Little Tricky Logic:
 Misconceptions in the Understanding of LTL

Ben Greenman
 Sam Saarinen
 Tim Nelson
 Shriram Krishnamurthi

LTL = Linear Temporal Logic

LTL = Linear Temporal Logic

For systems that change over time

LTL = Linear Temporal Logic

man mon

For systems that change over time

Expressive

Supports good decision procedures
Small
.... and easy to learn?

RQ. In what ways is LTL tricky, and what can we do about it?

RQ. In what ways is LTL tricky, and what can we do about it?
+2 years of studies with researchers and students
4 survey rounds

Quiz Time!

Part 1:

Formulas vs. Traces
Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}
Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

> Q. Do the traces below satisfy this formula?
> \{eventually Red\} and \{eventually Green\}

Q. Do the traces below satisfy this formula?
\{eventually Red\} and \{eventually Green\}

Not satisfied, because Green comes before Red
Bad Prop misconception

Q. Do the traces below satisfy this formula?

Red
Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Q. Do the traces below satisfy this formula?

Red

Satisfied because Red is on at some point
Implicit F misconception

Q. Do the traces below satisfy this formula?
Q. Do the traces below satisfy this formula?

```
Red until Blue
[ strong until ]
```


Q. Do the traces below satisfy this formula?

```
Red until Blue
[ strong until ]
```


Q. Do the traces below satisfy this formula?

Q. Do the traces below satisfy this formula?

Q. Do the traces below satisfy this formula?

Red until Blue
 [strong until]

Q. Do the traces below satisfy this formula?

Red until Blue
 [strong until]

Q. Do the traces below satisfy this formula?

```
Red until Blue
[ strong until ]
```


Q. Do the traces below satisfy this formula?
Red until Blue [strong until]

Satisfied because Blue may stay off Even among researchers!
Weak U misconception

Part 2:

LTL to English

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"
"Red is always on and Blue is eventually on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

X "Red is always on"
$\sqrt{ }$ "Red is always on and Blue is eventually on"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"Red is always on"
"Red is always on and Blue is eventually on"
"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

$\sqrt{ }$ "Red is always on and Blue is eventually on"
"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

"This statement can never be satisfied"

Q. Translate to English
 \{Red until Blue\} and \{always Red\}

When Blue turns on, Red must be off
Exclusive U misconception
"This statement can never be satisfied"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"
"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"if Red is ever on, then Blue is always on"
"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

"Red is on at some point, after which Blue is on"

Q. Translate to English
 \{eventually Red\} implies \{always Blue\}

Red will turn on
Bad Prop misconception

"Red is on at some point, after which Blue is on"

Part 3:

English to LTL
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

Impossible!
Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

Impossible!

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

Impossible!

$$
\text { \{eventually Red\} and \{always \{Red => always !Red\}\} }
$$

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state
\{eventually Red\} and \{always \{Red => always !Red\}\}

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first stateImpossible!

《 $\{$ eventually Red\} and \{always \{Red => always !Red\}\}
\{eventually Red\} and \{always \{Red => after \{always !Red\}\}\}

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

X Impossible!

X \{eventually Red\} and \{always \{Red => always !Red\}\}
$\sqrt{ }$ \{eventually Red\} and \{always \{Red $=>$ after \{always !Red\}\}\}

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

```
{eventually Red} and {always {Red => always !Red}}
```

Q. Translate to LTL

The Red light is on in exactly one state, but not necessarily the first state

All Done!

Obvious?!

Expert Blind Spot?

Quiz Q's Based on 3 Instruments

- Trace Satisfaction
> LTL to English
> English to LTL

cs.utah.edu/~blg/ltl-instruments.pdf

Code Book for Analysis

Coding Rubric in paper, past versions in artifact

Software: Quizius

Class-sourcing to discover misconceptions

1. Answer Top Q's
$\equiv \quad$ Answer a question from Revi...

Question
The above sentence should describe a set of traces over the variables $\mathrm{x} 1, \mathrm{x} 2$, etc. Encode it formally in LTL. Please ignore superficial mistakes like typos, and do not use external tools like Spin to help you.

2. Submit New Q's

$$
\equiv \text { Contribute to Review - Englis... }
$$

Write a Question

We are asking you to describe, in English, a set of traces that are interesting, tricky or surprising to encode in LTL. Please try to give an English description that is no bigger than it needs to be in

What Next?

What Next?

1. Teach Better

our instruments can help!

What Next?

1. Teach Better

our instruments can help!
... but learners are everywhere not just in classrooms

amazon \quad Meta

NETFLIX

What Next?

1. Teach Better

our instruments can help!
... but learners are everywhere not just in classrooms

amazon \quad Meta

NETFLIX

What Next?

1. Teach Better

our instruments can help!
... but learners are everywhere not just in classrooms

amazon OMMeta

NETFLIX
2. Build Tools
guard against misconceptions

What Next?

1. Teach Better

our instruments can help!
... but learners are everywhere not just in classrooms

2. Build Tools
guard against misconceptions

3. Design Logics
 Alloy 6 Electrum

our findings have inspired changes

What's New?

forge-fm.org

If you expect a different outcome, please write it below

Your answer

Q. Translate to English
 next_state \{ eventually \{ Red \}\}

Q. Translate to English
 next_state \{ eventually \{ Red \}\}

"... doesn't make sense to call next_state on eventually eventually should already evaluate to true or false"

$$
\begin{gathered}
\text { Q. Translate to English } \\
\text { next_state \{ eventually \{ Red \}\}}
\end{gathered}
$$

"... doesn't make sense to call next_state on eventually eventually should already evaluate to true or false"

Programmer intuitions!

LTLf
 finite traces

Two equations, for all formulas a:

$$
!X(a)==X(!a) \quad G(F(a))!=F(G(a))
$$

Valid in LTL, invalid in LTLf

Thank You!

benjamin.l.greenman @ gmail.com

What Next?

1. Teach Better

our instruments can help!
... but learners are everywhere not just in classrooms

2. Build Tools
guard against misconceptions

3. Design Logics
 Alloy 6 Electrum

our findings have inspired changes

