Full Reductions at Full Throttle

INRIA Research Group

July 21, 2014

Unification & Resolution

Unification Resolution
@ Solving equations of @ Inference rule
symbolic expressions e Satisfiability of
@ Search for constraints propositional formula
@ Deduce substitutions @ Unsatisfiability of

first-order logic formula

Usage:
@ Search local context, match goal with a local hypothesis

o If found, return a subgoal for each premise

@ Large search space

@ Large search space

@ No computational power

@ Large search space
@ No computational power
e Even with sufficient information, can get stuck

@ Large search space

@ No computational power
e Even with sufficient information, can get stuck

Vo : State.Vv : Z.(lookup o v 1) — (while 3 < v do skip,0) ~» o

o Premises to left of arrow: v — 3
o Goal requires that while loop does not change o
e Have information to prove 3 < 1 ~~ false, but cannot create and

compute proof

An alternative: Proofs as Function

@ Represent proof objects as functions

@ Step through with context, making deductions throughout

Conversion Rule

Conversion rule for dependently-typed proof assistants like Coq:

-M:A A= B
r-M:B

Reflection

@ Reflection gives us an implementation of =4

@ Compute decision procedure once, use it to evaluate any A or B

From Certified Programming with Dependent Types, an example of
where reflection becomes useful:

Inductive isEven : nat -> Prop :=

| Even_0 : isEven O
| Even_SS : forall n, isEven n -> isEven (S (S n))

10/39

Inductive isEven : nat -> Prop :=
| Even_0 : isEven O
| Even_SS : forall n, isEven n -> isEven (S (S n))

Theorem even_256 : isEven 256.

repeat constructor.
Qed.

11/39

Inductive isEven : nat -> Prop :=
| Even_0 : isEven O
| Even_SS : forall n, isEven n -> isEven (S (S n))

Theorem even_256 : isEven 256.
repeat constructor.

Qed.

print even_256.
even_256 = Even_SS (Even_SS (Even_SS (

Size of proof term is super-linear with size of input

12 /39

Second Example

@ How to decide x < y?

13/39

Second Example

@ How to decide x < y?
@ Can use constructors to build derivation

o Runs in time linear to the input size

14 /39

Second Example

@ How to decide x < y?
@ Can use constructors to build derivation
e Runs in time linear to the input size

@ Can use decision procedure
F(x, y) 2 true if max(_x +1—-y,00=0
false otherwise

15/39

Second Example

@ How to decide x < y?
@ Can use constructors to build derivation
e Runs in time linear to the input size

@ Can use decision procedure
~ | true ifmax(x+1—-y,0)=0
f(x,y)—{ false otherwise

o Constant time

16 /39

Reflection

@ Reflection uses verified decision procedure to check proofs in
linear space or better.

17/39

Reflection

@ Reflection uses verified decision procedure to check proofs in
linear space.

@ Need a verified way of normalizing terms

18/39

Reflection

@ Reflection uses verified decision procedure to check proofs in at
worst linear space.

@ Need a verified way of normalizing terms

@ Problem: Cannot normalize open terms in OCaml

19/39

Reflection

@ Reflection uses verified decision procedure to check proofs in at
worst linear space.

@ Need a verified way of normalizing terms

@ Problem: Cannot normalize open terms in OCaml

o Open terms represent dependent types or assumptions within
proof object

o Proof checker needs to resolve these, but OCaml cannot reduce
them

20/39

Symbolic Reduction

Syntax for expressing and evaluating potentially open terms. Treat
free variables X as accumulators which collect arguments.

Syntax

Term >t . =x } t b | v
Val 5> v = Ax.t | [% vi... v,
Reduction Rules

(Mx.t)v — t{x« v} (6v)
[xvievy] v — [Xvi...v, V] (5s)
[(t) — r(¢)ift—t (with [== t[]|[]v) context

21/39

Symbolic Reduction

The Symbolic Reduction rules treat functions and open terms
similarly.

But we cannot just represent open terms as functions

o Open terms can take any number of arguments
o OCaml can only compare values at base type. Functions are not
comparable.

Need to be able to manipulate and compare open terms

(]

Main challenge is finding an efficient representation

First, we give an interface for our values

22 /39

Values Module

module type Values = sig

type t

val app : t >t > t
type atom = Var of var
type head =

| Lam of t -> t
| Accu of atom * t list
val head : t -> head
val mkLam : (t -> t) > t
val mkAccu : atom -> t
end

23/39

Tagged Normalization

o Natural idea: use type head directly
@ Can discern Accu from Lam by explicit pattern matching.

@ Fold and unfold at each application

type t = head
let head v = v
let app t v = match t with
| Lam £ -> f v
| Accu(a, args) -> Accu(a, v::args)
let mkLam f = Lam f
let mkAccu a = Accu(a, [1)

24 /39

Tagged Implementation

o Gregiore & Leroy, 2002

@ Extension of the ZAM, which underlies the bytecode interpreter
of OCaml

@ Small modifications to existing abstract machine

25 /39

Issues with Tags

Tags accomplish normalization, allowing proof checker to use
reflection, but come with significant overhead.

