
STFL: Energy-Efficient Data Movement with Slow Transition
Fast Level Signaling

Payman Behnam
University of Utah

behnam@cs.utah.edu

Mahdi Nazm Bojnordi
University of Utah

bojnordi@cs.utah.edu

ABSTRACT
Data movement in large caches consumes a significant amount of
energy in modern computer systems. Low power interfaces have
been proposed to address this problem. Unfortunately, the energy-
efficiency of these techniques is largely limited due to undue latency
overheads of low power wires and complex coding mechanisms.
This paper proposes a hybrid technique for slow-transition, fast-
level (STFL) signaling that creates a balance between power and
bandwidth in the last level cache interface. Combined with STFL
codes, the signaling technique significantly mitigates the perfor-
mance impacts of low power wires, thereby improving the energy
efficiency of data movement in memory systems. When applied
to the last level cache of a contemporary multicore system, STFL
improves the CPU energy-delay product by 9% as compared to a
voltage-frequency scaled baseline. Moreover, the proposed archi-
tecture reduces the CPU energy by 26% and achieves 98% of the
performance provided by a high-performance baseline.
ACM Reference Format:
Payman Behnam and Mahdi Nazm Bojnordi. 2019. STFL: Energy-Efficient
Data Movement with Slow Transition Fast Level Signaling. In The 56th
Annual Design Automation Conference 2019 (DAC ’19), June 2–6, 2019, Las
Vegas, NV, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3316781.3317819

1 INTRODUCTION
Contemporary microprocessors employ last level caches that oc-
cupy significant die area, and incur large energy and delay over-
heads due to exchanging data over long capacitive wires. The last
level cache and DRAM IO together dissipate 33% of the overall
system energy.This has been the motivation behind numerous ar-
chitectural mechanisms recently proposed for decreasing the data
movement energy in last level cache and DRAM interface. Despite
the existing proposals, current technology scaling trends indicate
that data movement energy will be even a more serious problem in
future computer systems [1].

Data movement on wires is typically carried out through signal
transitions between two voltage levels high and low that differenti-
ate the logical 1 and 0. Themaximumnumber of possible transitions
per second that can occur on a wire determines the data movement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317819

bandwidth. The switching activity on the wires results in dynamic
power dissipation. To reduce power consumption, one can decrease
the switching activity or down-scale the swing voltage between 0
and 1. Both these techniques may constrain bandwidth and degrade
performance. Therefore, a careful balance between power and band-
width must be struck to achieve the highest energy-efficiency in
last level caches.

This paper presents an architectural solution to achieve a higher
bandwidth in low power wires. As the transition speed is the key
bandwidth bottleneck in low power wires, the goal is to reduce the
number of transitions in every data block and employ a technique
that transfers signal levels faster. To the best our knowledge, STFL
is the first architectural technique for hybrid signaling on wires
of cache interfaces. The proposed hybrid signaling supported by
proper data encoding mechanisms becomes a suitable bandwidth
optimization to low-power wires, thereby creating new opportuni-
ties for system designers to further optimize energy-efficiency of
computer systems.

2 BACKGROUND AND MOTIVATION

Power Dissipation in On-Chip Wires. Figure 1 illustrates the
trade-off between delay and supply voltage in three wire repeaters
with 1X, 2X, and 4X strengths to drive capacitive wires of different
sizes (4X is stronger). We model the repeaters at the 22nm CMOS
technology node after the interconnect models used for last level
cache in CACTI 6.5 [2]. As the supply voltage decreases from 0.7V
to 0.48V, the delay increases by more than a 100%. This voltage
reduction results in lowering both static and dynamic power of
the interconnect; on the other hand, it may result in significant
performance degradation.

0

40

80

0.7 0.65 0.6 0.55 0.5 0.48

De
la

y
(p

s)

Supply Voltage (V)

4X 2X 1X
4X Wire Repeater

2X Wire Repeater

1X Wire Repeater

Figure 1: The impact of voltage scaling on wire repeaters at
the 22nm CMOS technology node.

