline. The total current pulled from the
voltage source represents the result of the
computation. This current (Ij) is set to zero
when xj is OFF; otherwise, the current is
equal to the sum of the currents pulled by the
individual cells connected to the bitline.

System Overview
Figure 3 shows an example of the proposed
accelerator that resides on the memory bus
and interfaces to a general-purpose computer
system via the DDRx interface. This modular
organization permits the system designers to
selectively integrate the accelerator in systems
that execute combinatorial optimization and
machine learning workloads. The memristive
Boltzmann machine comprises a hierarchy of
data arrays connected via a configurable
interconnection network. A controller imple-
ments the interface between the accelerator
and the processor. The data arrays can store

the weights (wji) and the state variables (xi); it
is possible to compute the product of weights
and state variables in situ within the data
arrays. The interconnection network permits
the accelerator to retrieve and sum these par-
tial products to compute the final result.

Fundamental Building Blocks
The fundamental building blocks of the pro-
posed memristive Boltzmann machine are
storage elements, a current summation circuit,
a reduction unit, and a consensus unit. The
design of these hardware primitives must strike
a careful balance among multiple goals: high
memory density, low energy consumption,
and in situ, fine-grained parallel computation.

Storage Elements
As Figure 4 shows, the proposed accelerator
employs the conventional one-transistor,
one-memristor (1T-1R) array to store the
connection weights (the matrix W). The rele-
vant state variables (the vector x) are kept
close to the data arrays holding the weights.
The memristive 1T-1R array is used for both
storing the weights and computing the dot
product between these weights and the state
variables.

Current Summation Circuit
The result of a dot product computation is
obtained by measuring the aggregate current
pulled by the memory cells connected to a
common bitline. Computing the sum of the
bit products requires measuring the total
amount of current per column and merging
the partial results into a single sum of prod-
ucts. This is accomplished by local column
sense amplifiers and a bit summation tree at
the periphery of the data arrays.

Reduction Unit
To enable the processing of large matrices
using multiple data arrays, an efficient data
reduction unit is employed. The reduction
units are used to build a reduction network,
which sums the partial results as they are
transferred from the data arrays to the con-
troller. Large matrix columns are partitioned
and stored in multiple data arrays, in which
the partial sums are individually computed.
The reduction network merges the partial
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Figure 3. System overview. The proposed accelerator can be selectively

integrated in general-purpose computer systems.
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results into a single sum. Multiple such net-
works are used to process the weight columns
in parallel. The reduction tree comprises a
hierarchy of bit-serial adders to strike a bal-
ance between throughput and area efficiency.

Figure 5 shows the proposed reduction
mechanism. The column is partitioned into
four segments, each of which is processed
separately to produce a total of four partial
results. The partial results are collected by a
reduction network comprising three bimodal
reduction elements. Each element is config-
ured using a local latch that operates in one
of two modes: forwarding or reduction. Each
reduction unit employs a full adder to com-
pute the sum of the two inputs when operat-
ing in the reduction mode. In the forwarding
mode, the unit is used for transferring the
content of one input upstream to the root.

Consensus Unit
The Boltzmann machine relies on a sigmoi-
dal activation function, which plays a key
role in both the model’s optimization and
machine learning applications. A precise
implementation of the sigmoid function,
however, would introduce unnecessary
energy and performance overheads. The pro-
posed memristive accelerator employs an
approximation unit using logic gates and
lookup tables to implement the consensus
function. As Figure 6 shows, the table con-
tains 64 precomputed sample points of the
sigmoid function f ðxÞ ¼ 1

1þe�x , in which x
varies between –4 and 4. The samples are
evenly distributed on the x-axis. Six bits of a
given fixed-point value are used to index the
lookup table and retrieve a sample value. The
most significant bits of the input data are
ANDed and NORed to decide whether the
input value is outside the domain [–4, 4]; if
so, the sign bit is extended to implement f(x)
¼ 0 or f(x)¼ 1; otherwise, the retrieved sam-
ple is chosen as the outcome.

System Architecture
The proposed architecture for the memristive
Boltzmann machine comprises multiple banks
and a controller (see Figure 7). The banks
operate independently and serve memory and
computation requests in parallel. For example,
column 0 can be multiplied by the vector x at

bank 0 while any location of bank 1 is being
read. Within each bank, a set of sub-banks is
connected to a shared interconnection tree.
The bank interconnect is equipped with
reduction units to contribute to the dot prod-
uct computation. In the reduction mode, all
sub-banks actively produce the partial results,
while the reduction tree selectively merges the
results from a subset of the sub-banks. This
capability is useful for computing the large
matrix columns partitioned across multiple
sub-banks. Each sub-bank comprises multiple
mats, each of which is composed of a control-
ler and multiple data arrays. The sub-bank
tree transfers the data bits between the mats
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Figure 5. The proposed reduction element. The reduction element can

operate in forwarding or reduction mode.
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and the bank tree in a bit-parallel fashion,
thereby increasing the parallelism.

