Memristive Boltzmann Machine: A Hardware Accelerator
for Combinatorial Optimization and Deep Learning

Mahdi Nazm Bojnordi and Engin Ipek
University of Rochester, Rochester, NY 14627 USA
{bojnordi, ipek}@ece.rochester.edu

ABSTRACT

The Boltzmann machine is a massively parallel computa-
tional model capable of solving a broad class of combinato-
rial optimization problems. In recent years, it has been suc-
cessfully applied to training deep machine learning models
on massive datasets. High performance implementations of
the Boltzmann machine using GPUs, MPI-based HPC clus-
ters, and FPGAs have been proposed in the literature. Re-
grettably, the required all-to-all communication among the
processing units limits the performance of these efforts.

This paper examines a new class of hardware accelerators
for large-scale combinatorial optimization and deep learn-
ing based on memristive Boltzmann machines. A massively
parallel, memory-centric hardware accelerator is proposed
based on recently developed resistive RAM (RRAM) tech-
nology. The proposed accelerator exploits the electrical prop-
erties of RRAM to realize in situ, fine-grained parallel com-
putation within memory arrays, thereby eliminating the need
for exchanging data between the memory cells and the com-
putational units. Two classical optimization problems, graph
partitioning and boolean satisfiability, and a deep belief net-
work application are mapped onto the proposed hardware.
As compared to a multicore system, the proposed accelera-
tor achieves 57 x higher performance and 25 x lower energy
with virtually no loss in the quality of the solution to the
optimization problems. The memristive accelerator is also
compared against an RRAM based processing-in-memory
(PIM) system, with respective performance and energy im-
provements of 6.89x and 5.2x.

1. INTRODUCTION

Combinatorial optimization is a branch of discrete math-
ematics that is concerned with finding the optimum element
of a finite or countably infinite set. An enormous number
of critical problems in science and engineering can be cast
within the combinatorial optimization framework, including
classical problems such as the traveling salesman, integer
linear programming, knapsack, bin packing, and schedul-
ing [1], as well as numerous optimization problems in ma-
chine learning and data mining [2]. Because many of these
problems are NP-hard, heuristic algorithms commonly are
used to find approximate solutions for even moderately sized
problem instances.

Simulated annealing is one of the most commonly used

978-1-4673-9211-2/16/$31.00 (©2016 IEEE

optimization algorithms. On many types of NP-hard prob-
lems, simulated annealing achieves better results than other
heuristics [3]; however, its convergence may be slow. This
problem was first addressed by reformulating simulated an-
nealing within the context of a massively parallel computa-
tional model called the Boltzmann machine [4]. The Boltz-
mann machine is amenable to a massively parallel imple-
mentation in either software or hardware; as a result, high
performance implementations of the model using GPUs [5,
6], MPI-based HPC clusters [7], and FPGAs [8, 9, 10] have
been proposed in recent years. With the growing interest
in deep learning models that rely on Boltzmann machines
for training (such as deep belief networks), the importance
of high performance Boltzmann machine implementations
is increasing. Regrettably, the required all-to-all communi-
cation among the processing units limits the performance of
these recent efforts.

This paper proposes a massively parallel, memory-centric
hardware accelerator for the Boltzmann machine based on
recently developed resistive RAM (RRAM) technology. RRAM
is a memristive, non-volatile memory technology that pro-
vides FLASH-like density and DRAM-like read speed. The
accelerator exploits the electrical properties of the bitlines
and wordlines in a conventional single level cell (SLC) RRAM
array to realize in situ, fine-grained parallel computation,
which eliminates the need for exchanging data among the
memory arrays and the computational units. The proposed
hardware platform connects to a general-purpose system via
the DDRx interface and can be selectively integrated with
systems that run optimization and machine learning tasks.

Two classical examples of combinatorial optimization, graph
partitioning and boolean satisfiability, as well as a deep be-
lief network application are mapped to the proposed hard-
ware accelerator. As compared to a multicore system with
eight out-of-order cores, the end-to-end execution time is
improved by an average of 57x over a mix of 20 real-world
optimization problems; the system energy is decreased by
25 x on average. The respective speedup and energy savings
for deep learning tasks are 68 x and 63 x. The proposed sys-
tem is also compared against a processing-in-memory (PIM)
based accelerator that integrates the processing units close
to the memory arrays for efficient computation. The exper-
iments show that the memristive Boltzmann machines out-
performs PIM by more than 5x in terms of both perfor-
mance and energy.

2. BACKGROUND AND MOTIVATION

The Boltzmann machine is a massively parallel compu-
tational model that implements simulated annealing—one
of the most commonly used heuristic search algorithms for
combinatorial optimization.

2.1 The Boltzmann Machine

The Boltzmann machine, proposed by Hinton ef al. in
1983 [4], is a well-known example of a stochastic neural net-
work capable of learning internal representations and solv-
ing combinatorial optimization problems. The Boltzmann
machine is a fully connected network comprising two-state
units, and employs simulated annealing for transitioning be-
tween the possible network states [11]. The units flip their
states based on the current state of their neighbors and the
corresponding edge weights to maximize a global consen-
sus function, which is equivalent to minimizing the network
energy.

Many combinatorial optimization problems, as well as ma-
chine learning tasks, can be mapped directly onto a Boltz-
mann machine by choosing the appropriate edge weights and
the initial state of the units within the network. As a result
of this mapping, (1) each possible state of the network repre-
sents a candidate solution to the optimization problem, and
(2) minimizing the network energy becomes equivalent to
solving the optimization problem. The energy minimization
process is typically performed by either adjusting the edge
weights (learning) or recomputing the unit states (searching
and classifying). This process is repeated until convergence
is reached. The solution to an optimization problem can be
found by reading—and appropriately interpreting—the final
state of the network.

2.1.1 Stochastic Dynamics of the Boltzmann Machine

A binary! Boltzmann machine minimizes an energy func-
tion specified by

1
E(X)Z—EZZijini—ZXjoj (D)
Ji#j J
where w; is the weight of the connection between the units
and j, x; is the state of unit i, and X is a vector specifying the
state of the entire machine. The state transition mechanism
of the Boltzmann machine relies on a stochastic acceptance
criterion, which allows the optimization procedure to escape
from local minima. A change in the state of unit j results in

a new state vector x/. Let x! denote an element of this new
vector, where
j_)i
X =
! { 1— Xi

In other words, only one of the units—unit j—has changed
its state from x; to 1 —x; in this example. (In reality, all of
the units compute their states in parallel.) The corresponding
change in energy is computed as follows:

AE = (2x;— 1) (Y xiwji+wj)). 3)
i#]
I'Without loss of generality, we restrict the discussion to Boltzmann

machines with binary states. Background on Boltzmann machines
with bipolar states can be found in the literature [11].

ifi j

ifi=j @

Notably, the change in the energy is computed by consid-
ering only local information. State transitions occur proba-
bilistically: unit j flips its state with probability

1

P(x/|x) = iE
l4+ec

“4)

where x represents the current state of the machine, x/ is
the new machine state after unit j flips its state, and C is a
control parameter analogous to the temperature parameter in
simulated annealing. Conceptually, C influences the prob-
ability of accepting a sub-optimal state change: when C is
large, the state transition probability is insensitive to small
changes in energy (AE); in contrast, when C is small, a rel-
atively small change in energy makes a big difference in the
corresponding state transition probability.

2.1.2 Mapping Combinatorial Optimization Problems
to the Boltzmann Machine

Numerous mapping algorithms have been proposed in the
literature for formulating classic optimization problems within
the Boltzmann machine framework [11, 12, 13]. We re-
view two examples, the Max-Cut and Max-SAT problems,
to demonstrate representative mapping algorithms.

The Maximum Cut Problem. Max-Cut is a classic prob-
lem in graph theory [1]. Given an undirected graph G with
N nodes whose connection weights (d;;) are represented by
a symmetric weight matrix, the maximum cut problem is
to find a subset S C {1,...,N} of the nodes that maximizes
Y. dij, where i € S and j ¢ S. To solve the problem on
a Boltzmann machine, a one-to-one mapping is established
between the graph G and a Boltzmann machine with N pro-
cessing units. The Boltzmann machine is configured as w;; =
Y.,dji and wj; = —2d ;. Figure 1 depicts the mapping from
an example graph with five vertices to a Boltzmann machine
with five nodes. When the machine reaches its lowest energy
(E(x) = —19), the state variables represent the optimum so-
lution, in which a value of 1 at unit / indicates that the corre-

Energy =-19

Figure 1: Mapping a Max-Cut problem to the Boltzmann
machine model.