Energy-Efficient Data Encoding.Data encoding has been widely
adopted in LLCs and memory interfaces to reduce power consump-
tion by lowering the bus activity and termination current. Bus invert
coding was first proposed by Stan et al. [3] to lower the dynamic
power dissipation in data wires. The basic mechanism transfers
either the true or complement of every data block that results in
less switching activity, thereby reducing the peak dynamic power.

https://doi.org/10.1145/3316781.3317819
https://doi.org/10.1145/3316781.3317819
https://doi.org/10.1145/3316781.3317819

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA P. Behnam and M.N. Bojnordi

Later, a variant of this technique, called data bus inversion (DBI) [4],
was applied to open drain interfaces to reduce the data movement
power by lowering the Hamming weight of the transferred data.
Recently, a cost aware flip optimization technique (CAFO) [5] has
been proposed for asymmetric memories that reduces the number
of 1 in a data block.

k limited weight codes (k-LWC) [6] belong to a sparse data
encoding class, where the codewords have a Hamming weight of
no more than k. For example, the 3-LWC maps every 11-bit data to
a 23-bit codeword with at most three 1s. A variation of the limited
weight codes, called SETS, is proposed by Song et al. [7] to reduce
bit-flips in last level caches. This method realizes an example of
sparse codes that consumes 4× more wires to represent one-hot
coded data transferred between the cache banks and the controller.

History based techniques have been explored to exploit the sim-
ilarities between the current and old data blocks to reduce bus
activity. BD encoding [8] compares the data to be sent over the data
bus with previously transferred blocks. Based on the outcome of
this comparison, only the difference between the data and the most
similar block along with its index are sent to the receiver. DESC [9]
employs synchronized counters at the receiver and transmitter to
represent data in terms of delay cycles between subsequent tran-
sitions. As a result, this mechanism can significantly reduce the
switching activity of the wires at the cost of longer transmission
times. The work in [10] proposes an adaptive approach that moni-
tors characteristics of applications and employs proper time-based
codes for LLC interconnects to reduce energy consumption consid-
erably.

3 STFL SIGNALING
To balance power and bandwidth in memory interfaces, the pro-
posed coding scheme exploits low power wires to achieve a lower
per-bit energy, and applies a novel STFL coding technique that in-
creases the throughput of those wires. On every STFL data transfer,
a transmitter encodes and sends information to a receiver over a set
of low power wires. STFL replaces the conventional voltage level
signaling with the transition signaling that makes it possible to
directly control the wire flips via encoding. (Instead of representing
1s with a high voltage level (VDD) and 0s with ground, every 1
is signaled using a transition between VDD and ground; while, 0s
represented with the absence of transitions.) The proposed STFL
transmitter is connected to low power wires and sends the data
bits at the same rate of a high performance wire, which may re-
sult in signal deterioration if consecutive transitions (i.e., 1s) are
transferred. To avoid data loss due to the signal deterioration, the
STFL transmitter needs to pause the transmission by injecting delay
cycles after every transition (i.e., 1). Following the same conven-
tion, the STFL receiver samples the low power wires at the high
performance rate and removes the corresponding samples to those
delay cycles inserted by the transmitter.
Design Principles. Figure 2 shows an illustrative example of data
transmission using high speed wire, low power wire, and STFL
interface. In this example, transition signaling is used to transfer
four bits of data on a single wire. The high speed wire provides the
fastest transmission time (t) at the cost of consuming more power,
whereas the low power wire is able to decrease power consumption

at the cost of doubling the transmission time (2t). STFL employs
low power wire to keep the transmission power low; it injects a
delay cycle (D) after every 1 in the original data to create new
STFL codewords; and transfers them at the same rate as in the high
speed wire. Therefore, STFL can reduce the transition time down
to 1.5t . This can be viewed as a hybrid data transmission technique
that transfers 0s at high speed and 1s at low power. As a result of
optimizing both power and time, STFL is now able to improve the
energy efficiency of data transmission compared to the other two
techniques.

0 0 1 1

t

(a) High speed
0 0 1 1

reduced power

2t

(b) Low power
0 0 1D 1D

reduced latency

1.5t

(c) STFL

Figure 2: Transferring a 4-bit data with transition signaling
on high speed wire (a), low power wire (b), and STFL inter-
face (c).
Design Challenges. One difficulty in realizing the proposed STFL
coding is the transmission time that increases with respect to the
number of 1s in the data—a.k.a., the Hamming weight. For example,
due to the additional delay cycles (Ds), transferring an all 1 pattern
requires double the transmission time of an all 0 block. (The longest
transition time is the same as that of the low power technique.)
STFL addresses this problem by leveraging encoding techniques
that limit the number of transferred 1s per transmission.

