
Rigorous Methods for Language Design

or - Don't take my word for it. Measure!

Ben Greenman

2024-10-04

Programming Languages - Why?

Programming Languages - Why?

Programming Languages - Why?

PL = key infra

First-class Functions

Type Soundness Polymorphism

Garbage Collection

Metaprogramming Gradual typing

20 years?

1986

1986

2014

"We were living in the future"

... 2050?

Doing math?
Join the math dept!

PL
research

Proofs Performance

People

Image credit: Alex Aiken

PL
research

Proofs Performance

People

Image credit: Alex Aiken

Some theories are more testable than others;
they take, as it were, greater risks."

Benchmarks for perf,
 for design

Profiling type costs

Gradual soundness

Logic misconceptions

Teaching FM

Privacy-Respecting Telemetry

Gradual Typing

Untyped Typed Why not both?

Gradual Typing

Untyped Typed Why not both?

def join(d0,d1,sort,how):

DataFrame

bool

Left|Right

def join(d0:DataFrame,

 d1:DataFrame,

 sort:bool,

 how:Left|Right)

 -> DataFrame:

Types where useful, that's all.

Now, what do types mean?

def join(d0:DataFrame,

 d1:DataFrame,

 sort:bool,

 how:Left|Right)

 -> DataFrame:

join("hello", ...)

Is d0 really a data frame?

Now, what do types mean?

def join(d0:DataFrame,

 d1:DataFrame,

 sort:bool,

 how:Left|Right)

 -> DataFrame:

join("hello", ...)

Is d0 really a data frame?

Ideally YES

"The system lives up to all expectations that developers
have of sound language implementations."

"The system lives up to all expectations that developers
have of sound language implementations."

"My runtime went from 1 ms to 10 seconds!"

TTT U

T UTT

UU UU Typed Racket

What do sound types cost?

TTT U

T UTT

UU UU Typed Racket

What do sound types cost?

1. Start with a program

def join(d0,d1,sort,how):

2. Add full types

def join(d0:DataFrame,

 d1:DataFrame,

 sort:bool,

 how:Left|Right)

 -> DataFrame:

3. Measure all combos

REP'23: 21 benchmarks, +40k combos

Lots of data!

Insights for users?
 for language designers?

Key: think like a user
 too slow = useless

Key: think like a user
 too slow = useless

x-axis = "too slow" cutof vs. untyped code (log scale)
y-axis = % useful combos

Scaling further

TTT U

T UTT

UU UU Typed Racket

What do sound types cost?

TTT U

T UTT

UU UU Typed Racket

What do sound types cost?

Too much!

A modest optimization ... still too slow

Safe and Efcient Gradual Typing

Transient Typechecks are (Almost) Free

Sound Gradual Typing is Nominally Alive and Well

Diferent behaviors!

Diferent behaviors!

def join(d0:Array[Int]):

join([0,1,2,...])

Diferent behaviors!

def join(d0:Array[Int]):

join([0,1,2,...])

 every element looks good

 it's an array

 I don't care

 it's untyped data

Diferent behaviors!

def join(d0:Array[Int]):

join([0,"XXX",...])

 bad element

 it's an array

 I don't care

 it's untyped data

StaticP

C# Nom
SafeTS

TS* StrS.

Pallene

AS

mypy PyType

Grift TPD

Proofs + People

Proofs + People

Proofs + People

Proofs + People

PL
research

Proofs Performance

People

Research Challenges

Dibri Hanwen Ashton Dominic

AS

mypy PyType

Grift TPD

Pallene

StaticP

C#

Nom
SafeTS TS* StrS.

Same type system??

NO

RC. Whence Gradual Types?

RC. Whence Gradual Types?

A. think really hard

RC. Whence Gradual Types?

A. think really hard B. be vague

Dibri

fnd actual type issues

Example pattern: dependent dict

def add_tax(item: Dict[Str, Any]) -> float:

 base = item.get("price", 0) # Any

 return base + (base * 0.10)

6,000 similar occurrences in 221 sample projects

HATRA'24

Hanwen

mypy

How to do Type Narrowing?

if type(a) is int:

 return a + 1

def filter_nums(bs: List[Any]):

 return sum([b for b in bs if type(b) is int])

def fst(c : tuple[object, object]):

 if type(c[0]) is int:

 return c[0] + 1

if node.parent is not None:

 total += node.parent.wins + node.parent.losses

if type(a) is int:

 return a + 1

def filter_nums(bs: List[Any]):

 return sum([b for b in bs if type(b) is int])

def fst(c : tuple[object, object]):

 if type(c[0]) is int:

 return c[0] + 1

if node.parent is not None:

 total += node.parent.wins + node.parent.losses

if type(a) is int:

 return a + 1

def filter_nums(bs: List[Any]):

 return sum([b for b in bs if type(b) is int])

def fst(c : tuple[object, object]):

 if type(c[0]) is int:

 return c[0] + 1

if node.parent is not None:

 total += node.parent.wins + node.parent.losses

if type(a) is int:

 return a + 1

def filter_nums(bs: List[Any]):

 return sum([b for b in bs if type(b) is int])

def fst(c : tuple[object, object]):

 if type(c[0]) is int:

 return c[0] + 1

if node.parent is not None:

 total += node.parent.wins + node.parent.losses

Ashton

Untyped Typed

Simply T. Dependently T.

Host Lang. DSL

Untyped Typed

Simply T. Dependently T.

Host Lang. DSL

RC. How to bridge?

Metaprogramming!

ECOOP'24

Chorex
 Type tailoring for Elixir choreographies

 Chor.

Chorex
 Type tailoring for Elixir choreographies

 Chor.

Discrete log, zero-knowledge

Dominic

RC. How to debug designs?

Forge =
a solver-aided
modeling language

Forge =
a solver-aided
modeling language

inspired by Alloy

Cross-Site Request Forgery

User

101010
010101

Evil Server

Good Server

User

101010
010101

Evil Server

Good Server

Problem: every request carries
 User's auth. cookies

User

101010
010101

Evil Server

Good Server

Problem: every request carries
 User's auth. cookies

Idea: add origin to requests,
 validate at Good Server

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

 causes: set HTTPEvent

}

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

 causes: set HTTPEvent

}

abstract sig HTTPEvent {

 from : one EndPoint,

 to : one EndPoint,

 origin : one EndPoint

}

// Request, Response, Redirect

// extends HTTPEvent

Bounded Exploration

pred EnforceOrigins[good: Server] {

 all r:Request | r.to = good =>

 r.origin = good // from good server

 or

 r.origin = r.from // from client

}

run {

 // can we find (hope not)

 some good, bad: Server {

 EnforceOrigins[good]

 // ...

 }

} for exactly 2 Server,

 exactly 1 Client,

 5 HTTPEvent

run {

 // can we find (hope not)

 some good, bad: Server {

 EnforceOrigins[good]

 // ...

 }

} for exactly 2 Server,

 exactly 1 Client,

 5 HTTPEvent

Uh Oh!

Quickly found a bug!

Custom Visualization Unit Testing Language Levels

Dibri Hanwen Ashton Dominic

PL
research

Proofs Performance

People

RC. Types for untyped code

RC. Adding layers to languages

RC. Debugging for designs

HATRA'24

if node.parent is not None:

 total += node.parent.wins + node.parent.losses

Chorex
 Type tailoring for Elixir choreographies

 Chor.

Custom Visualization Unit Testing Language Levels