The Maximum Satisfiability Problem. Given a Boolean
formula in conjunctive normal form, the goal of the Max-
SAT problem is to determine the maximum number of clauses
that hold true when truth values are assigned to the Boolean
variables. Let € be a Boolean formula represented as € =
Aj=1..mCj, where M is the number of clauses, C; = \/izl_,_mjL,-
is a clause in disjunctive form, m; is the number of literals
in clause C}, and L; is either a Boolean variable or its nega-
tion. The maximum satisfiability problem can be stated as
the search for the maximum €* C € such that £* is satisfiable.
To solve a Max-SAT problem with N Boolean variables, a
Boltzmann machine comprising 2N units is required. Two
units (7 and j) are used to represent a Boolean variable (u)

and its negation (z). The connections of the Boltzmann ma-
chine are then defined as clauses (w j where k # i, j), biases
(w};), and exclusion links (w j;), which are initialized accord-
ing to a previously proposed algorithm [12].

Figure 2 illustrates the three-step mapping of the Boolean
formula € = (xVyVz) A (X' VyVz) to a Boltzmann machine
with six processing units. (For simplicity, details of how
the auxiliary edges are assigned are omitted from the dis-
cussion.) The units are first labeled by the true and com-
plementary values of the Boolean variables and all of the
network edge weights are initialized to zero. The Boolean
clauses are then mapped onto the machine by decrement-
ing the edge weights involved in connecting the literals of
each clause (1). An edge weight may be adjusted multiple
times during this process; for instance, the edge weight be-
tween the units y and z is decremented twice. The newly
adjusted clause edges are then used to determine the unit bi-
ases by computing the sum of all of the edges connected to
each unit (2). A large weight value is assigned to the exclu-
sion links—the edges between the true and complementary
values of each Boolean variable—to eliminate invalid solu-
tion candidates from the search space (3). At the end of the
optimization process, where the network reaches its lowest
energy, the final states of the units are used to evaluate the
Boolean formula (€) and to find the optimization outcome,
which is the number of satisfied clauses.

(1) Map Clauses

(2) Compute Biases
-1 -2
)

(3) Add Exclusion Links
BB B
i

IO @O &9 .9 i i i

Figure 2: Three steps of mapping a Max-SAT problem to
the Boltzmann machine model.

2.1.3 Mapping Deep Learning Problems to the Boltz-
mann Machine

Deep learning, one of the most successful supervised learn-
ing methods, relies on hierarchical feature learning in which

higher level features are composed from lower level ones [14].

Boltzmann machines have shown potential for efficient fea-
ture extraction in deep machine learning; in particular, re-
stricted Boltzmann machines (RBMs) are the fundamental
building blocks of deep belief networks (Figure 3) [15, 16].

output
Stack of / Restricted
Pl — oy
input

Figure 3: Deep learning with Boltzmann machines.

Restricted Boltzmann Machines. Restricted Boltzmann
machines (RBMs) are a variant of the Boltzmann machine
whose units are partitioned into visible and hidden units.
Similarly to “unrestricted” Boltzmann machines, symmetric
links are used to connect the visible and hidden units; how-
ever, hidden-to-hidden and visible-to-visible connections are

not allowed. This restriction allows for more efficient train-
ing algorithms than those that are available for the general
Boltzmann machine [17]. Traditional training algorithms for
RBMs are time consuming due to their slow convergence
rate [18]. However, they usually are trained using approxi-
mate training algorithms. One such recently proposed algo-
rithm that has proven successful in practice is the contrastive
divergence algorithm [19].

Contrastive Divergence Learning. This algorithm consists
of multiple steps for updating the connection weights of the
RBM. A single step of contrastive divergence (CD-1) com-
prises the following phases:

e Positive phase: Clamp the input sample v to the in-
put layer, and propagate v to the hidden layer. The re-
sulting hidden layer activations are represented by the
vector h.

e Negative phase: Propagate h back to the visible layer
with result v'. Propagate the new v’ back to the hidden
layer with new activation vector h'.

o Weight update: Update the connection weights accord-
ing to W =W+ y(vh? —v'h'")

where W is the weight matrix, v, h, v/, and h’ are state vec-
tors, and ¥ is a real number in the range [0, 1].

2.1.4 Implementation Challenges

The massive parallelism of the Boltzmann machine, as
well as its ability to solve optimization problems without
requiring detailed knowledge of the problem structure, is
highly attractive [11]. Numerous hardware solutions have
been proposed in the literature to improve the computational
speed of the Boltzmann machine. For example, a recent
proposal introduces a hybrid hardware system using a DSP
processor and customized function blocks on an FPGA [8].
Kim et al. propose a scalable, FPGA-based hardware envi-
ronment for accelerating the Boltzmann machine [10]. Un-
like these accelerators, the proposed memristive Boltzmann
machine stores the state of the machine and performs in
situ state updates directly within the memory arrays, which
vastly surpasses earlier approaches to accelerating the Boltz-
mann machine.

2.2 Processing in Memory

Processing in memory (PIM) aims at reducing data move-
ment by processing data directly on the memory chips. Early
proposals on PIM involved random access memories in which

the sense amplifiers were connected directly to single-instruction,

multiple-data (SIMD) pipelines [20]. A configurable PIM
chip was proposed that can operate as a conventional mem-
ory or as a SIMD processor for data processing [21]. Active
Pages [22] proposes placing microprocessors and reconfig-
urable logic elements next to the DRAM subarrays for fast
processing. Guo et al. propose DDR3 compatible DIMMs
capable of performing content addressable searches [23] and
associate computing [24] on resistive memory chips. Unlike
these proposals, the proposed accelerator enables computa-
tion within conventional data arrays to achieve the energy-
efficient and massively parallel processing required for the
Boltzmann machine model.

In addition to digital accelerators, analog processors for
specific application domains have been proposed in the liter-
ature; for example, Kerneltron [25] realizes a massively par-
allel mixed-signal VLSI processor suitable for kernel-based
real-time video recognition. The chip relies on charge in-
jection devices to perform integer vector-matrix multiplica-
tion [26]. In contrast, the proposed memristive accelerator
is designed for optimization and learning tasks using the
Boltzman machine. The key idea is to exploit the electrical
properties of the conventional 1T-1R RRAM cell to perform
a three-operand multiplication involving the state variables
and the weights. These operations are then supplemented
with efficient reduction techniques to update the weights and
the machine state.

2.3 Resistive Switching

The resistive switching effect has been observed in a wide
range of materials such as perovskite oxide (e.g., SrZrO3,
LiNbOs3, SrTiO3), binary metal oxide (e.g., NiO, CuO», TiO;,
HfO,), solid electrolytes (e.g., AgGeS, CuSiO), and certain
organic materials [27]. Resistive RAM (RRAM) is one of
the most promising memristive devices under commercial

development; RRAM exhibits excellent scalability (<10nm) [28,

29], high-speed switching (<1ns) [30, 31], low power con-

sumption (<1pJ) [32, 33], a high endurance (>10'? writes) [34,

35], and a high dynamic resistance range (%MOS) [36, 37].
Figure 4 illustrates an example RRAM cell comprising an
access transistor and a resistive switching medium. The con-
tent of the switching medium is read or written by applying
electrical signals through the two vertical bitlines (shown as
Bitline and Bitline).

Bitline

I . h Switching
2d g e Medium

Figure 4: Illustration of an RRAM cell.

The proposed accelerator exploits the electrical proper-
ties of parallel RRAM cells connected to a single bitline
to compute dot products within the memory arrays. In the-
ory, this could be accomplished with any memory technol-
ogy capable of switching between two resistive states (Ry;
and R;p). However, memory cells with a limited dynamic
resistance range (e.g., Magnetoresistive RAM [38]) would
require complex sensing mechanisms and limit the function-
ality. In contrast, the proposed accelerator benefits from the
large difference between Ry and Ry in RRAM cells to en-
able efficient in situ computation within the memory arrays.

Bitline

Wordline

Electrode

2.4 Neuromorphic Networks

Neuromorphic computing, which leverages connectionist
models inspired by the human brain [39], is ill suited to von
Neumann architectures. As a result, energy efficient ana-
log accelerators based on memristive circuits have been ex-
plored in the literature [40, 41]. In a typical memristive neu-
ral circuit, a memristor acts as a synapse whose weight (i.e.,
conductance) can be changed by an electrical signal [42].

Sheri et. al. propose a spiking neural network based
on memristive synapses that implements a single step con-
trastive divergence algorithm for machine learning [43]. Each

synapse comprises two memristors representing limited-precision

positive weights. Prezioso et al. report the fabrication of a
memristive single-level perceptron with ten inputs and three
outputs, which can be used to classify 3 x3 black and white
images [44]. They optimize the fabrication process of an ex-
isting RRAM cell to reduce device variability, thereby elimi-
nating the need for access transistors. Although they demon-
strated the feasibility of fully in sifu computation for 33 bit
image classification, it is not clear how the proposed tech-
nique would scale to larger problems. Unlike prior work,
the proposed memristive Boltzmann machine is a scalable
framework that can be used for solving a wide range of com-
binatorial optimization and deep learning problems.