4 APPLYING STFL TO LARGE CACHES
Large caches are typically organized as a hierarchy of banks, sub-
banks, mats, sub-arrays, and multiple H-trees that are disciplined
by a cache controller. Independent banks are accessed simultane-
ously through a bank-level H-tree; each bank comprises a group of
sub-banks that share the wires of a vertical H-tree; within every
sub-bank, multiple mats are connected to a horizontal H-tree and
supply different bits of the cache block in a bit parallel fashion.
Every read and write access requires moving data over long and
capacitive wires within the H-trees, which results in significant
delay and power consumption [2, 9, 11]. STFL reduces the overall
data movement energy in the cache interconnects through (1) us-
ing low power wires in data H-trees, and (2) integrating a set of
STFL transmitters and receivers in the mats and cache controller to
perform data transmission.

We apply STFL to the input and output data buses transferring
a cache block between the cache controller and the selected mats
during every cache access. Figure 3 depicts transferring a 64-byte
cache block using an STFL interface with 16 groups. STFL divides
every cache block into multiple groups of four bytes. Each group is
converted to four STFL codewords transferred over four low power
data wires. STFL employs an existing low power wire to transfer the
encoding modes used for the four codewords. Finally, the receiver
detects the signals and converts the codes to the original data block.

4.1 Data Encoding with STFL
The proposed STFL mechanism exploits the similarities between
adjacent bytes (i.e., spatial locality) in every cache block to reduce

STFL: Energy-Efficient Data Movement with Slow Transition Fast Level Signaling DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Transmitted Data (64 bytes)

Transmission Buffers

STFL Encoders

STFL Decoders

...

Reception Buffers

Received Data (64 bytes)

data wires

mode wire

! " ...

...
Figure 3: Illustrative example of transferring a 64-byte cache
block using the STFL interface.
the Hamming weight of the codewords. This optimization is imple-
mented through defining multiple encoding modes for every byte
(α) to be transferred. The STFL encoder estimates the energy and
delay costs for all of the possible codewords through computing
the Hamming weight (Φ) of each candidate. Therefore, STFL selects
the codeword with less Hamming weight to be transferred for the
data byte. Table 1 shows the three possible encoding modes and the
corresponding codewords for every α . The mode is set to 000 if the
original data (α) is selected as the codeword. This mode is useful
for transferring low Hamming weight bytes, such as 00000000.1
STFL employs mode 01D for transferring the inverted data (α) to
reduce the number of 1s in heavy bytes, such as 11111111. The
1D0 mode is used for transferring the difference between α and its
adjacent byte β within the same group. Notice that the mode bits
of each group are serially transferred on a low power wire, thereby
requiring a D after every 1.

Table 1: STFL encoding.
Condition Codeword Mode

(Φ(α) ⩽ 4) ∧ (Φ(α ⊕ β) < Φ(α)) α ⊕ β 1D0
(Φ(α) > 4) ∧ (Φ(α ⊕ β) ⩾ Φ(α)) α 01D

Otherwise α 000

To avoid delay and energy overheads, STFL limits the XOR cod-
ing in mode 1D0 to every data group only. The rightmost byte of
each group may be XORed with a fixed constant value (01010101)
rather than its adjacent byte. Figure 4 illustrates the proposed en-
coding mechanism for STFL. The encoder employs two population
counters and a simple encoding logic to prepare data prior to trans-
mission on a data wire. Based on Table 1, the logic generates three
mode bits indicating which encoding is applied to the data (α). STFL
generates a total of 12 mode bits for all of the bytes in every data
group and transmits them using a single mode wire. Similarly, the
decoder employs Table 1 to convert the received codewords into the
original data. In addition to the encoder and decoder units, STLF
employs a transmitter and a receiver to generate and detect the
corresponding signals with every codeword.

> 4

Decoding
Logic

! "

"

!

Encoder Decoder

Transmitter

Receiver

data wire

mode wire

Population
Counter

Encoding Logic

Population
Counter

mode bits for "
Figure 4: Illustrative example of the STFL encoder and de-
coder.

1Prior work [9] shows that about 30% of the transferred bytes may be zero.

