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Abstract—Adapting in-package caching to run-time character-
istics of user applications seems a promising approach to improve
bandwidth efficiency and performance. However, fine-grained
cache block monitoring and adaptation are often impractical
due to the significant bandwidth and energy overheads. This
paper proposes RedCache that enables fine-grained adaptation at
run-time via reduced DRAM caching. Two adaptive parameters
are proposed to start and stop caching for individual blocks.
Architectural techniques and DRAM specific control mechanisms
are proposed to alleviate overheads. Our simulation results indicate
averages of 31% and 24% performance improvements over the
state-of-the-art Alloy and Bear cache architectures. Respective
energy savings over the same baselines are 29% and 18% on
average.

I. INTRODUCTION

3D die-stacked DRAM has been proposed to enable gigascale
in-package memory systems providing bandwidths in the excess
of Tbps [1]–[6]. One promising design approach to exploiting
such bandwidth potentials is to build a cache for accelerating
data intensive applications. Existing DRAM cache proposals
have examined two different approaches for fine- and coarse-
granularity cache architectures. While coarse-grained DRAM
caches [4], [6]–[9] reduce the tag management overhead by
increasing the size of cache blocks from tens of bytes to
kilo-bytes, a fine-grained cache [1]–[3] provides a better data
management within the cache space. This paper centers on
improving the efficiency of DRAM caching for a class of data-
intensive parallel applications that do not benefit from coarse-
grained caching.

One of the key challenges in fine-grained cache architecture is
the high cost of monitoring individual cache blocks at run-time.
This has been the main motivation behind numerous stochastic
solutions for DRAM caching in the literature [3], [6], [10]. In
particular, stochastic mechanisms have used sampling counters
for page placement [10], replacement policy in coarse-grained
architectures [6], and bypassing the DRAM cache during a
miss fill [3]. While these solutions are effective in reducing the
implementation costs, they may lead to making costly inaccurate
decisions and become suboptimal solutions. Therefore, more
recent work [11] suggests tracking the reuse of cache lines to
guide the replacement decisions for sequential applications.

We introduce a fine-grained DRAM cache management ar-
chitecture, called RedCache, that relies on reducing the load
of DRAM cache adaptively with respect to the application
characteristics at run-time. RedCache provides a more deter-
ministic approach to run-time monitoring of individual cache
blocks through a low cost framework. Using a pair of upper (γ)
and lower (α) bounds, all of the data accesses are monitored
to identify bandwidth-hungry data blocks. RedCache tunes the
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bounds at run-time to better capture the characteristics of each
application and aims at caching only the bandwidth-hungry
blocks in the DRAM cache. RedCache employs DRAM to
store the information of individual blocks and exploits a novel
WideIO scheduling mechanism to access the block information
when the bandwidth overhead becomes minimum. The update
mechanism effectively alleviates the diverse impacts of updates
on the performance such that RedCache achieves virtually the
same performance as an ideal RedCache implementation with
in-situ processing capabilities.

Our simulation results on a set of eleven data intensive par-
allel applications indicate that RedCache achieves averages of
31% and 24% performance improvements over the state-of-the-
art Alloy and Bear cache architectures, respectively. Respective
energy savings over the same baselines are 29% and 18% on
average.

II. DESIGN PRINCIPLES

Caching is not free and may not be useful for all data blocks
due to low bandwidth efficiency and frequent block updates.

A. Bandwidth Efficiency

Here, we consider three system topologies to analyze the
bandwidth efficiency of HBM-based caches (Figure 1). We
model a No-HBM system comprising a multicore CPU and
off-chip DRAM without an HBM cache. We also consider
an IDEAL HBM system that employs a perfect HBM cache
with 100% hit rate. IDEAL never misses a requested cache
block; however, it consumes additional bandwidth and storage
for tag checks. The No-HBM and IDEAL systems represent
two extreme cases in comparison with a third system using a
normal HBM cache between the CPU and off-chip DRAM.
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Fig. 1. Example system topologies for No-HBM (a), IDEAL (b), and HBM
cache (c).