3. THE PROPOSED MEMRISTIVE BOLTZ-
MANN MACHINE

The proposed memristive Boltzmann machine is an RRAM
based hardware platform capable of accelerating combinato-
rial optimization and neural computation tasks. The key idea
is to exploit the electrical properties of the storage cells and
the interconnections among those cells to compute the dot
product—the fundamental building block of the Boltzmann
machine—in situ within the memory arrays. This novel ca-
pability of the proposed memristive arrays eliminates unnec-
essary latency, bandwidth, and energy overheads associated
with streaming the data out of the memory arrays during the
computation process. A high-level system overview and the
fundamental operating principles of the proposed accelerator
are discussed herein.

3.1 System Overview

The proposed accelerator resides on the memory bus, and
interfaces to a general-purpose computer system via the DDRx
interface (Figure 5). This modular organization permits se-
lectively integrating the accelerator in systems that execute
combinatorial optimization and machine learning workloads.

Configurable
Interconnect

4 i |
Main | Array Array ¥— Compute and

Memory | / n_1i Storage Arrays

Figure 5: System overview.

The memristive Boltzmann machine comprises a hierar-
chy of data arrays connected via a configurable intercon-
nection network. A controller implements the interface be-
tween the accelerator and the processor. The data arrays
are capable of storing the connection weights (w;;) and the
state variables (x;); it is possible to compute the product of
a weight and two state variables (x;x;w;;) in situ within the
data arrays. The interconnection network permits retrieving
and summing these partial products to compute the energy
change AE associated with a potential state update, and ul-
timately sends the AE results to the controller. Given the
energy change that results from a potential update, the con-
troller probabilistically decides whether to accept that update
based on the Boltzmann distribution.

3.2 In Situ Computation

The critical computation that is performed by the Boltz-
mann machine consists of multiplying a weight matrix W by

a state vector X. Every entry of the symmetric matrix W (w j;)
records the weight between two units (units j and 7); every
entry of the vector x (x;) stores the state of a single unit (unit
i). Figure 6 depicts the fundamental concept behind the de-
sign of the memristive Boltzmann machine. In the figure, the
weights and the state variables are respectively represented
using memristors and transistors. A constant voltage supply
(Vsuppiy) is connected to parallel memristors through a shared
vertical bitline. The total current pulled from the supply
voltage represents the result of the computation. This cur-
rent (/;) is set to zero when x; is OFF; otherwise, the current
is equal to the sum of the currents pulled by the individual
cells connected to the bitline. Due to the constant voltage ap-
plied across all of the parallel branches, the current pulled by
each cell is determined by Vj,, 1y, the state of the transistor

x;, and the conductance (i. e.,m) of the memristive ele-
ment w ;. For simplicity, we assume V1, = 1V; therefore,
the magnitude of this current represents the product x;x;w j;,
which is the same as the link energy of the Boltzmann ma-

chine (Equation 1).2

supply

X

wordlines

bitline

=0 =0
Figure 6: The key concept.
4. FUNDAMENTAL BUILDING BLOCKS

The fundamental building blocks of the proposed memris-
tive Boltzmann machine are (1) storage elements, (2) a cur-
rent summation circuit, (3) a reduction unit, and (4) a con-
sensus unit. The design of these hardware primitives must
strike a careful balance among multiple goals: high memory
density, low energy consumption, and in sifu, fine-grained
parallel computation.

4.1 The Storage Elements

As mentioned in Section 2.1, every instance of the Boltz-
mann machine can be represented by a matrix W, compris-
ing the connection weights, and a vector x consisting of the
current binary states of the processing units. The weight ma-
trix is iteratively accessed to update the state variables until
convergence is reached. This iterative process requires all-
to-all communication among the processing units, which re-
sults in excessive memory traffic and significantly limits the
overall performance. These data movement overheads be-
come even more pronounced in large scale Boltzmann ma-
chines.

To alleviate the energy and performance overheads of the
data movement, this paper (1) decreases the distance over
which the data are moved by employing dense memory struc-
tures, and (2) reduces the amount of data transferred among
the storage cells and the processing units by enabling in situ
computation within the memory arrays.

2SPICE simulations are conducted to accurately model the behav-
ior of the transistors, memristive elements, and parasitic resistances
of the bitlines (Section 6.2).

A conventional 1-transistor, 1-memristor (1T-1R) array is
employed to store the connection weights (the matrix W),
while the relevant state variables (the vector x) are kept close
to the data arrays holding the weights (Figure 7). The mem-
ristive 1T-1R array is used for both storing the weights, and
for computing the dot product between these weights and
the state variables. During the dot product computation, the
state variables are used to enable the corresponding word-
lines and bitlines.

State Variables (x) Connection Weights (W)

3 D f " "

3 0 G

E SEDT ,f@ ,jﬁ ,jrl’H
wotr |

Controller

Compulte Signal

DS —— bps }{ Ds |

Interface to the Data Interconnect

Figure 7: The proposed array structure.

4.1.1 Computing within the Data Array

During a dot product computation, the wordlines and the
bitlines of the memristive array are selectively activated ac-
cording to the vector x. The x;s are used to enable the bitline

drivers, while the wordlines are controlled by the xis.3 As a
result of this organization, the content of a memristive cell—
representing a single bit of the connection weight w j;—is ac-
cessed only if both x; and x; are set to one. This results in
a primitive bit product operation, x; - x; - wj;, which is sup-
plemented with column summation to compute the machine
energy (Equation 1).

4.1.2 Updating the State Variables

At every step of the energy optimization (Equation 1),
each processing unit employs a probabilistic model to up-
date its own state based on the states of its neighbors. As
a result, updating the state variables is crucial to the system
energy and performance. Moreover, high quality solutions
can be found within a limited time only if one of the units
connected to each active link* updates its state [11]. Selec-
tively updating the state variables, however, generates extra
memory traffic, which limits the performance and energy ef-
ficiency.

To minimize the overhead of data movement due to state
updates, static CMOS latches are used to store the state vari-
ables at the periphery of the memristive data arrays. In ad-
dition to in situ dot product computation, this physical orga-
nization is employed to obtain all of the state variables that
may flip simultaneously. A data array is used to represent an
incidence matrix B corresponding to W, where b; is set to
1 if wj; # 0, and to O otherwise. Due to the computational
capability of the data array, reading row i from the array re-
sults in computing x; - x; - b;;, which determines all of the ac-
tive rows connected to unit i. This capability is employed to

3The sensing units typically are time multiplexed among multiple
bitlines to amortize their high energy and area costs; without loss
of generality, the degree of multiplexing is assumed one here.

4An active link is a non-zero edge between two units i and j, where
Xi =X j= 1.

speedup state updates in optimization problems and weight
updates in deep learning tasks.

4.1.3 Storing the Connection Weights

Reading and writing the connection weights involves ac-
tivating a single wordline and sensing the voltage on the cor-
responding bitlines. All of the vector control circuits (i.e.,
the gray area of Figure 7) need to be bypassed during a read
or write access. This is accomplished using a control signal
(compute) from the controller that indicates whether a dot
product computation or an ordinary data access is requested.
Unlike the binary state variables, the connection weights are
represented in fixed point, two’s complement format (Sec-
tion 5.1.2).

4.2 The Current Summation Circuit

The result of a dot product computation can be obtained
by measuring the aggregate current pulled by the memory
cells connected to a common bitline. Computing the sum
of the bit products requires measuring the total amount of
current per column and merging the partial results into a sin-
gle sum of products. This is accomplished by local column
sense amplifiers and a bit summation tree at the periphery of
the data arrays.

4.2.1 The Column Sense Amplifier

The column sense amplifier quantizes the total amount
of current pulled through a column into a multi-bit digital
value. This is equivalent to counting the number of ones
within a selected column, and is accomplished by a succes-
sive approximation mechanism [45] using parallel sample
and hold (S/H) units (Figure 8).

read vdd input
|

Latch. — sample

T
output

Selected
column

Figure 8: Column sensing circuitry.

Each S/H unit comprises a latch for holding the data, and
an OR gate for sampling. A current mirror produces an am-
plified copy of the current pulled by the column, which is
then converted to an input voltage using a pull-down load,
and subsequently is fed into a differential amplifier [46]. The
differential amplifier employs a reference voltage to output a
one-bit value indicating whether the sensed voltage is greater
than the reference voltage. As aresult, a single bit of the final
quantized result is obtained on every comparison. The ref-
erence voltage is generated by a digital-to-analog converter
(DAC) [47]. The proposed summation circuit is used either
to compute the sum of the bit products, or to read a single
cell. When used for computing the sum of the bit products,
the number of cells attached to each column determines the
precision required for the summation circuit.> We therefore
limit the number of rows in each data array, and explore a
hierarchical summation technique based on local sense am-
plifiers and a novel reduction tree.

3 A detailed discussion on the impact of precision on the fidelity of
the optimization results is provided in Section 5.1.