4.2 Low Power Signaling with STFL
STFL builds upon existing low-power signaling techniques and on-
chip interconnects. Low voltage swing wires are used to decrease
power consumption at the cost of a delay in the circuit due to the
increase in setup and hold time during transitions, which impacts
the interconnect bandwidth. Figure 5(a) shows the level converter
circuits used in STFL, which are designed based on the prior work
in internal bus architectures and low power interconnects [11–13].

Low Swing
Input

VLow VDD VDD

VLow Output

(a) Interfacing Circuits

(b) SPICE Validation

-0.1

0.4

0.9

0.1 0.412 0.724 1.036 1.348 1.66 1.972 2.284 2.596

Lo
w

 S
w

in
g

(V
)

Time (ns)

Time (ns)
-0.1

0.4

0.9

0.1 0.412 0.724 1.036 1.348 1.66 1.972 2.284 2.596

In
pu
t

(V
)

0 1 D 1 D 0

-0.1

0.4

0.9

0.1 0.412 0.724 1.036 1.348 1.66 1.972 2.284 2.596

O
ut
pu
t

(V
)

Time (ns)

0 D 1 D 1 0

Wire Delay

Figure 5: STFL interfacing circuits.
Figure 5(b) shows SPICE validation of the required STFL signal-

ing for a four-bit data (0110) at the 22nm technology node. Due to
the lower bandwidth of the wire, STFL translates every transition
from the full-swing domain into a rise or fall in the low swing
domain spanning two cycles. The low swing signals travel the wire
and arrive at the receiver after a certain wire delay. Due to the delay
of signal conversion at the receiver (Tc) and the transition time in
the low swing domain (Tl = 2), toggling the output latch on a low
swing transition is delayed by one cycle (Tout = Tl /2+Tc = 1+Tc).2
Unlike the input stream, the delay cycles appear before transitions
(1s) in the output. Moreover, STFL detects every delay cycle as a
dummy 0 before a 1 at the receiver, which has to be removed before
recovering the original data. For example, 01D1D0 will be received
as 001010 at the receiver. To further validate signal integrity of the
circuit, Figure 6 shows the eye diagrams plotted for three clock
periods of the low swing and output signals when transferring a
stream of 10000 0s and 1s.3 We consider a ±20mV noise on the Vdd,
Gnd, and low swing Vdd lines for this experiment.

Figure 6: Eye diagrams of low swing and output signals.

Overall, STFL trades speed for power efficiency by lowering
the voltage supplied to the communication wires (recall Figure 1).
2Assuming that a transition is detected within 35 − 65% of the voltage swing, Tc
ensures the one cycle delay before a transition being captured by the output latch.
3We observed a repeated 01 stream to be the worst case.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA P. Behnam and M.N. Bojnordi

Therefore, STFL is able to reduce both the static and dynamic power
dissipation in the cache interface. Transferring a codeword via the
proposed signaling technique requires a transmitter and a receiver.
Figure 7 shows how an 8-bit codeword is transferred over an exam-
ple STFL interface that includes three mechanisms for transmitting
codewords, receiving signals, and transferring mode bits.

Shift Register

F

Delay Injector

F

Transition
Generator

Shift

Level
Converter

8-bit
Codeword

STFL-LLC Transmitter

Shift Register

Level
Converter

F

Transition
Detector STFL-LLC Receiver

Shift

8-bit
CodewordLow Power Wire

Figure 7: Transferring STFL codewords.

