Little Tricky Logic:

Misconceptions in the Understanding of LTL

Ben Greenman

Sam Saarinen
Tim Nelson
@ Brown University
Shriram Krishnamurthi

RQ. In what ways is LTL tricky, and what can we do about it?

RQ. In what ways is LTL tricky, and what can we do about it?
+2 years of studies with researchers and students

Quiz Time!

Question
$\sqrt{ }$ Possible Answer 1

X Possible Answer 2

LTL Operators:

always
eventually
after
until

Part 1:

Formulas vs. Traces
Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}
Q. Do the traces below satisfy the formula? \{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?

\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
 \{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy the formula?
\{eventually Red\} and \{eventually Green\}

Not satisfied, because Green comes before Red
Bad Prop misconception

Q. Do the traces below satisfy the formula?

Red
Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Q. Do the traces below satisfy the formula?

Red

Satisfied because Red is on at some point
Implicit F misconception

Q. Do the traces below satisfy the formula? Red until Blue
Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Q. Do the traces below satisfy the formula?

Red until Blue

Part 2:

LTL to English

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"
"Red is always on and Blue is eventually on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

$\sqrt{ }$ "Red is always on and Blue is eventually on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"
"Red is always on and Blue is eventually on"
"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

$\sqrt{ }$ "Red is always on and Blue is eventually on"
"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

When Blue turns on, Red must be off
Exclusive U misconception
"This statement can never be satisfied"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"
"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"
"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

Red will turn on
Bad Prop misconception

"Red is on at some point, after which Blue is on"

Part 3:

English to LTL
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

Impossible!
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

Impossible!

$$
\text { \{eventually Red\} and \{always \{Red => always !Red\}\} }
$$

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

X Impossible!
\{eventually Red\} and \{always \{Red => always !Red\}\}

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first stateImpossible!

《 $\{$ eventually Red\} and \{always \{Red => always !Red\}\}
\{eventually Red\} and \{always \{Red => after \{always !Red\}\}\}

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

X Impossible!

X \{eventually Red\} and \{always \{Red => always !Red\}\}
$\sqrt{ }$ \{eventually Red\} and \{always $\{\operatorname{Red}=>$ after $\{$ always ! Red\}\}\}
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

```
{eventually Red} and {always {Red => always !Red}}
```

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

All Done!

Simple formulas, yet
subtle issues and expert blind spots

Quiz Q's Based on 3 Instruments

> LTL to English
> English to LTL

- Trace Satisfaction

Example Answer: Yes, because either the engine (smoke) or the headlight is on in each state.

cs.brown.edu/~bgreenma/ltl-instruments.pdf

Code Book for Analysis

Bad State Index
Bad State Quantification
Exclusive U
\square
\square
\square

To appear in Programming 7.2

Software: Quizius

Class-sourcing to discover misconceptions

1. Answer Top Q's
\equiv Answer a question from Revi...

Question
The above sentence should describe a set of traces over the variables $\mathrm{x} 1, \mathrm{x} 2$, etc. Encode it formally in LTL. Please ignore superficial mistakes like typos, and do not use external tools like Spin to help you.

2. Submit New Q's

$$
\equiv \text { Contribute to Review - Englis... }
$$

Write a Question

We are asking you to describe, in English, a set of traces that are interesting, tricky or surprising to encode in LTL. Please try to give an English description that is no bigger than it needs to be in

What Next?

What Next?

1. Teach Better

our instruments can help!

What Next?

1. Teach Better

our instruments can help!

... but learners are everywhere
not just in classrooms
amazon \quad OMeta
NETFLIX

What Next?

1. Teach Better

our instruments can help!

What Next?

2. Build Tools
guard against misconceptions

What Next?

2. Build Tools
guard against misconceptions

3. Design Logics
 Alloy 6 Electrum

our findings have inspired changes

Thank You!

benjamin.l.greenman @ gmail.com