We study the efficiency of all three systems through measur-
ing the aggregate bandwidth consumption and the transferred
data over the WideIO and DDRx interfaces. Figure 2 shows
how bandwidth efficiency is impacted by system topology (a)
and data granularity (b). Each design point represents relative
amounts of aggregated bandwidth and data transfer averaged
across all of the evaluated applications. In the system topology
plot, all of the design points are normalized to No-HBM.



IDEAL with more channels consumes about 6× of the No-
HBM bandwidth and requires 33% more data to be transferred
on the WideIO and DDRx interfaces. This significant increase
in the bandwidth utilization results in a 4.5× superior perfor-
mance over No-HBM. The HBM cache system benefits from
both WideIO and DDRx interfaces to utilize a slightly higher
bandwidth than IDEAL. However, a considerable portion of the
WideIO and DDRx bandwidths is consumed for transferring
blocks between main memory and HBM, which results in
40% performance degradation over IDEAL. Based on these
observations, we set our design objectives towards balancing
the bandwidth utilization and the amount of data movement
over the interfaces.
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Fig. 2. Impacts of system topology (a) and data granularity (b) on the bandwidth
efficiency.

Figure 2(b) shows three HBM cache systems using various
data granularities (i.e., 64, 128, and 256 bytes) for transferring
cache blocks between main memory and HBM. (All the num-
bers are normalized to 64B HBM.) For the evaluated parallel
benchmarks, we observe respective averages of 12% and 21%
hit-rate improvements when increasing the granularity from 64B
to 128B and 256B. However, using coarse grained blocks results
in a significantly larger bandwidth consumption and more
transferred data, thereby degrading the average performance by
8-24%.
B. Bandwidth Requirements

Figure 3 shows the relationship between bandwidth costs
and the number of block reuses for different applications in
the No-HBM system. On the y-axis, each plot represents the
total amount of off-chip bandwidth consumed over the course
of execution for various blocks. Every point on the x-axis
indicates a set of all data blocks with the same number of
reuses, called a homo-reuse group. To accurately capture the
applications’ characteristics, we compute the bandwidth cost
based on the exact number of DDRx cycles required for serving
each DRAM request. For the evaluated benchmarks, we observe
that a considerable amount of bandwidth cost is due to accessing
only a subset of cache blocks that exhibit a narrow range of
reuses. This observation motivates us to design a low cost
mechanism that identifies these costly blocks and transfers them
to the HBM cache. Details on the proposed techniques are
provided in the next sections.

C. Last Block Updates

Most applications exhibit a common pattern for updating the
HBM blocks, which can be used for improving the bandwidth
efficiency. We observe that for evaluated benchmarks, more than
82% of the last accesses to cache blocks in HBM cache are
writebacks from the CPU to update a cache line. These last
write accesses are counterproductive mainly because they (1)
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Fig. 3. Bandwidth requirements for four example parallel applications.

introduce an unnecessary bandwidth and energy overhead for
updating cache lines before being moved to the main memory
and (2) impose an additional bandwidth overhead for changing
the HBM bus direction from a read for tag checking to a
write for updating data. The recent studies prove that avoiding
frequent changing of bus direction improves the performance
and energy efficiency of a system [12], [13]. One difficulty is
to accurately recognize the last writes among all the requests
generated for each application. RedCache employs a monitoring
mechanisms on individual cache blocks to identify the last
writes and route them to DRAM directly.

III. ADAPTIVELY REDUCED CACHING

RedCache proposes a novel control mechanism for managing
bandwidth-hungry data in the HBM cache. One way to identify
costly cache blocks for insertion into HBM is to compute a
reuse count for each individual block and compare the resultant
value against a threshold to determine if the block contributes in
bandwidth consumption significantly. Beside reuse counts, the
population of blocks with the same number of reuses determines
the significance of bandwidth consumption by each group of
homo-reuse blocks1. Figure 4 illustrates the computed reuse
counts for an example application and a histogram plot of the
bandwidth costs required by homo-reuse blocks. (Real examples
of such histograms are provided in Figure 3.)
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Fig. 4. Demonstration of how α and γ can help to define costly cache blocks
for insertion into HBM.