Transmitting Encoded Data. To ensure the transition signals are
properly generated for each codeword, multiple steps are followed
by the STFL transmitter. First, STFL stores the eight-bit codeword
generated by the encoder in a parallel-in, serial-out shift register.
(Due to using the encoding modes as explained in Table 1, it is
guaranteed that every codeword contains no more than four 1s.)
STFL reads the code bits serially from the shift register and converts
them to transition signals using a transition generator comprising
a latch and an XOR gate. A delay injector controls the shift register
and maintains the previous output of the shift register. The delay
injector is connected to the shift register via an (active low) shift
signal; every 1 transmitted in the previous cycle disables the shift
register in the current cycle, thereby injecting a D after every 1
in the code. Since the shift register can now contain up to four
1s, the longest generated codeword is 12 bits long. To avoid the
complexity of variable length encoding, the transmitter is set to
produce fixed 12-bit codes (zero padding is required for the codes
with fewer 1s). The STFL codes are serially fed into a transition
generator circuit that translates every 1 into a flip on its output.
Finally, STFL employs the level converter to prepare the signals
prior to transmission on the low-power wires by converting from
full to low-swing.
Transmitting Mode Bits. Unlike codewords, mode bits can be
directly converted to the transition signals on the wire with no
need for delay injection. The STFL encoder generates a total of
12 mode bits for every four data bytes, where 1s are spaced out
by dummy 0s in the resultant bit pattern. Similarly to the data
codewords, transferring the mode bits requires 12 cycles.
Receiving STFL Signals. The STFL receiver makes use of a tran-
sition detector, consisting of an XOR gate and a flip-flop, to convert
the transition signals into 1s. From data wires, the result is sent to a
serial-in, parallel-out shift register. On every cycle, a newly detected
bit is fed to the shift register; moreover, the same bit controls the
shift operation. Every 0 results in shifting the content and inserting
the bit in the register; a 1, however, disables the shift operation
and overwrites the previously sampled value—which is a dummy 0.

Therefore, STFL removes all of the additional delay cycles by the
transmitter at the receiver. Finally, the result is sent to the STFL
decoder for extracting the original data block (Figure 4).

5 EVALUATIONS
5.1 Methodology
The area, delay, and power for the STFL encoders and decoders are
based on hardware synthesis with the FreePDK [14] library at the
45nm CMOS technology, which are then scaled to 22nm. We create
SPICE models using PTM [15] high-performance 22nm transistors
for all of the interfacing circuits and perform circuit simulations
to estimate energy and delay overheads. To make the interfacing
circuits practical, we sized the transistors for a safe setup and hold
time [16, 17]. Using McPAT [18], we estimate the overall processor
power consumption. A heavily modified version of ESESC [19]
is used to model the STFL interface in a multicore system that
simulates 12 memory-intensive applications from various multi-
threaded benchmark suites [20–22] (Table 2).

Table 2: Applications and data sets.
Label Benchmarks Input Label Benchmarks Input
FT Fourier Transform Class A LU LU 1024 × 1024Matrix
IS Integer Sort Class A RAY Ray Trace car
MG Multi-Grid Class A OCN Ocean 514x514 ocean
CG Conjugate Gradient Class A FFT FFT 1048576 data points
BT Block Tri-diagonal Class A BRN Barnes 16K particles
HIST Histogram 100MB file WCNT Word Count 10MB text file

We model the existing encoding techniques such as bus invert
coding [3], time-based data representation with DESC [9], sparse
encoding with SETS [7], history based BD encoding [8], and two-
dimensional block coding with CAFO [5]. These encoding tech-
niques are compared with the conventional binary encoding when
applied to the last level cache interfaces. CAFO-LLC is applied to
8 × 8 bit data blocks. Due to the significant area, delay, and en-
ergy overheads introduced by large tables of BD encoding, (1) a
smaller entry size is chosen for last level cache and (2) BD encoding
is applied to the bank level H-trees of last level cache. Moreover,
we model a voltage and frequency scaled (VFS) baseline for com-
parisons through exploring the application of binary encoding in
low power wires with reduced frequency for the last level cache
interface. This is accomplished via employing low voltage-swing
wires in the H-trees of last level cache. Table 3 shows the simulation
parameters for the evaluated systems.

Table 3: System parameters.
Core four 4-issue OoO cores, 128 ROB entries, 3.2 GHz

IL1/DL1 cache 32KB, 4-way, LRU, 64B block, hit/miss delay 1/1
L2 cache (shared) 4MB, 8-way, LRU, 64B block, hit/miss delay 8/2, MESI protocol
Temperature 360 K (77 ◦C)
DDR4-2400 tRCD: 14.16, tCL: 13.32, tWL: 16, tCCD: 4, tWTR: 7.5, tWR: 12, tRTP: 7.5,

tRP: 13.32, tRRD: 4, tRAS: 32, tRC: 45.32, tFAW: 30

Exploring theCacheDesign Space.Amodified version of CACTI
6.0 [23] is used to find the best configurations for last level caches us-
ing the baseline full swing and STFL interfaces. We employ energy-
delay product (EDP) [24] as the energy-efficiency metric for finding
the best cache configurations.We explore the design space of caches
with and without the STFL interface by varying different cache
parameters such as the number of banks, the data bus width, asso-
ciativity, and the device types from ITRS high performance (HP) to

STFL: Energy-Efficient Data Movement with Slow Transition Fast Level Signaling DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

low standby power (LSTP) and low power (LOP) transistors [25].4
We employ the parameters provided by the prior work [26] on
interconnect optimization to estimate the delay and energy of the
low power wires used for STFL.