@ Additional memory allocation

o Need to allocate (and immediately drop) n — 1 closures during
the application of a function to n arguments.

@ Poorer locality

@ Compiler has difficulty adding optimizations

26 /39

Incentive

OCaml has a powerful compiler — we want to use it for reductions.
Much faster than proof search.

Limitations
@ Cannot compare functions

@ Programs are always closed terms

27/39

@ Tagging met our needs by explicitly converting open terms into
type constructors. Arguments could then be added to the term,
and we had a clear evaluation scheme.

@ We can do even better by treating accumulators as functions.

o Build open term by adding arguments to a function
o Treat these arguments as fields on an object

28 /39

OCaml Internals

How? By taking advantage of the OCaml internals

@ All objects in OCaml represented by 31 bits and one tag.
@ Integers have tag ‘1’ as their LSB.
1[0].. [1]
@ Aids in garbage collection. The tag distinguishes ints from
pointers.

29/39

OCaml Internals

Functions are given a unique tag, 7).

W Clwvl|... |v]

@ (C is a code pointer

@ v; are arguments. The free variables of C.
Accumulators (Objects) have tag 0
0] Clk]

@ C is code pointer to a single instruction

@ k is memory representation of accumulator

30/39

Tagless Representation

Redefine accumulators as:

type t =t > ¢t
let rec accu atom args = fun v -> accu atom (v::args)
let mkAccu atom = accu atom []

@ mkAccu gives function expecting one argument, stored in the list
of args.

31/39

Tagless Representation

Redefine accumulators as:

type t =t > ¢t
let rec accu atom args = fun v -> accu atom (v::args)
let mkAccu atom = accu atom []

@ mkAccu gives function expecting one argument, stored in the list
of args.
@ Issue: Tag is not zero!

32/39

Tagless Representation

Use Obj library to explicity set tag.

let rec accu atom args =
let res = fun v -> accu atom (v::args) in
Obj.set_tag (0Obj.repr res) 0;
(res : t)

33/39

Tagless Representation

We integrate this definition into a new head function:

type t =t >
let app f v =
let mkLam f
let getAtom (0bj.magic (Obj.field o 3)) : atom
let getArgs (0bj.magic (Obj.field o 4)) : t list
let rec head (v:t) =

let o = Obj.repr v in

if Obj.tag o = 0 then Accu(getAtom o, getArgs o)

else Lam(v)

I+ Hh
<

(¢}
(¢}

34 /39

Extensions

Sections 2 and 3 of Full Reductions give extensions for the full
symbolic CIC and for Coinductive types

CIC CCIC
@ Sorts, dependent o Infinite data, streams
products, inductive types,
constructors, pattern
matching & fixpoints

@ Matching forces
evaluation

_) @ Cache forced expression
@ Map inductive types and

constructors of CIC to
constructors in OCaml.
New tags for each.

35/39

Evaluation

o Compared performance against a lazy, syntactic representation
manipulator and an eager implementation of tagged
normalization

@ Four test proofs:

BDD: Binary decision diagram for pidgeonhole principle
Four colour: Gonthier & Werner's proof (Microsoft Research,
2005)
Lucas-Lehmer: Check if a Mersenne number is prime
Mini-Rubik: Checks that any position of 2x2x2 Rubik's cube is
solvable in at most 11 moves
Cooper: Cooper's quantification elimination on a formula
with 5 variables
RecNoAlloc: 2%7 recursive calls without memory allocation to
store result.

36 /39

Evaluation

Standard Reduction: Abstract machine, manipulates syntactic
representations lazily

Bytecode Interpreter: Tagged normalization, call-by-value

Native Compilation: Tagless normalization

Standard Reduction | Bytecode Interpreter | Native Compilation
BDD 4min 53s (100%) 21.98s (7.5%) 11.36s (3.9%)
Four color not tested 3h 7m (100%) 34m 47s (18.6%)
Lucas-Lehmen | 10min 10s (100%) 29.80s (4.9%) 8.47s (1.4%)
Mini-Rubik Out of memory 15.62s (100%) 4.48s (28.7%)
Cooper Not tested 48.20s (100%) 9.38s (19.5%)
RecNoAlloc 2m 27s (100%) 14.325 (9.7%) 1.05s (1.05%)

@ Run on 64-bit architecture

@ Greater speedup with less garbage collection

37/39

@ Used reflection to leverage computational power

@ Saw trick to utilize source language for efficiently normalizing
open terms

o Built off existing, trusted, powerful compiler instead of
developing new techniques. Maintained separation between
proof assistant and compiler.

38/39

The End