4.2.2 The Bit Summation Tree

A bit summation unit merges the partial sums generated
by the column sense amplifiers (Figure 9). The sum is seri-
ally transmitted upstream through the data interconnect as
it is produced. Multiple bit summation trees process the
columns of the array in parallel. For example, each row of
a 512x512 data array can contain 16 words, each of which
represents a 32-bit connection weight (w;;). Every group of
32 bitlines forms a word column and connects to the connec-
tion weights across all of the rows. The goal is to compute
the sum of the products for each word column. All of the bit-
lines within a word column are concurrently quantized into
16 (512/32) partial sums, which are then merged to produce
a single sum of products.

column sense
amplifiers

Figure 9: The proposed bit summation circuit.

Design Challenges. One challenge in designing the column
sensing circuit is the precision of the current summation,
which is affected by variability, noise, and parasitics. Al-
though the stochastic nature of the Boltzmann machine goes
a long way toward tolerating inaccuracy, a large machine
would still require more efficient techniques to become vi-
able. This paper proposes a hierarchical approach to com-
puting the dot product of very large matrices and state vec-
tors.

4.3 The Reduction Unit

To enable processing large matrices using multiple data
arrays, an efficient data reduction unit is employed. The re-
duction units are used to build a reduction network, which
sums the partial results as they are transferred from the data
arrays to the controller. Large matrix columns are parti-
tioned and stored in multiple data arrays, where the par-
tial sums are individually computed. The reduction network
merges the partial results into a single sum. Multiple such
networks are used to process the weight columns in parallel.
The reduction tree comprises a hierarchy of bit-serial adders
to strike a balance between throughput and area efficiency.

Figure 10 shows the proposed reduction. The column is
partitioned into four segments, each of which is processed
separately to produce a total of four partial results. The par-
tial results are collected by a reduction network comprising
three bi-modal reduction elements. Each element is config-
ured using a local latch that operates in one of two modes:
forwarding, and reduction. A full adder is employed by each
reduction unit to compute the sum of the two inputs when
operating in the reduction mode. In the forwarding mode,
the unit is used for transferring the content of one input up-
stream to the root. This reduction unit is used to implement
efficient bank-level H-trees (Section 5.2).

4.4 The Consensus Unit

The next state of the processing units is determined by
a set of consensus units based on the final energy change
computed by the reduction tree. Recall from Section 2.1

A Large
Matrix

Column - Output

mode output

Sforwarding A

reduction A+B

Figure 10: Illustration of the reduction element.

that the Boltzmann machine relies on a sigmoidal activa-
tion function, which plays a key role in both the optimiza-
tion and the machine learning applications of the model. A
precise implementation of the sigmoid function, however,
would introduce unnecessary energy and performance over-
heads. As shown in prior work [48, 49], reduced complex-
ity hardware—relying on subsampling and linear or super-
linear approximation—can meet high performance and en-
ergy efficiency requirements at the cost of a negligible loss
in precision. The proposed memristive accelerator employs
an approximation unit using logic gates and lookup tables to
implement the consensus function (Figure 11).

t

decimal poi;

=

64 evenly sampled points from sigmoid
i]

2
(5 08
}Q
E EB
A 64x16 | £ 04
2] N 02
= Look-up i~ o i
g Table S T4 a2 0 1203 4,

In (Energy Difference)

Accept/Reject Pseudo Random Generator]

Figure 11: The proposed unit for the activation function.

The table contains 64 precomputed sample points of the
sigmoid function f(x) = ﬁ where x varies between —4
and 4. The samples are evenly distributed on the x axis. Six
bits of a given fixed point value are used to index the lookup
table and retrieve a sample value. The most significant bits
of the input data are ANDed and NORed to decide whether
the input value is outside the domain [—4,4]; if so, the sign
bit is extended to implement f(x) =0 or f(x) = 1; otherwise,

the retrieved sample is chosen as the outcome.

S. SYSTEM ARCHITECTURE

Figure 12 shows the hierarchical organization of the mem-
ristive Boltzmann machine, which comprises multiple banks
and a controller. The banks operate independently, and serve
memory and computation requests in parallel. For example,
column 0 can be multiplied by the vector x at bank O while
a particular address of bank 1 is read. Within each bank,
a set of subbanks is connected to a shared interconnection
tree. The bank interconnect is equipped with reduction units
to contribute to the dot product computation. In the reduc-
tion mode, all subbanks actively produce the partial results,
while the reduction tree selectively merges the results from
a subset of the subbanks. This capability is useful for com-
puting the large matrix columns partitioned across multiple
subbanks. Each subbank consists of multiple mats, each of
which is composed of a controller and multiple data arrays.
The subbank tree transfers the data bits between the mats
and the bank tree in a bit-parallel fashion, thereby increasing
the parallelism.

Chip

Subbank Mat

i \Reduction Subbank Data Array
Controller ! Tree Tree

Figure 12: Hierarchical organization of a chip.

5.1 Array Organization

The data array organization is crucial to the energy and
performance of the memristive accelerator.

5.1.1 Data Organization

To amortize the cost of the peripheral circuitry, the columns
and the rows of the data array are time shared. Each sense
amplifier is shared by four bitlines. The array is vertically
partitioned along the bitlines into 16 stripes, multiples of
which can be enabled per array computation. This allows
the software to keep a balance between the accuracy of the
computation and the performance for a given application by
quantizing more bit products into a fixed number of bits.

5.1.2 Data Representation

In theory, the Boltzmann Machine requires performing
computation on binary states and real-valued weights. Prior
work, however, has shown that the Boltzmann machine can
still solve a broad range of optimization and machine learn-
ing problems with a negligible loss in solution quality when
the weights are represented in a fixed-point, multi-bit for-
mat [50, 51]. Nevertheless, we expect that storing a large
number of bits within each memristive storage element will
prove difficult [52, 38].

One solution to improve the accuracy is to store only a
single bit in each RRAM device, and to spread out a single
scalar multiplication over multiple one-bit multiplications
(Section 4.1). The weights are represented in two’s com-
plement format. Each compute operation results in a partial
sum, which is serially transferred over a single data wire. If
xj = 0 (Equation 3), the partial sums are multiplied by —1
using a serial bit negator comprising a full adder and an XOR
gate.

5.2 Bank Organization

Each bank is able to compute the dot products on its own
data and update the corresponding state variables indepen-
dently.® This is accomplished by a consensus unit at each
bank. To equalize the access latency to the subbanks within
each bank, the bank interconnect is organized as an H-tree.
A fixed subset of the H-tree output wires is equipped with
the reduction units to form a reduction tree (Section 4.3).
At every node of the reduction H-tree, a one-bit flag is used
to determine the operational mode. These flags form a pro-
grammable reduction chain for each bank. Prior to solving
an optimization or machine learning problem, a fixed length
reduction pattern is generated by the software and serially
loaded into the chain. For example, a reduction tree con-
nected to 1024 subbanks would require 1023 cycles to pro-

%A minimal data exchange among the banks is coordinated by the
chip controller to perform the necessary state updates.

gram all of the flags.” The same reduction pattern is applied
to all of the banks in parallel.

Regardless of the problem type, the reduction pattern only
depends on the number of units and connection weights in
the Boltzmann machine. Every reduction pattern is specifi-
cally generated for an input problem based on (1) the maxi-
mum number of partial sums that can be merged by the bank
reduction tree (A), and (2) the problem size in terms of the
number of required partial sums to be merged per each com-
putation (I'). Figure 13 depicts how the reduction pattern is
generated when A is eight and I is five. A binary tree is
used where each leaf represents a partial sum. Each leaf is
marked with one if its partial sum contributes to the aggre-
gate sum, and with a zero otherwise. These values are prop-
agated to the root by applying a logical AND at each inter-
mediate node: a node is set to one if at least one of the right
children and one of the left children are set to one. Note that
the reduction pattern generation is a one time process per-
formed by the software prior to configuring the accelerator.

A—- g Required Segment
: r > {
Partial Sums AT A7 1] 5 Unused Segment

Leaves

Intermediate{ o 0

vy

0 @ l Value Propagation

Nodes

Figure 13: Generating an example reduction pattern for
A=8andI'=5.

5.3 On-chip Control

The proposed hardware is capable of accelerating opti-
mization and deep learning tasks by appropriately configur-
ing the on-chip controller. The controller (1) configures the
reduction trees, (2) maps the data to the internal resources,
(3) orchestrates the data movement among the banks, (4)
performs annealing or training tasks, and (5) interfaces to
the external bus.

Configuring the Reduction Tree. Software generates the
reduction pattern and writes to specific registers in the ac-
celerator; the chip controller then loads the data bits into the
flag chains.