5.2 Results

Synthesis. Table 4 shows the area overhead, critical path delay,
and power consumption of the required encoders and decoders
used for 64-bit interfaces using DBI, STFL, BD, CAFO, DESC, and
SETS encoding. (The table does not show the overheads of wires.)
Notice that the energy, delay, and area overheads of the encoders
and decoders for processing data blocks are negligible as compared
with those of the data wires and interfacing circuits. We imple-
ment each encoding technique while minimizing their direct and
indirect impacts on the system efficiency. Overall, STFL logic con-
sumes less area compared to CAFO and BD, while incurring an
acceptable delay and power overheads. We expect the additional
hardware impose negligible impact on die area and yield of modern
microprocessors [27].

Table 4: Overheads of various encoders and decoders.
DBI-LLC STFL BD-LLC CAFO DESC SETS

Area (µm2) 112.252 1642.816 2183.565 2638.72 1890.136 76.35
Encoder Interface Delay (ns) 0.197 0.336 0.74 0.705 0.34 0.16

Power (mW) 0.24 1.86 0.13 1.41 18.4 15.3
Area (µm2) 25.536 170.24 2183.565 51.072 2236.921 68.32

Decoder Interface Delay (ns) 0.016 0.046 0.24 0.033 0.28 0.157
Power (mW) 0.71 1.62 0.28 0.71 27.6 15.0

Energy. Figure 8 shows the impact of various encoding mecha-
nisms on the switching energy in the last level cache. (Additional
energy consumed for encoding/decoding data blocks is included in
the results.) The proposed STFL codes reduce the switching energy
of the last level cache by an average of 60% across all 12 benchmark
applications. This reduction is 4.3× of the energy savings achieved
by DBI, which employs a simple coding logic. The STFL savings are
at least 10% better than those gained by VFS, DESC, and SETS; how-
ever, these techniques expose significant indirect overheads to the
system. Notice that CAFO requires complex encoders and decoders
at the communication ends that result in large energy overheads,
thereby making it ill-suited for the last level cache interface.

0.4
0.5
0.6
0.7
0.8
0.9

1

Geomean (across all applications)

LL
C

Sw
itc

hi
ng

En

er
gy

No

rm
al

iz
ed

 to

Bi
na

ry

En
co

di
ng

DBI-LLC
BD-LLC
DESC
SETS
CAFO-LLC
VFS-LLC
STFL-LLC

Figure 8: Total switching energy consumed by LLC.
Consuming less switching energy in the last level cache interface

may lead to a reduction in the overall processor energy only if the
encoding/decoding and indirect overheads are minimal. Figure 10
shows the overall processor energy when the proposed STFL and
baseline interfaces are applied to the last level cache interface. STFL
reduces the overall CPU energy by 27% averaged across all of the
evaluated applications. This energy reduction is 1.2× of the average
savings obtained by VFS, which is because of employing STFL
4Similar to prior work on DESC [9], our study indicates that using LSTP devices for
the SRAM cells and LOP for the peripheral circuits can significantly reduce dynamic
and static energy.

codes to improve bandwidth and reduce switching activity. Similar
to VFS, DESC and SETS are (even more significantly) impacted by
the undue performance overheads of data encoding and signaling.
The proposed STFL achieves an average of at least 21% processor
energy reduction over the DESC and SETS baselines. BD encoding
requires table lookups on every cache data transfer that increases
the execution time and per access energy, thereby diminishing the
energy benefits from switching reduction.
Performance. Figure 11 shows the relative system performance
of STFL and the baseline encoding techniques applied to the last
level cache. The results indicate that DESC and SETS suffer from
significant performance loss due to the large bandwidth overheads
consumed for signaling5. VFS employs low power wires and en-
counters an average of 6% performance loss, which also results in
consuming more static system energy. In addition to reducing the
overall system energy, STFL alleviates the adverse performance
impacts of low power wires and achieves 98% of the performance
gained by the high-performance binary encoding baseline.
Energy-Delay Product. Improving both energy and delay by STFL
results in a superior energy-efficiency compared to all of the eval-
uated baselines. Our simulation results indicate that SETS, DESC,
and CAFO result in a higher CPU energy-delay products. STFL and
VFS, however, can significantly reduce the energy-delay products.
STFL achieves 9% better CPU energy-delay product over VFS due
to improving bandwidth and reducing the switching energy.