Data Organization
To amortize the peripheral circuitry’s cost, the
data array’s columns and rows are time shared.
Each sense amplifier is shared by four bitlines.
The array is vertically partitioned along the
bitlines into 16 stripes, multiples of which can
be enabled per array computation. This allows
the software to keep a balance between the
accuracy of the computation and the perform-
ance for a given application by quantizing
more bit products into a fixed number of bits.

On-Chip Control
The proposed hardware can accelerate opti-
mization and deep learning tasks by appro-
priately configuring the on-chip controller.
The controller configures the reduction trees,
maps the data to the internal resources,
orchestrates the data movement among the
banks, performs annealing or training tasks,
and interfaces to the external bus.

DIMM Organization
To solve large-scale optimization and
machine learning problems whose state
spaces do not fit within a single chip, we can
interconnect multiple accelerators on a
DIMM. Each DIMM is equipped with con-
trol registers, data buffers, and a controller.
This controller receives DDRx commands,
data, and address bits from the external inter-
face and orchestrates computation among all
of the chips on the DIMM.

Software Support
To make the proposed accelerator visible to
software, we memory map its address range
to a portion of the physical address space. A
small fraction of the address space within
every chip is mapped to an internal RAM
array and is used to implement the data buf-
fers and configuration parameters. Software
configures the on-chip data layout and ini-
tiates the optimization by writing to a mem-
ory mapped control register.

Evaluation Highlights
We modify the SESC simulator3 to model a
baseline eight-core out-of-order processor.

The memristive Boltzmann machine is inter-
faced to a single-core system via a single
DDR3-1600 channel. We develop an
RRAM-based processing-in-memory (PIM)
baseline. The weights are stored within data
arrays that are equipped with integer and
binary multipliers to perform the dot prod-
ucts. The proposed consensus units, optimi-
zation and training controllers, and mapping
algorithms are employed to accelerate the
annealing and training processes. When com-
pared to existing computer systems and
GPU-based accelerators, the PIM baseline
can achieve significantly higher performance
and energy efficiency because it eliminates
the unnecessary data movement on the mem-
ory bus, exploits data parallelism throughout
the chip, and transfers the data across the
chip using energy-efficient reduction trees.
The PIM baseline is optimized so that it
occupies the same area as that of the memris-
tive accelerator.

Area, Delay, and Power Breakdown
We model the data array, sensing circuits,
drivers, local array controller, and interconnect
elements using Spice predictive technology
models4 of n-channel and p-channel metal-
oxide semiconductor transistors at 22 nm.
The full adders, latches, and control logic are
synthesized using FreePDK5 at 45 nm. We
first scale the results to 22 nm using scaling
parameters reported in prior work,6 and then
scale them using the fan-out of 4 (FO4)
parameters for International Technology Road-
map for Semiconductors low-standby-power
(LSTP) devices to model the impact of using
a memory process on peripheral and global
circuitry.7,8 We use McPAT9 to estimate the
processor power.

Figure 8 shows a breakdown of the compu-
tational energy, leakage power, computational
latency, and die area among different hard-
ware components. The sense amplifiers and
interconnects are the major contributors to
the dynamic energy (41 and 36 percent,
respectively). The leakage is caused mainly by
the current summation circuits (40 percent)
and other logic (59 percent), which includes
the charge pumps, write drivers, and control-
lers. The computation latency, however, is
due mainly to the interconnects (49 percent),
the wordlines, and the bitlines (32 percent).
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Notably, only a fraction of the memory arrays
must be active during a computational opera-
tion. A subset of the mats within each bank
performs current sensing of the bitlines; the
partial results are then serially streamed to the
controller on the interconnect wires. The
experiments indicate that a fully utilized accel-
erator integrated circuit (IC) consumes 1.3 W,
which is below the peak power rating of a
standard DDR3 chip (1.4 W).

Performance
Figure 9 shows the performance on the
proposed accelerator, the PIM architecture,
the multicore system running the multi-
threaded kernel, and the single-core system
running the semidefinite programing (SDP)
and MaxWalkSAT kernels. The results are nor-
malized to the single-threaded kernel running
on a single core. The results indicate that the
single-threaded kernel (Boltzmann machine) is
faster than the baselines (SDP and MaxWalk-
SAT heuristics) by an average of 38 percent.
The average performance gain for the mul-
tithreaded kernel is limited to 6 percent,
owing to significant state update overheads.
PIM outperforms the single-threaded ker-
nel by 9.31 times. The memristive accelera-
tor outperforms all of the baselines (57.75
times speedup over the single-threaded ker-
nel and 6.19 times over PIM). Moreover,
the proposed accelerator performs the deep
learning tasks 68.79 times faster than the
single-threaded kernel and 6.89 times faster
than PIM.

Energy
Figure 10 shows the energy savings as com-
pared to PIM, the multithreaded kernel,
SDP, and MaxWalkSAT. On average, energy
is reduced by 25 times as compared to the
single-threaded kernel implementation, which
is 5.2 times better than PIM. For the deep
learning tasks, the system energy is improved
by 63 times, which is 5.3 times better than the
energy consumption of PIM.