L, H, and X are three cache blocks that exhibit the key
attributes of three possible classes of data. The entire dataset
is classified using two reuse count thresholds, α and γ. The
α parameter determines the minimum number of reuses for a
block to be identified as highly reused data. Cache blocks with
reuse counts less than α, such as L, are not able to amortize the
bandwidth and storage costs of caching in HBM due to their
relatively low reuse counts. As a result, RedCache prefers to
keep such L-type blocks in the off-chip DRAM even if they

1This paper identifies multiple data block as homo-reuse if they exhibit the
same number of reuses at runtime.



require high memory bandwidths. The γ parameter threshold
is defined to categorize the highly reused blocks based on the
significance of bandwidth consumption made by homo-reuse
groups. H-type blocks are highly reused and contribute to the
majority of bandwidth consumption. In contrast, despite their
high reuse counts, the X-type blocks require a relatively lower
bandwidth. RedCache transfers the H- and X-type data to the
HBM cache; however, the X-type blocks are considered as the
first candidates for eviction or invalidation from HBM if further
capacity for H-type blocks is necessary. Please note that α and
γ are determined at run-time based on application demeanor.
Caching the frequently access blocks and on-chip dead block
prediction mechanism have been explored by recent work in
the literature [14]–[18]. RedCache is different from dead block
prediction solutions in the following ways. First, almost all of
dead block methods try to increase hit rate or decrease power
consumption using prediction and stochastic solutions. Second,
in dead block prediction, some status bits need to be kept that
leads to an extra accesses to DRAM cache located in a different
die. This accesses leads to performance and energy-efficiency
degradation. Third, dead block prediction evict some blocks
with zero reuse that may waste the bandwidth and performance.
In RedCache, the goal is to improve system performance and de-
crease system energy by increasing the efficiency of bandwidth
utilization in HBM caches by identifying bandwidth-hungry
blocks rather than evicting dead blocks. Moreover, instead
of evicting zero reuse blocks, we only invalidate some low
bandwidth-hungry blocks during only write operations without a
need to an additional access to the DRAM cache. We believe the
existing dead block prediction solutions in the case of DRAM
cache are largely unable to improve performance and bandwidth
efficiency.

A. Runtime Block Classification

A perfect implementation of the RedCache block manage-
ment requires a global knowledge of the ultimate number of
block reuses and the aggregate bandwidth consumptions for
homo-reuse groups per every user application, which is not
feasible. Instead, RedCache proposes an adaptive block man-
agement mechanism that employs runtime counters to estimate
the bandwidth costs and the number of block reuses. The
proposed mechanism employs the counters to constantly tune
the α and γ thresholds based on the runtime characteristics of
applications. Theoretically, every cache block requires a pair
of α- and γ-counters that compute the number of reuses for
adjusting the thresholds and maintaining data in HBM. The α-
counter computes the number of accesses to every cache block
stored in the main memory before placement in the HBM cache.
Whereas, the γ-counters track the total number of reuses for
individual cache blocks in the HBM cache before eviction.

1) Alpha Counting: As alpha counting is necessary for the
entire memory space, every cache block requires a counter.
However, tracking each cache block with a counter may result
in a significant memory overhead. For example, a 32GB main
memory requires a 512MB additional space for storing 8-bit
α-counts per 64B data blocks. In addition to the significant
area and capacity overheads, accessing a large table of α-
counts may result in large energy and delay overheads per
memory access, thereby degrading performance and energy-