Address Remapping. The key to efficient computation with
the proposed accelerator is the ability to merge a large frac-
tion (if not all) of the partial sums for a single column of
the weight matrix. This is made possible by a flexible ad-
dress mapping unit that is programmed based on the prob-
lem size. For an m x n weight matrix, the software has to
stream the weights into the chip in a column major format.®
When initializing the accelerator chip with the weight ma-
trix, an internal counter keeps track of the number of trans-
ferred blocks, which is used to find the destination row and
column within an internal data array. The least significant
bits of the counter are used to determine the subbank and
row IDs, while the rest of the bits identify the mat, stripe,
column, and bank IDs. (Zero padding is applied to the half
full stripes within each data array.) As a result of this inter-
nal address remapping, an external stream of writes is evenly
distributed among the subbanks regardless of the original ad-

7The programming cost of the flags is modeled in all of the perfor-
mance and energy evaluations (Section 7).

8This data transfer is accurately modeled in the evaluation.

dresses.

Synchronizing the States. Due to the internal address remap-
ping, weights and states are stored at predefined locations,
and the control process is significantly simplified. Each bank
controlle—comprising logic gates and counters—synchronizes
computation within the subbanks, collects the results, and
updates the state variables. During an optimization process,
compute commands are periodically sent to the subbanks
such that the gap between consecutive commands guaran-
tees the absence of conflicts on the output bus. The arrays
and the reduction trees produce and send the results to the
bank controller. A consensus unit is employed to compute
the next states as the results arrive. Each 1-bit state variable
is then transferred to the other banks. In a 64-bank chip, a
bank controller receives up 63 state bits from the other bank
controllers. The state variables are then updated via the input
wires of the subbanks.

Annealing and Training. To perform an annealing (for op-
timization) or a training (for learning) task, iterative update
mechanisms are implemented at the chip controller. When
training the accelerator, the state variables are transferred
among the banks at every training epoch; subsequently, the
weights are computed and written to the arrays. At every it-
eration of the annealing schedule, a new temperature is sent
to all of the banks. An internal register stores the current
temperature, which is set to the initial temperature () at the
beginning of an optimization task. A user-defined anneal-
ing factor (B) is applied to the current temperature using an
integer multiplier and an arithmetic shifter.

Interfacing. The interface between CPU and the accelera-
tor is required for (1) configuring the chip, (2) writing new
weights or states, and (3) reading the outcome. Prior to a
data transfer, software must configure the device by selec-
tively writing to a set of control registers. All of the data
transfers take place through a set of data buffers. Along
the lines of prior work by Guo et al. [23, 24], both con-
figuration and data transfer accesses are performed by ordi-
nary DDRx reads and writes. This is made possible because
(1) direct external accesses to the memory arrays are not al-
lowed, and (2) all accesses to the accelerator are marked as
strong-uncacheable [53, 54] and processed in-order. When
writing the weights and states, the internal address remap-
ping unit guarantees a uniform distribution of write accesses
among the subbanks. As a result, consecutive external writes
to a subbank are separated by at least 64 writes. This is a suf-
ficiently wide gap that allows an ongoing write to complete
before the next access. After transferring the weights, the
accelerator starts computing. The completion of the process
is signaled to the software by setting a ready flag. The out-
come of the computation is read from specific locations on
the accelerator by the software.

5.4 DIMM Organization

To solve large-scale optimization and machine learning
problems whose state space does not fit within a single chip,

it is possible to interconnect multiple accelerators on a DIMM [55].

Each DIMM is equipped with control registers, data buffers,
and a controller. This controller receives DDRx commands,
data, and address bits from the external interface, and or-

chestrates computation among all of the chips on the DIMM.
Software initiates the computation by writing the configura-
tion parameters to the control registers.

5.5 Software Support

To make the proposed accelerator visible to software, its
address range is memory mapped to a portion of the physical
address space. A small fraction of the address space within
every chip is mapped to an internal RAM array, and is used
for implementing the data buffers and the configuration pa-
rameters. Software configures the on-chip data layout and
initiates the optimization by writing to a memory mapped
control register. To maintain ordering, accesses to the accel-
erator are made uncacheable by the processor [53, 54].

6. EXPERIMENTAL SETUP

Circuit, architecture, and application level simulations were
conducted to quantify the area, energy, and performance of
the proposed accelerator.

6.1 Architecture

We modify the SESC simulator [56] to model a baseline
eight-core out-of-order processor. The memristive Boltz-
mann machine is interfaced to a single-core system via a
single DDR3-1600 channel. Table 1 shows the simulation
parameters.

Core Type 4-issue cores, 3.2 GHz, 176 ROB entries
Instruction L1 |32KB, direct-mapped, 64B block, hit/miss: 2/2

Data L1 32KB, 4-way, LRU, 64B block, hit/miss: 2/2, MESI
Shared L2 [8MB, 16-way, LRU, 64B block, hit/miss: 15/12
Memory 8KB row buffer, 8Gb DDR3-1600 chips,

Configuration |Channels/Ranks/Banks: 4/2/8
Timing 'RCD: 11,'CL: 11,"™WL: 5, 'CCD: 4, "WR: 12, 'RP: 11, 'RC: 39,
(DRAM cycles) ['WTR: 6, 'RTP: 6, 'RRD: 5, 'RAS: 28, 'BURST: 4, 'FAW: 32

DRAM || Cache

Memristive Channels/Chips/Banks/Subbanks: 1/8/64/64, 1Gb DDR3-1600
Boltzmann compatible chips, 'Read: 4.4ns, 'Write: 52.2ns, 'Update: 3.6ns,
Machine YRead: 0.8V, YWrite: 1.3V, YUpdate: 0.8V

Table 1: Simulation parameters.

We develop an RRAM based PIM baseline. The weights
are stored within data arrays that are equipped with integer
and binary multipliers to perform the dot products. The pro-
posed consensus units, optimization and training controllers,
and mapping algorithms are employed to accelerate the an-
nealing and training processes. When compared to exist-
ing computer systems and GPU-based accelerators, the PIM
baseline can achieve significantly higher performance and
energy efficiency because it 1) eliminates the unnecessary
data movement on the memory bus, 2) exploits data paral-
lelism throughout the chip, and 3) transfers the data across
the chip using energy efficient reduction trees. The PIM
baseline is optimized so that it occupies the same area as
that of the memristive accelerator.

6.2 Circuits

We model the data array, sensing circuits, drivers, local ar-
ray controller, and interconnect elements using SPICE pre-
dictive technology models [57] of NMOS and PMOS tran-
sistors at 22nm. Circuit simulations are conducted using
Cadence (SPECTRE) [58] to estimate the area, timing, dy-
namic energy, and leakage power. (The parasitic resistance
and capacitance of the wordlines and bitlines are modeled

based on the interconnect projections from ITRS [38]). We
use NVSim [59] with resistive memory parameters (R p =
315K and Ry; = 1.1G) based on prior work [36] to evalu-
ate the area, delay, and energy of the data arrays. The full
adders, latches, and the control logic are synthesized using
the Cadence Encounter RTL Compiler [60] with FreePDK [61]
at 45nm. The results are first scaled to 22nm using scaling
parameters reported in prior work [62], and are then scaled
using the FO4 parameters for ITRS LSTP devices to model
the impact of using a memory process on peripheral and
global circuitry [63, 64]. The current summation circuit is
modeled following a previously proposed methodology [65,
59] and is optimized for quantizing 32 rows per stripe when
10% resistance variation is considered for the memory cells.
Since the RRAM cells require a write voltage higher than
the core Vdd, we modeled the design of a charge pump cir-
cuit [66, 67] at the 22nm technology node to obtain the rele-
vant area, power and delay parameters used in NVSim. All
SRAM units for the lookup tables and data buffers are evalu-
ated using CACTI 6.5 [68]. We use McPAT [69] to estimate
the processor power.

6.3 Applications

We develop a software kernel that provides the primitives
for building Boltzmann machines. We use geometric an-
nealing schedules with & = max{}_ ;|w;;|} and B = 0.95 for

Max-Cut, and o = W and 8 = 0.97 for Max-SAT. We
set the annealing process to terminate when the temperature
reaches zero and no further energy changes are accepted [12,
70]. The kernel supports both single and multi-threaded ex-

ecution.

6.4 Data Sets

We select ten matrices used for graph optimization from
the University of Florida collection [71] to solve the Max-
Cut problem. We use ten instances of the satisfiability prob-
lem in circuit and fault analysis [72, 73] to evaluate Max-
SAT. On deep learning applications, a set of 400 grayscale

images of size 64 x 64—from the Olivetti database at ATT [74]—

are used to train a four-layer deep belief net (similar to [1s5p.2
Table 2 shows the specifications of the workloads.