Sensitivity to Process Variations
Memristor parameters can deviate from their
nominal values, owing to process variations
caused by line edge roughness, oxide thick-
ness fluctuation, and random discrete dop-
ing. These parameter deviations result in

cycle-to-cycle and device-to-device variabil-
ities. We evaluate the impact of cycle-to-cycle
variation on the computation’s outcome by
considering a bit error rate of 10�5 in all of
the simulations, along the lines of the analy-
sis provided in prior work.10 The proposed
accelerator successfully tolerates such errors,
with less than a 1-percent change in the out-
come as compared to a perfect software
implementation.

The resistance of RRAM cells can fluctu-
ate because of the device-to-device variation,
which can impact the outcome of a column
summation—that is, a partial dot product.

Peak energy (8.6 nJ)
Leakage power (405 mW)

Computational latency (6.59 ns)
Die area (25.67 mm2)

Others Interconnects Sense amplifiers Data arrays

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 8. Area, delay, and power breakdown. Peak energy, leakage

power, computational latency, and die area are estimated at the 22-nm

technology node.
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We use the geometric model of memri-
stance variation proposed by Miao Hu and
colleagues11 to conduct Monte Carlo simu-
lations for 1 million columns, each com-
prising 32 cells. The experiment yields two
distributions for low resistance (RLO) and
high resistance (RHI) samples that are then
approximated by normal distributions with
respective standard deviations of 2.16 and
2.94 percent (similar to the prior work by
Hu and colleagues). We then find a bit pat-
tern that results in the largest summation
error for each column. We observe up to
2.6 � 10�6 deviation in the column con-
ductance, which can result in up to 1 bit
error per summation. Subsequent simula-
tion results indicate that the accelerator can
tolerate this error, with less than a 2 percent
change in the outcome quality.

Finite Switching Endurance
RRAM cells exhibit finite switching endur-
ance ranging from 1e6 to 1e12 writes. We
evaluate the impact of finite endurance on an
accelerator module’s lifetime. Because wear is
induced only by the updating of the weights
stored in memristors, we track the number of
times that each weight is written. The edge
weights are written once in optimization
problems and multiple times in deep learning
workloads. (Updating the state variables,
stored in static CMOS latches, does not
induce wear on RRAM.) We track the total
number of updates per second to estimate
the lifetime of an eight-chip DIMM. Assum-
ing endurance parameters of 1e6 and 1e8
writes, the respective module lifetimes are 3.7
and 376 years for optimization and 1.5 and
151 years for deep learning.

D ata movement between memory cells
and processor cores is the primary con-

tributor to power dissipation in computer
systems. A recent report by the US Depart-
ment of Energy identifies the power con-
sumed in moving data between the memory
and the processor as one of the 10 most sig-
nificant challenges in the exascale computing
era.12 The same report indicates that by
2020, the energy cost of moving data across
the memory hierarchy will be orders of mag-
nitude higher than the cost of performing a
double-precision floating-point operation.

Emerging large-scale applications such as
combinatorial optimization and deep learn-
ing tasks are even more influenced by mem-
ory bandwidth and power problems. In these
applications, massive datasets have to be iter-
atively accessed by the processor cores to
achieve a desirable output quality, which
consumes excessive memory bandwidth and
system energy. To address this problem,
numerous software and hardware optimiza-
tions using GPUs, clusters based on message
passing interface (MPI), field-programmable
gate arrays, and application-specific inte-
grated circuits have been proposed in the
literature. These proposals focus on energy-
efficient computing with reduced data move-
ment among the processor cores and memory
arrays. These proposals’ performance and
energy efficiency are limited by read accesses
that are necessary to move the operands from
the memory arrays to the processing units. A
memory subsystem that allows for in situ
computation within its data arrays could
address these limitations by eliminating the
need to move raw data between the memory
arrays and the processor cores.

Designing a platform capable of perform-
ing in situ computation is a significant chal-
lenge. In addition to storage cells, extra
circuits are required to perform analog com-
putation within the memory cells, which
decreases memory density and area efficiency.
Moreover, power dissipation and area con-
sumption of the required components for
signal conversion between analog and digital
domains could become serious limiting fac-
tors. Hence, it is critical to strike a careful bal-
ance between the accelerator’s performance
and complexity.

The memristive Boltzmann machine is
the first memory-centric accelerator that
addresses these challenges. It provides a new
framework for designing memory-centric
accelerators. Large scale combinatorial opti-
mization problems and deep learning tasks
are mapped onto a memory-centric, non-
Von Neumann computing substrate and
solved in situ within the memory cells, with
orders of magnitude greater performance and
energy efficiency than contemporary super-
computers. Unlike PIM-based accelerators,
the proposed accelerator enables computation
within conventional data arrays to achieve the

..............................................................................................................................................................................................

TOP PICKS

............................................................

28 IEEE MICRO



energy-efficient and massively parallel proc-
essing required for the Boltzmann machine
model.

We expect the proposed memory-centric
accelerator to set off a new line of research on
in situ approaches to accelerate large-scale
problems such as combinatorial optimization
and deep learning tasks and to significantly
increase the performance and energy effi-
ciency of future computer systems. MICRO
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