efficiency. RedCache reduces the costs of α-counts through (1)
sharing counters among cache blocks, (2) storing the counts in
the main memory, and (3) buffering only a subset of the α-
counts on the processor die for fast and energy-efficient block
management. For evaluated benchmarks, we observed that the
majority of cache blocks within each 4KB OS page exhibit the
same reuse counts. We compute he average standard deviation
bins of number of reused blocks within a page across all the
evaluated applications. Our results show that in average, 90%
of blocks inside a page falls into [0,1), 6% of the blocks falls
into [1,2) and the rest belong to other intervals. Based on this
observation, RedCache provides a single α-count to compute the
average number of accesses to all the 64B blocks within each
4KB page. Therefore, the memory requirement for maintaining
α-counts is decreased by 64×. Similar to existing work [6],
[19] , the count values are added to the page table in the main
memory. 2 On every update to the CPU TLBs (i.e., miss rate in
TLBs is low [6], [20]), the α-counts are fetched from the main
memory (as the part of the page table ) and stored in a buffer at
the block manager of the RedCache controller. RedCache enjoys
a virtually free ride by the existing mechanism for accessing α-
counts stored in the main memory [21]. An on-chip buffer with
the same number of entries as in the CPU TLBs is used to store
the α-counts for physical page numbers (Figure 5). For every
incoming memory request, the contents of a corresponding α-
count is updated and its new value is sent to the block manager
logic. Then, the block manager determines if the block is yet
placed in the HBM cache.
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Fig. 5. Illustrative example of the proposed alpha counting mechanism.

2) Gamma Counting: Gamma counting is only necessary for
the existing cache blocks in HBM. The γ-counts may be stored
as parts of the tag bits. For example, every 64B data block with
8B tags and ECC is now augmented with an additional byte
that represents the reuse count. (A 1.3% memory overhead is
required for storing the reuse counts.) Each reuse count is set
to zero once its corresponding block is placed in HBM and
is incremented on every following reads and writes.3 A cache
block becomes a candidate for invalidation from HBM if its
reuse count is greater than or equal to the adaptive γ value.
In other words, γ represents an expected lifetime for the HBM
cache blocks at any time.

Not only do multiple applications exhibit different lifetimes
but also the expected lifetime varies during the execution of a
single application. The γ value is updated on a regular basis to
capture the temporal characteristics of each execution phase. On
every cache hit, RedCache uses the count value of the recently
accessed block to compute the new γ (Figure 6). To average
out the abrupt deferences among the counts, we adopt a linearly
ascending/descending approach to update γ. The count and γ
values are compared by the block manager. If they are different,
γ will be incremented or decremented to reduce the gap.

2We can store them in the main memory independent of page tables. The
overhead would be 8MB.

3In practice, RedCache employs saturating counters for tracking block reuses.
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B. System Overview

The block manager at the RedCache controller follows the
operations shown in Figure 7 to optimize HBM caching based
on the proposed alpha and gamma counting mechanisms. All
the caching operations are optimized based on the assumption
that a single tag and data may be accessed per every transfer on
the HBM interface. All memory requests need an initial read
access for tag checking, where it also fetches the data from
HBM to the controller. On a read hit, no follow up accesses
are necessary; however, a second HBM access is required if the
request is a write hit. The three main components of the flow are
(1) alpha counting and forwarding the least frequently accessed
blocks to the main memory, (2) gamma counting and evicting
the last writes from HBM, and (3) normal HBM caching for
the bandwidth hungry blocks.
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Fig. 7. Example flow of the necessary operations for applying alpha and gamma
counting in RedCache.

C. Counter-based Implementation

Recent studies shows changing bus direction from a read
to a write for updating data is expensive in terms of latency
and energy. For instance, this bus turnaround delay tWTR is
about 7.5-9.5 ns for multiple DDR generations [12], [13].
To alleviate the high cost of block updates in RedCache, we
propose an r-count update (RCU) manager that supplements
the WideIO command scheduler. On every read hit, the RCU
manager receives a copy of the block with updated r-count.
The block is stored in an internal buffer that accommodates
up to 32 entries. Figure 8 shows an illustrative example of
the RCU architecture including the RCU manager logic, a 32-
entry content-addressable memory (CAM) for block indices,
and a 32-entry random addressable memory (RAM) for storing
the cache blocks. The RCU manager relies on a set of status
signals from the transaction queue to decide when an update can

be performed with a minimal impact on bandwidth-efficiency
and performance. To accomplish this goal, the RCU manager
postpones each r-count update until at least one of the following
events occurs. (1) The command scheduler serves a block write
to the same index—i.e., channel, rank, bank, and row—as that
of the queued RCU request. Therefore, the additional delay by
the RCU request can be lowered to tCCD. This condition is
evaluated by the CAM component on every write issued by
the command scheduler. (2) The transaction queue becomes
empty. Thus, all of the queued RCU request are served without
delaying any cache requests. (3) The RCU queue is full. Our
simulation results on parallel applications indicate that in more
than 97% of the times, none of the condition becomes true. This
means that the additional latency will be reduced by a factor

tCCD
tBurst+tCWD+tWTR = 6.375. Moreover, it prevents changing
bus direction from read to write and vice versa which is a costly
operation. New
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Fig. 8. The proposed RCU manager.