0.7

0.8

0.9

1

1.1

Geomean (across all applications)

CP
U

En
er

gy
-

De
la

y
Pr

od
uc

t
No

rm
al

iz
ed

 to

Bi
na

ry

En
co

di
ng

DBI-LLC
BD-LLC
DESC
SETS
CAFO-LLC
VFS-LLC
STFL-LLC

Figure 9: CPU energy-delay product.

Adapting to Random Data Patterns. As modern computer sys-
tems may adopt compression and encoding mechanisms in memory
channels [28, 29], we study the impact of randomness in data pat-
terns on the energy savings by DBI, BD, CAFO, VFS, and STFL
interfaces. We develop a C/C++ program that writes a synthetic
stream of random data to the memory system. A tunable parameter
p is used to determine the probability of setting every bit of the
data block to 1. Figure 12 shows the relative switching energy of
the last level cache normalized to the conventional binary encoding
with p = 0.1. STFL provides superior energy savings due to the
low power wires and the proposed encoding mechanism. For heavy
blocks, where p > 0.8, VFS can save more switching energy than
STFL due to the encoding/decoding overheads.

6 CONCLUSIONS
STFL is a hybrid technique for slow-transition, fast-level signaling
that creates a balance between power and bandwidth in the last level
cache interface. The proposed scheme create new opportunities
for enhancing the energy efficiency of low power interfaces and
designing efficient memory systems. As the need for data intensive
computing is expected to further grow in future, the proposed

5This is mainly because of consuming more wires or longer transmission time.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA P. Behnam and M.N. Bojnordi

0.5
0.6
0.7
0.8
0.9
1

OCN FT CG BT MG WCNT IS LU HIST BRN FFT RAY Geomean

CP
U

En
er

gy

No
rm

al
iz

ed
 to

Bi

na
ry

 E
nc

od
in

g
DBI-LLC BD-LLC DESC SETS CAFO-LLC VFS-LLC STFL-LLC

Figure 10: Overall processor energy with the cache optimization techniques.

0.4

0.6

0.8

1

OCN FT CG BT MG WCNT IS LU HIST BRN FFT RAY Geomean

Pe
rfo

rm
an

ce

No
rm

al
iz

ed
 to

Bi

na
ry

 E
nc

od
in

g DBI-LLC BD-LLC DESC SETS CAFO-LLC VFS-LLC STFL-LLC

Figure 11: Relative performance of STFL and other encodings techniques applied to last level cache.

0
0.5
1

1.5
2

2.5
3

0 0.2 0.4 0.6 0.8 1

Sw
itc

hi
ng

 E
ne

rg
y

N
or

m
al

iz
ed

 to

B
in

ar
y

(p
 =

 0
.1

)

Proabability of Setting Bit to One (p)

DBI

BD

CAFO

VFS

STFL

Figure 12: Switching energy versus random patterns.
technique holds the promise to help the system designers build
energy-efficient computing system.

ACKNOWLEDGMENTS
The authors would like to thank anonymous reviewers for useful
feedback. This work was supported in part by the National Science
Foundation (NSF) under Grant CCF-1755874.

REFERENCES
[1] M. Anders et al., “A transition-encoded dynamic bus technique for high-

performance interconnects,” IEEE Journal of Solid-State Circuits, vol. 38, no. 5,
pp. 709–714, 2003.

[2] N. Muralimanohar et al., “Optimizing nuca organizations and wiring alterna-
tives for large caches with cacti 6.0,” in Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 3–14, 2007.

[3] M. R. Stan et al., “Bus-invert coding for low-power i/o,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 3, no. 1, 1995.

[4] T. M. Hollis, “Data bus inversion in high-speed memory applications,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 4, pp. 300–304,
2009.

[5] R. Maddah et al., “Cafo: Cost aware flip optimization for asymmetric memories,”
in International Symposium on High Performance Computer Architecture (HPCA),
pp. 320–330, 2015.