MC-1: bp_0(822x3275) MC-2: cage(366x2562) MC-3: can_838(838x4586)
MC-4: cegh2802(2802x 137334) MC-5: celegans_metabolic(453 x2025)

MC-6: dwt_992(992x7876) MC-7: G50(3000x6000)

MC-8: netscience(1589x2742) MC-9: str_0(363 x2452) MC-10: uk(4824 x6837)

Max-Cut

MS-1: s5a0432-003(435x1027)" MS-2: f600(600 x2550)

MS-3: s5a2670-141(986x2315) MS-4: £1000(1000 x4250)
MS-5: 55a7552-160(1391 x3126) MS-6: bf2670-001(1393 x3434)
-7: $5a7552-038(1501 x3575) MS-8: £2000(2000x 8500)
MS-9: bf1355-638(2177x4768) MS-10: bf1355-075(2180x6778)

DBN-1: (1024 x256x 64 x 16)* DBN-2: (2048 x512x 128 x32)
DBN-3: (4096x1024x256 x64) DBN-4: (8192x2048x512x128)

ML | Max-SAT
=
7]
~3

§ (nodes xedges); T (variablesxclauses); ¥ the number of hidden units
(layerl xlayer2 xlayer3 xlayer4)

Table 2: Workloads and input datasets.

6.5 Baseline Systems

We choose state of the art software approximation algo-
rithms for benchmarking. We use a semi-definite program-
ing (SDP) solver [76] for solving the Max-Cut problem. We

9We assume mini-batches of size 10 for training [75].

also use MaxWalkSat [77], a non-parametric stochastic op-
timization framework, as the baseline for the maximum sat-
isfiability problem. These baseline algorithms are used for
evaluating the quality of the solutions found by the proposed
accelerator.

7. EVALUATION

This section presents the area, delay, power, and perfor-
mance characteristics of the proposed system.

7.1 Area, Delay, and Power Breakdown

Figure 14 shows a breakdown of the compute energy, leak-
age power, compute latency, and the die area among dif-
ferent hardware components. The sense amplifiers and in-
terconnects are the major contributors to the dynamic en-
ergy (41% and 36%, respectively). The leakage is mainly
caused by the current summation circuits (40%) and other
logic (59%), which includes the charge pumps, write drivers,
and controllers. The computation latency, however, is mainly
due to the interconnects (49%), the wordlines, and the bit-
lines (32%). Notably, only a fraction of the memory arrays
need to be active during a compute operation. A subset of
the mats within each bank perform current sensing of the
bitlines; the partial results are then serially streamed to the
controller on the interconnect wires. The experiments in-
dicate that a fully utilized accelerator chip consumes 1.3W,
which is below the peak power rating of a standard DDR3
chip (1.4W [78, 79]).10

M Others

Peak Energy (8.6 nJ)
Leakage Power (405 mW)
Compute Latency (6.59 ns)
Die Area (25.67 mm2)

0%

Figure 14: Area, delay, and power breakdown.

Interconnects B Sense Amplifiers Data Arrays

AW

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7.2 Performance

Figure 15 shows the performance on the proposed accel-
erator, the PIM architecture, the multicore system running
the multi-threaded kernel, and the single core system run-
ning the SDP and MaxWalkSAT kernels. The results are
normalized to the single-threaded kernel running on a sin-
gle core. The results indicate that the single-threaded ker-
nel (Boltzmann machine) is faster than the baselines (SDP
and MaxWalkSAT heuristics) by an average of 38%. The
average performance gain for the multi-threaded kernel is
limited to 6% due to significant state update overheads (Sec-
tion 4.1.2). PIM outperforms the single-threaded kernel by
9.31x. The memristive accelerator outperforms all of the
baselines (57.75x speedup over the single-threaded kernel,
and 6.19x over PIM). Moreover, the proposed accelerator
performs the deep learning tasks 68.79 x faster than the single-
threaded kernel and 6.89 x faster than PIM (Figure 16).

7.3 Energy

Figure 17 shows the energy savings as compared to PIM,
the multi-threaded kernel, SDP, and MaxWalkSAT. On av-
erage, energy is reduced by 25x as compared to the single-
threaded kernel implementation, which is 5.2x better than

101f necessary, power capping mechanisms may be employed on the
chip to further limit the peak power consumption.

10

Multi-threaded Kernel EPIM M Memristive Accelerator

Baseline

=
= 5]
o S

Speedup over the
Single-threaded Kernel

e

Ty e e ooy yn o n e aols
O 0 O LU U ouU oo o0 0 Vu oYLV Vv v N v n v o
5555355353535 =25=:333332E

&)

Figure 15: Performance on optimization.

Multi-threaded Kernel EBEPIM N I\/Ileoré)ristive Accelerator

<] O]
5, f B2
23 s =8
v > =
-4 S2% 10
7))

@ = v
-Sw'c :5'-"5
.58 R
&T £ =& 1

S (S|

z =z =z =z g
o o o9 @ £
AR A A &

DBN-1
DBN-2
DBN-3
DBN-4
Geomean

Figure 16: Performance on deep learning.

PIM. For the deep learning tasks, the system energy is im-
proved by 63x, which is 5.3 better than the energy con-
sumption of PIM.

—

= gmo 7 Baseline N Multi-threaded Kernel E2PIM M Memristive Accelerator

Bt

v

Z X

E‘)E 10

£3

z £ J

w5 N

=2 A

2080 0.1 g a

CE T AYIR YN P QS gyg0Twen o g3 g
&

Figure 17: Energy savings on optimization.
7.4 Solution Quality

We evaluate the quality of the solutions and analyze the
impact of various causes of imprecision.

7.4.1 Quality of the Optimization

The objective function used in evaluating the quality of a
solution is specific to each optimization problem. For Max-
Cut, the objective function is the maximum partitioning cost
found by the algorithm; in contrast, Max-SAT searches for
the largest number of satisfiable clauses. We evaluate the
quality of the optimization procedures run on different hard-
ware/software platforms by normalizing the outcomes to that
of the corresponding baseline heuristic (Figure 18). The av-
erage quality figures of 1.31x and 0.96x are achieved, re-
spectively, for Max-Cut and Max-SAT when running on the
proposed accelerator. Therefore, the overall quality of the
optimization is 1.11x.

7.4.2 Limited Numerical Precision

One limitation of the proposed accelerator is the reduced
precision due to the fixed point representation. This limita-
tion, however, does not impact the solution quality signifi-
cantly. We observed that a 32-bit fixed point representation
causes a negligible degradation (<1%) in the outcome of the
optimization process and the accuracy of the learning tasks.
This result confirms similar observations reported in prior
work [50, 51].

Maximum Cut Maximum SAT E Geomean
v

I

111

o

Quality of
Optimization
- MY

T

g?'
il

0.2

-
=
<

Figure 18: Outcome quality.

7.4.3 Sensitivity to Process Variations

Memristor parameters may deviate from their nominal val-
ues due to process variations caused by line edge rough-
ness, oxide thicknes fluctuation, and random discrete dop-
ing [80]. These parameter deviations result in cycle-fo-cycle
and device-to-device variabilities. We evaluate the impact
of cycle-to-cycle variation on the outcome of the compu-
tation by considering a bit error rate of 107> in all of the
simulations, along the lines of the analysis provided in prior
work [81, 82]. The proposed accelerator successfully toler-
ates such errors, with less than 1% change in the outcome as
compared to a perfect software implementation.

The resistance of RRAM cells may fluctuate because of
the device-to-device variation, which can impact the out-
come of a column summation—i.e., a partial dot product.
We use the geometric model of memristance variation pro-
posed by Hu et al. [83, 84] to conduct Monte Carlo sim-
ulations for 1 Million columns, each comprising 32 cells.
The experiment yields normal distributions for Ry o and Ryy
samples with respective standard deviations of 2.16% and
2.94%. We then find a bit pattern that results in the largest
summation error for each column. Figure 19 shows the dis-

tribution of conductance values for the ideal and sample columns,

as well as the cumulative distribution (CDF) of the conduc-
tance deviation. We observe up to 2.6 x 10~ deviation in
the column conductance, which may result in up to 1 bit er-
ror per summation. Subsequent simulation results indicate
that the accelerator can tolerate this error, with less than 2%
change in the outcome quality.

Sample

Ideal Column Error

o
w

Occurance
Probability
(=}
()

o
_

o oo
[N

Cumulative
Probability

(=}

0
0.0E+0 1.0E-6 2.0E-6 3.0E-6
Conductance Deviation

2.0E-5 4.0E-5 6.0E-5 8.0E-5 1.0E-4
Column Conductance (1/R)

Figure 19: Process variation.

7.4.4 Finite Switching Endurance

RRAM cells exhibit finite switching endurance ranging
from 10° to 10'2 writes [36, 37, 35]. We evaluate the im-
pact of finite endurance on the lifetime of an accelerator
module. Since wear is induced only by the updating of the
weights stored in memristors, we track the number of times
that each weight is written. The edge weights are written
once in optimization problems, and multiple times in deep
learning workloads. (Updating the state variables, stored in
static CMOS latches, does not induce wear on RRAM.) We
track the total number of updates per second to estimate the
lifetime of an eight-chip DIMM. Assuming endurance pa-
rameters of 10° and 10° writes [36], the respective module
lifetimes are 3.7 and 376 years for optimization, and 1.5 and

11

151 years for deep learning.