The RCU queue can be viewed as a 2.5KB memory that
stores 32 recently read data. We observe that a number of
requested blocks by future accesses may be found in the RCU
queue. As a result, RedCache further employs the RCU buffer
as a block cache for eliminating some of the HBM accesses.

IV. EVALUATION

A. Methodology

We use the ESESC [22] simulator for modeling a multicore
processor system with three on-die cache levels. Similar to prior
work [23], [24], the simulator is heavily modified to model
an integrated cycle-accurate module for the in-package DRAM
under the WideIO interface. Also, we integrate a cycle-accurate
model for off-chip DRAM under the DDR4 memory interface.
On top of the WideIO controller, we implement the cache
controllers for the Alloy [2] and Bear [25] as baseline models.

To fully assess the performance and energy benefits of
RedCache, we implement six variants that include all or some of
the proposed optimizations. RedCache is the main architecture
that includes alpha and gamma counting, Bypass due to refresh
as well as the RCU management to alleviate the cost of r-
count updates. We also model a basic version of the RedCache,
called Red-Basic, that exclude the RCU management from the
RedCache.

For better understanding of the potentials, we also model
a more futuristic architecture with in-DRAM processing capa-
bilities. This baseline system is called Red-InSitu that enables
updating the r-counts inside DRAM layers with no need for
transferring r-count values over the WideIO bus. Red-InSitu
enriches the global row buffer to implement tag checking, r-
count updating, and gamma comparing.

We compute the area and delay overheads of in-situ r-count
management using the DRAM Power Model [26] tool with a
55nm technology. We then scale the results down to the DRAM
22nm technology. We also model Red-Gamma that represents



an in-DRAM version of gamma counting applied to the Alloy
caches. Red-Alpha is developed to represent a direct mapped
cache with alpha counting only.

To compute the per-access energy overhead of the proposed
controller, including table accesses for alpha counting and RCU
management, we use CACTI 7.0 [27]. The system energy and
power computation is done using the ESESC simulator [22]
in coordination with McPAT [28] tool for the processor die,
Micron power calculator [29] for the main memory, and prior
work on HBM memories [30] for the in-package DRAM cache
architecture.

For all of the evaluations, we consider a sixteen-core out-
of-order CPU with three levels of on-die cache. The L1 and
L2 are private per core; while the L3 is shared by all of
the cores. For the HBM cache system, we consider multiple
in-package DDR4 DRAM layers connected to the processor
die through an eight-channel WideIO interface [31]. The bus
width is 128 bits and HBM cache puts tags with data in the
unused ECC bits [32]. We model a 32GB main memory using
a two-channel DDR4 DRAM [33] that comprises two ranks
per channel and eight banks per rank. The access latency of
the main memory and HBM are considered the same. Table I
shows the simulation parameters considered for the baselines
and RedCache architectures.

TABLE I
THE EVALUATED SYSTEM CONFIGURATIONS.

Processor
Core 16 4-issue OoO cores, 256 ROB entries, 3.2 GHz

IL1/DL1 cache 64KB/64KB, 2-way/4 way, LRU, 64B block
L2 cache 128KB, 8-way, LRU, 64B block
L3 cache 8MB, 8-way, LRU, 64B block

DRAM cache
Specifications 2GB, 4 channels, 8 rank/channel,

16 banks/channel, 1600MHz DDR4, 128 bits per channel
Timing tRCD:44, tCAS:44, tCCD:16, tWTR:31, tWR:4, tRTP:46, tBL:10

(CPU cycles) tCWD:61, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181
Off-Chip Main Memory