[6] M. R. Stan and W. P. Burleson, “Limited-weight codes for low-power i/o,” in
International Workshop on Low Power Design, vol. 6, pp. 6–8, Citeseer, 1994.

[7] Y. Song et al., “Energy-efficient data movement with sparse transition encoding,”
in IEEE International Conference on Computer Design (ICCD), pp. 399–402, 2015.

[8] H. Seol et al., “Energy efficient data encoding in dram channels exploiting data
value similarity,” in ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA), pp. 719–730, 2016.

[9] M. Bojnordi and E. Ipek, “Desc: Energy-efficient data exchange using synchro-
nized counters,” in Proceedings of the Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 234–246, 2013.

[10] P. Behnam et al., “Adaptive time-based encoding for energy-efficient large cache
architectures,” in Proceedings of the 5th International Workshop on Energy Efficient
Supercomputing (E2SC), 2017.

[11] A. N. Udipi et al., “Non-uniform power access in large caches with low-swing
wires,” in International Conference on High Performance Computing (HiPC), pp. 59–
68, 2009.

[12] Y. Nakagome et al., “Sub-1-v swing internal bus architecture for future low-power
ulsis,” IEEE Journal of Solid-State Circuits, vol. 28, no. 4, pp. 414–419, 1993.

[13] H. Zhang and J. Rabaey, “Low-swing interconnect interface circuits,” in Proceed-
ings of the International Symposium on Low Power Electronics and Design (ISLPED),
pp. 161–166, 1998.

[14] “Free PDK 45nm open-access based PDK for the 45nm technology node.” http:
//www.eda.ncsu.edu/wiki/FreePDK.

[15] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-
45nm design exploration,” in International Symposium on Quality Electronic Design
(ISQED), 2006.

[16] H. Zhang et al., “Low-swing on-chip signaling techniques: effectiveness and
robustness,” IEEE Transactions on very large scale integration (VLSI) systems, vol. 8,
no. 3, pp. 264–272, 2000.

[17] A. Majumder et al., “A variation tolerant current mode low swing signaling
approach for gigascale on-chip interface circuit,” AEU-International Journal of
Electronics and Communications, vol. 93, pp. 140–149, 2018.

[18] S. Li et al., “Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 469–480, 2009.

[19] E. Ardestani et al., “Esesc: A fast multicore simulator using time-based sampling,”
in Proceedings of the 19th International Symposium on High Performance Computer
Architecture (HPCA), pp. 448–459, 2013.

[20] D. H. Bailey et al., “The nas parallel benchmarks—summary and prelim-
inary results,” in Proceedings of the ACM/IEEE Conference on Supercomputing,
pp. 158–165, ACM, 1991.

[21] S. C. Woo et al., “The splash-2 programs: Characterization and methodologi-
cal considerations,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), ACM, 1995.

[22] R. M. Yoo et al., “Phoenix rebirth: Scalable mapreduce on a large-scale shared-
memory system,” in Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC), pp. 198–207, 2009.

[23] N. Muralimanohar et al., “Cacti 6.0: A tool to model large caches,” HP Laboratories,
pp. 22–31, 2009.

[24] J. H. Laros III et al., “Energy delay product,” in Energy-Efficient High Performance
Computing, pp. 51–55, Springer, 2013.

[25] N. Muralimanohar and R. Balasubramonian, “Interconnect design considerations
for large nuca caches,” SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 369–380,
2007.

[26] H. Zarrabi et al., “An interconnect-aware delay model for dynamic voltage scaling
in nm technologies,” in Proceedings of the ACM Great Lakes Symposium on VLSI
(GLSVLSI), pp. 45–50, 2009.

[27] “Products formerly skylake.” https://ark.intel.com/products/codename/37572/
Skylake.

[28] T. A. Dye, “Memory controller including compression/decompression capabilities
for improved data access,” Apr. 9 2002. US Patent 6,370,631.

[29] A. Shafiee et al., “Memzip: Exploring unconventional benefits from memory
compression,” in IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 638–649, 2014.

http://www.eda.ncsu.edu/wiki/FreePDK
http://www.eda.ncsu.edu/wiki/FreePDK
https://ark.intel.com/products/codename/37572/Skylake
https://ark.intel.com/products/codename/37572/Skylake