7.5 Discussion

This section explains several practical constraints when
using the proposed accelerator.

Problem Size. The proposed accelerator is capable of pro-
cessing Boltzmann machines with at least two units, although
not all problems can be solved efficiently. Figure 20 shows
the speedups achieved over the multi-threaded kernel by PIM
and the proposed accelerator as the number of units varies
from two to 256. The proposed accelerator outperforms PIM
for all problem sizes; however, due to the excessive initial-
ization time, the multi-threaded kernel achieves higher opti-
mization speed on small problems (<20 units).

10 Memristive Boltzmann Machine

1 i

Kernel

Speedup over
Multi-threaded

e

T
100 150
Number of Units

Figure 20: Sensitivity to the problem size.

T
200

a

250

Interfacing to the CPU. A host CPU emits control com-
mands to the accelerator through an API on behalf of a user
application. First, memory is allocated on the accelerator
and the required data is transferred from main memory. The
accelerator is then configured for the problem and the opti-
mization begins. Finally, the outcome of the optimization is
read by the processor from the local buffers of the acceler-
ator. The communication interface between the accelerator
and the CPU consumes 5% of the execution time.

8. CONCLUSIONS

The Boltzmann machine is an important type of model
used for solving hard optimization and learning problems.
It demands massively parallel computation at a very fine
granularity. Unlike existing solutions, the proposed acceler-
ator enables in situ computation within conventional RRAM
arrays by exploiting the natural electrical properties of the
RRAM cells. Novel control techniques and configurable in-
terconnects eliminate unnecessary latency, bandwidth, and
energy overheads associated with streaming the data out of
the memory arrays during the computation process. We con-
clude that the proposed system exhibits significant potential
for improving the performance and energy efficiency of large
scale combinatorial optimization and deep learning tasks.

9. ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
useful feedback. This work was supported in part by NSF
grant CCF-1533762.

10. REFERENCES

[1] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1982.

[2] T. M. Mitchell, Machine Learning. New York, NY, USA:
McGraw-Hill, Inc., 1 ed., 1997.

[3] I. Wegener, “Simulated annealing beats metropolis in combinatorial
optimization,” Electronic Colloquium on Computational Complexity,
2004.

(4]

(5]

[6

[t

[7

—

[8

[t

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski, “Massively parallel
architectures for AI: NETL, Thistle, and boltzmann machines,” in
Proceedings of Association for the Advancement of Artificial
Intelligence (AAAI), pp. 109-113, 1983.

D. L. Ly, V. Paprotski, and D. Yen, “Neural networks on gpus:
Restricted boltzmann machines,” see http://www. eecg. toronto. edu/”
moshovos/CUDAOS8/doku. php, 2008.

Y. Zhu, Y. Zhang, and Y. Pan, “Large-scale restricted boltzmann
machines on single gpu,” in Big Data, 2013 IEEE International
Conference on, pp. 169-174, Oct 2013.

C. Lo and P. Chow, “Building a multi-fpga virtualized restricted
boltzmann machine architecture using embedded mpi,” in
Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pp. 189—198, 2011.

S. K. Kim, L. McAfee, P. McMahon, and K. Olukotun, “A highly
scalable restricted boltzmann machine fpga implementation,” in Field
Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pp. 367-372, Aug 2009.

D. L. Ly and P. Chow, “High-performance reconfigurable hardware
architecture for restricted boltzmann machines.,” IEEE Transactions
on Neural Networks, vol. 21, no. 11, pp. 1780-1792, 2010.

L.-W. Kim, S. Asaad, and R. Linsker, “A fully pipelined fpga
architecture of a factored restricted boltzmann machine artificial
neural network,” ACM Trans. Reconfigurable Technol. Syst., vol. 7,
pp. 5:1-5:23, Feb. 2014.

E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural
Computing. New York, NY, USA: John Wiley & Sons, Inc., 1989.

A. d’Anjou, M. Grana, F. Torrealdea, and M. Hernandez, “Solving
satisfiability via boltzmann machines,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15, no. 5, pp. 514-521, 1993.

M. Anthony, ed., Discrete Mathematics of Neural Networks. Society
for Industrial and Applied Mathematics, 2001.

Y. Bengio, “Learning deep architectures for ai,” Found. Trends Mach.
Learn., vol. 2, pp. 1-127, Jan. 2009.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality
of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504-507, 2006.

G. E. Hinton, “Learning multiple layers of representation,” Trends in
cognitive sciences, vol. 11, no. 10, pp. 428-434, 2007.

A. Fischer and C. Igel, “An introduction to restricted boltzmann
machines,” in Progress in Pattern Recognition, Image Analysis,
Computer Vision, and Applications, pp. 14-36, Springer, 2012.

M. Welling and G. E. Hinton, “A new learning algorithm for mean
field boltzmann machines,” in Proceedings of the International
Conference on Artificial Neural Networks, ICANN 02, (London,
UK, UK), pp. 351-357, Springer-Verlag, 2002.

M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive
divergence learning,” in Proceedings of the tenth international
workshop on artificial intelligence and statistics, pp. 33-40, 2005.

D. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and
R. McKenzie, “Computational ram: Implementing processors in
memory,” IEEE Des. Test, vol. 16, pp. 32—41, Jan. 1999.

M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the
terasys massively parallel pim array,” Computer, vol. 28, pp. 23-31,
Apr 1995.

M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A
computation model for intelligent memory,” SIGARCH Comput.
Archit. News, vol. 26, pp. 192-203, Apr. 1998.

Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A resistive tcam accelerator for
data-intensive computing,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,

pp. 339-350, 2011.

Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm:
associative computing with stt-mram,” in ACM SIGARCH Computer
Architecture News, pp. 189-200, 2013.

R. Genov and G. Cauwenberghs, “Kerneltron: Support vector
‘machine’ in silicon.,” in SVM (S.-W. Lee and A. Verri, eds.),
vol. 2388 of Lecture Notes in Computer Science, pp. 120-134,

12

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

(34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Springer, 2002.

R. Genov and G. Cauwenberghs, “Charge-mode parallel architecture
for vector-matrix multiplication,” Circuits and Systems II: Analog
and Digital Signal Processing, IEEE Transactions on, vol. 48,

pp. 930-936, Oct 2001.

F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in
resistive random access memories: materials, switching mechanisms,
and performance,” Materials Science and Engineering: R: Reports,
vol. 83, pp. 1-59, 2014.

C. Ho, C.-L. Hsu, C.-C. Chen, J.-T. Liu, C.-S. Wu, C.-C. Huang,

C. Hu, and F.-L. Yang, “9nm half-pitch functional resistive memory
cell with <Ipa programming current using thermally oxidized
sub-stoichiometric wo x film,” in Electron Devices Meeting (IEDM),
2010 IEEE International, pp. 19-1, IEEE, 2010.

B. Govoreanu, G. Kar, Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini,
I. Radu, L. Goux, S. Clima, R. Degraeve, et al., “10x 10nm 2 hf/hfo
x crossbar resistive ram with excellent performance, reliability and
low-energy operation,” in Electron Devices Meeting (IEDM), 2011
IEEE International, pp. 31-6, 2011.

A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S.
Williams, “Sub-nanosecond switching of a tantalum oxide
memristor,” Nanotechnology, vol. 22, no. 48, p. 485203, 2011.

B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan,
M.-X. Zhang, D. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S.
Williams, “Electrical performance and scalability of pt dispersed sio2
nanometallic resistance switch,” Nano letters, vol. 13, no. 7,

pp- 3213-3217, 2013.

S. Lai, “Current status of the phase change memory and its future,” in
Electron Devices Meeting, 2003. IEDM’03 Technical Digest. IEEE
International, pp. 10-1, IEEE, 2003.

C. Cheng, C. Tsai, A. Chin, and F. Yeh, “High performance ultra-low
energy rram with good retention and endurance,” in Electron Devices
Meeting (IEDM), 2010 IEEE International, pp. 194, IEEE, 2010.

M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y.-B.
Kim, C.-J. Kim, D. H. Seo, S. Seo, et al., “A fast, high-endurance and
scalable non-volatile memory device made from asymmetric

tayos_, /tao,_, bilayer structures,” Nature materials, vol. 10, no. 8,
pp. 625-630, 2011.

C.-W. Hsu, L.-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H.
Lin, and T.-H. Hou, “Self-rectifying bipolar tao x/tio 2 rram with
superior endurance over 10 12 cycles for 3d high-density
storage-class memory,” in VLSI Technology (VLSIT), 2013
Symposium on, pp. T166-T167, IEEE, 2013.

C. Cheng, A. Chin, and F. Yeh, “Novel ultra-low power rram with
good endurance and retention,” in VLSI Technology (VLSIT), 2010
Symposium on, pp. 85-86, June 2010.