Specifications 32GB, 2 channel, 2 ranks/channel,
8 banks/rank,1600 MHz DDR4, 64 bits per channel

Timing tRCD:44, tCAS:44, tCCD:61, tWTR:31, tWR:4, tRTP:46, tBL:10
(CPU cycles) tCWD:44, tRP:44, tRRD:16, tRAS:112, tRC:271, tFAW:181

B. Workloads

We assess the energy and performance potentials of the
proposed and baseline systems by executing 11 parallel appli-
cations. The selected parallel applications represent a mix of
data-intensive programs from the NAS [34], SPLASH-2 [35],
and Phoenix [36] benchmark suites. We use GCC to compile
all of the applications with -O3 flag. For all the benchmarks,
we consider warming up the cache until the cache is full; then,
we simulate the applicationuntil it completes.Table II shows the
workload characteristics and their corresponding input sets.

TABLE II
WORKLOADS AND DATA SETS.

Label Benchmarks Suite Input
FT Fourier Transform NAS Class A
IS Integer Sort NAS Class A

MG Multi-Grid NAS Class A
CH Cholesky SPLASH-2 tk29.0

RDX Radix SPLASH-2 2M integer
OCN Ocean SPLASH-2 514x514 ocean
FFT FFT SPLASH-2 1048576 data points
LU Lower/Upper Triangular SPLASH-2 isiz02=64

BRN Barnes SPLASH-2 16K particles
HIST Histogram PHOENIX 100MB file
LREG Linear Regression PHOENIX 50MB key file

C. Execution Time

Figure 9 indicates the relative system execution time of
different DRAM cache architectures normalized to Alloy Cache
for executing 11 parallel workloads. For all of the applications
both α and γ contribute in reducing the execution time; however,
the impact of α is greater than γ (27% versus 14%). The reason
is that γ plays a role in the case of write requests to invalidate
a blocks from the HBM-cache while α parameter contributes
in both read and write requests to decide when we should put
data blocks in the DRAM cache or when we should bypass it.
Besides, Figure 9 manifests by putting counter values wisely in
the RCU queue, RedCache can reach almost similar execution
time of Red-InSitu (i.e., about 98% of Red-InSitu). RedCache
outperforms Alloy Cache and Bear Cache baselines by 31% and
24% respectively while Red-InSitu outperforms them by 33%
and 26%.
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D. Energy

RedCache reduces DRAM cache energy for several reasons.
First, several accesses to the HBM cache will be omitted since α
parameter may decide to bypasses HBM cache (i.e., depending
upon the counter values) and guide the request to the main
memory directly. Second, due to exiting α parameter , if there is
miss and the existing block in HBM cache is dirty, the request
directly is sent to the main memory and hence writing back
the old dirty block into main memory and installing new cache
block into DRAM cache is removed. In addition, RedCache de-
crease execution time compared to exiting baselines. Figure 10
shows DRAM cache energy over the all possible configurations.
RedCache improves HBM cache energy by 37% and 42% over
the Bear and Alloy baselines. RedCache also outperforms Red-
InSitu because it does not perform any computation inside HBM
cache.
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Due to decreasing HBM cache energy, keeping bandwidth
hungry blocks in HBM cache and reducing the overall execution
time, the RedCahe decreases system energy as well. RedCache
ameliorate system energy by 29% and 18% compared to Alloy
and Bear Caches. Red-InSitu outperforms other architecture
since it doesn’t need to transfer the counter values over HBM
channels and reaches the best performance compared to other



baselines (33% over the Alloy Cache). Figure 11 indicates the
system energy consumption for all architectures.
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V. CONCLUSIONS

RedCache brings new insight for designing control mech-
anisms for DRAM caches, especially for the parallel appli-
cations that show considerable amounts of conflict misses in
DRAM cache. The insight is based on the new observations
of bandwidth requirement of a set of parallel applications.
RedCache proposes a unified architecture for block installation
and eviction and also bypassing HBM cache based on the exact
monitoring of dynamic behavior of applications. RedCache
creates a balance between bandwidth utilization, bandwidth
efficiency and caching overhead to improve performance and
system energy significantly.
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