H. Akinaga and H. Shima, “Resistive random access memory (reram)
based on metal oxides,” Proceedings of the IEEE, vol. 98,
pp- 22372251, Dec 2010.

ITRS, International Technology Roadmap for Semiconductors: 2013
Edition.
http://www.itrs.net/Links/2013ITRS/Home2013.htm.

R. Kozma, R. E. Pino, and G. E. Pazienza, Advances in
Neuromorphic Memristor Science and Applications. Springer
Publishing Company, Incorporated, 2012.

J. Wang, Y. Tim, W. Wong, and H. H. Li, “A practical low-power
memristor-based analog neural branch predictor,” in International
Symposium on Low Power Electronics and Design (ISLPED),
Beijing, China, September 4-6, 2013, pp. 175-180, 2013.

C. Yakopcic, R. Hasan, T. Taha, M. McLean, and D. Palmer,
“Memristor-based neuron circuit and method for applying learning
algorithm in spice?,” Electronics Letters, vol. 50, pp. 492-494,
March 2014.

M. D. Pickett, G. Medeiros-Ribeiro, and R. S. Williams, “A scalable
neuristor built with Mott memristors,” Nature materials, 2012.

A. M. Sheri, A. Rafique, W. Pedrycz, and M. Jeon, “Contrastive
divergence for memristor-based restricted boltzmann machine,”
Engineering Applications of Artificial Intelligence, vol. 37, pp. 336 —
342, 2015.

M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an integrated

[45]

[46]

(471
(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

neuromorphic network based on metal-oxide memristors,” Nature,
vol. 521, pp. 61-64, 2015.

B. Razavi, Principles of data conversion system design. New York,
NY, USA: Wiley-IEEE Press, 1995.

N. S. R.L. Geiger, PE. Allen, VLSI design Techniques for Analog and
Digital Circuits. New York, NY, USA: McGraw-Hill Publishing
Company, 1990.

W. Kester and I. Analog Devices, “Data conversion handbook.”

M. Tommiska, “Efficient digital implementation of the sigmoid
function for reprogrammable logic,” Computers and Digital
Techniques, IEE Proceedings -, vol. 150, pp. 403—411, Nov 2003.

D. Larkin, A. Kinane, V. Muresan, and N. E. O’Connor, “An efficient
hardware architecture for a neural network activation function
generator.,” in ISNN (2) (J. Wang, Z. Y. 0001, J. M. Zurada, B.-L. Lu,
and H. Yin, eds.), vol. 3973 of Lecture Notes in Computer Science,
pp. 1319-1327, Springer, 2006.

M. Skubiszewski, “An exact hardware implementation of the
boltzmann machine,” in Parallel and Distributed Processing, 1992.
Proceedings of the Fourth IEEE Symposium on, pp. 107-110, Dec
1992.

P. Wawrzynski and B. Papis, “Fixed point method for autonomous
on-line neural network training,” Neurocomputing, vol. 74, no. 17,
pp. 2893 — 2905, 2011.

S. Duan, X. Hu, L. Wang, and C. Li, “Analog memristive memory
with applications in audio signal processing,” Science China
Information Sciences, pp. 1-15, 2013.

Intel Corporation., JA-32 Intel Architecture Optimization Reference
Manual, 2003.

Advanced Micro Devices, Inc., AMDG64 Architecture Programmer’s
Manual Volume 2: System Programming, 2010.

Micron Technology, Inc.,
http://www.micron.com//document_download/?documentld=4297,
TN-41-08: Design Guide for Two DDR3-1066 UDIMM Systems
Introduction, 2009.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
January 2005. http://sesc.sourceforge.net.

W. Zhao and Y. Cao, “New generation of predictive technology
model for sub-45nm design exploration,” in International Symposium
on Quality Electronic Design, 2006.

“Spectre circuit simulator.” http://www.cadence.com/
products/cic/spectre_circuit/pages/default.aspx.

X. Dong, C. Xu, Y. Xie, and N. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile
memory,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 31, pp. 994-1007, July 2012.

“Encounter RTL compiler.”
http://www.cadence.com/products/ld/rtl_compiler/.

“Free PDK 45nm open-access based PDK for the 45nm technology
node.” http://www.eda.ncsu.edu/wiki/FreePDK.

M. N. Bojnordi and E. Ipek, “Pardis: A programmable memory
controller for the ddrx interfacing standards,” in Computer
Architecture (ISCA), 2012 39th Annual International Symposium on,
pp. 13-24, IEEE, 2012.

N. K. Choudhary, S. V. Wadhavkar, T. A. Shah, H. Mayukh,

J. Gandhi, B. H. Dwiel, S. Navada, H. H. Najaf-abadi, and

E. Rotenberg, “Fabscalar: composing synthesizable rtl designs of
arbitrary cores within a canonical superscalar template,” in
Proceeding of the 38th annual international symposium on Computer
architecture, pp. 11-22, 2011.

S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and N. P.
Jouppi, “A comprehensive memory modeling tool and its application
to the design and analysis of future memory hierarchies,” in
Computer Architecture, 2008. ISCA’08. 35th International
Symposium on, pp. 51-62, 2008.

M. Zangeneh and A. Joshi, “Design and optimization of nonvolatile
multibit 1t1r resistive ram,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 22, pp. 1815-1828, Aug 2014.

M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Design of charge pump

13

[67]

[68]

[69]

[70]

(711

[72]

[73]

(741

(751

[76]

(771

[78]

(791

[80]

[81]

[82]

(83]

[84]

circuit with consideration of gate-oxide reliability in low-voltage
cmos processes,” Solid-State Circuits, IEEE Journal of, vol. 41,
pp. 1100-1107, May 2006.

G. Palumbo and D. Pappalardo, “Charge pump circuits: An overview
on design strategies and topologies,” Circuits and Systems Magazine,
IEEE, vol. 10, pp. 31-45, First 2010.

S. Wilton and N. Jouppi, “CACTI: An enhanced cache access and
cycle time model,” vol. 31, pp. 677-688, May 1996.

S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
International Symposium on Computer Architecture, 2009.

H. Suzuki, J. ichi Imura, Y. Horio, and K. Aihara, “Chaotic
boltzmann machines,” Scientific Reports, vol. 3, pp. 1-5, 2013.

T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, Dec. 2011.

T. Larrabee, “Test pattern generation using boolean satisfiability,”
IEEE Transactions on Computer-Aided Design, vol. 11, pp. 4-15,
1992.

J. Ferguson and T. Larrabee, “Test pattern generation for realistic
bridge faults in cmos ics,” in In Proceedings of International Test
Conference, pp. 492-499, IEEE, 1991.

“Olivetti-att-orl.”
http://www.cs.nyu.edu/ roweis/data.html.

G. E. Hinton, “A practical guide to training restricted boltzmann
machines,” Technical Report 2010-003, Department of Computer
Science, University of Toronto, 2010.

R. O’Donnell and Y. Wu, “An optimal sdp algorithm for max-cut,
and equally optimal long code tests,” in Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC 08, (New
York, NY, USA), pp. 335-344, ACM, 2008.

H. Kautz, B. Selman, and Y. Jiang, “A general stochastic approach to
solving problems with hard and soft constraints,” in The Satisfiability
Problem: Theory and Applications, pp. 573-586, American
Mathematical Society, 1996.

Micron Technology, Inc.,
http://www.micron.com//get-document/?documentld=416, 8Gb
DDR3 SDRAM, 20009.

Micron, Technical Note TN-41-01: Calculating Memory System
Power for DDR3, June 2009.
https://www.micron.com/~/media/Documents/Products/
Technical’,20Note/DRAM/TN41_01DDR3_Power.pdf.

A. Asenov, S. Kaya, and A. R. Brown, “Intrinsic parameter
fluctuations in decananometer mosfets introduced by gate line edge
roughness,” Electron Devices, IEEE Transactions on, vol. 50, no. 5,
pp. 1254-1260, 2003.

D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on
emerging memristor,” in Design Automation Conference (DAC),
2010 47th ACM/IEEE, pp. 877-882, IEEE, 2010.

D. Niu, Y. Xiao, and Y. Xie, “Low power memristor-based reram
design with error correcting code,” in Design Automation Conference
(ASP-DAC), 2012 17th Asia and South Pacific, pp. 79-84, Jan 2012.

M. Hu, H. Li, Y. Chen, X. Wang, and R. E. Pino, “Geometry
variations analysis of tio 2 thin-film and spintronic memristors,” in
Proceedings of the 16th Asia and South Pacific design automation
conference, pp. 25-30, IEEE Press, 2011.

M. Hu, H. Li, and R. E. Pino, “Fast statistical model of tio 2 thin-film
memristor and design implication,” in Proceedings of the
International Conference on Computer-Aided Design, pp. 345-352,
2011

