
Full Reductions at Full Throttle

INRIA Research Group

July 21, 2014

1 / 39

Unification & Resolution

Unification

Solving equations of
symbolic expressions

Search for constraints

Deduce substitutions

Resolution

Inference rule

Satisfiability of
propositional formula

Unsatisfiability of
first-order logic formula

Usage:

Search local context, match goal with a local hypothesis

If found, return a subgoal for each premise

2 / 39

Drawbacks

Large search space

3 / 39

Drawbacks

Large search space

No computational power

4 / 39

Drawbacks

Large search space

No computational power

Even with sufficient information, can get stuck

5 / 39

Drawbacks

Large search space

No computational power

Even with sufficient information, can get stuck

∀σ : State.∀v : Z.(lookup σ v 1)→ 〈while 3 ≤ v do skip, σ〉 σ

Premises to left of arrow: v 7→ 3
Goal requires that while loop does not change σ
Have information to prove 3 ≤ 1 false, but cannot create and
compute proof

6 / 39

An alternative: Proofs as Function

Represent proof objects as functions

Step through with context, making deductions throughout

7 / 39

Conversion Rule

Conversion rule for dependently-typed proof assistants like Coq:

Γ ` M : A A =β B

Γ ` M : B

8 / 39

Reflection

Reflection gives us an implementation of =β

Compute decision procedure once, use it to evaluate any A or B

9 / 39

Example

From Certified Programming with Dependent Types, an example of
where reflection becomes useful:

Inductive isEven : nat -> Prop :=

| Even_O : isEven O

| Even_SS : forall n, isEven n -> isEven (S (S n))

10 / 39

Example

Inductive isEven : nat -> Prop :=

| Even_O : isEven O

| Even_SS : forall n, isEven n -> isEven (S (S n))

Theorem even_256 : isEven 256.

repeat constructor.

Qed.

11 / 39

Example

Inductive isEven : nat -> Prop :=

| Even_O : isEven O

| Even_SS : forall n, isEven n -> isEven (S (S n))

Theorem even_256 : isEven 256.

repeat constructor.

Qed.

print even_256.

even_256 = Even_SS (Even_SS (Even_SS (...

Size of proof term is super-linear with size of input

12 / 39

Second Example

How to decide x ≤ y?

13 / 39

Second Example

How to decide x ≤ y?

Can use constructors to build derivation

Runs in time linear to the input size

14 / 39

Second Example

How to decide x ≤ y?

Can use constructors to build derivation

Runs in time linear to the input size

Can use decision procedure

f (x , y)=̂

{
true if max(x + 1− y , 0) = 0
false otherwise

15 / 39

Second Example

How to decide x ≤ y?

Can use constructors to build derivation

Runs in time linear to the input size

Can use decision procedure

f (x , y)=̂

{
true if max(x + 1− y , 0) = 0
false otherwise

Constant time

16 / 39

Reflection

Reflection uses verified decision procedure to check proofs in
linear space or better.

17 / 39

Reflection

Reflection uses verified decision procedure to check proofs in
linear space.

Need a verified way of normalizing terms

18 / 39

Reflection

Reflection uses verified decision procedure to check proofs in at
worst linear space.

Need a verified way of normalizing terms

Problem: Cannot normalize open terms in OCaml

19 / 39

Reflection

Reflection uses verified decision procedure to check proofs in at
worst linear space.

Need a verified way of normalizing terms

Problem: Cannot normalize open terms in OCaml

Open terms represent dependent types or assumptions within
proof object
Proof checker needs to resolve these, but OCaml cannot reduce
them

20 / 39

Symbolic Reduction

Syntax for expressing and evaluating potentially open terms. Treat
free variables x̃ as accumulators which collect arguments.

Syntax

Term 3 t ::= x
∣∣ t1 t2

∣∣ v

Val 3 v ::= λx .t
∣∣ [x̃ v1 . . . vn]

Reduction Rules

(λx .t)v → t{x ← v} (βv)
[x̃ v1...vn] v → [x̃ v1 . . . vn v] (βs)

Γ(t) → Γ(t ′) if t → t ′ (with Γ ::= t[]
∣∣[]v) context

21 / 39

Symbolic Reduction

The Symbolic Reduction rules treat functions and open terms
similarly.

But we cannot just represent open terms as functions

Open terms can take any number of arguments
OCaml can only compare values at base type. Functions are not
comparable.

Need to be able to manipulate and compare open terms

Main challenge is finding an efficient representation

First, we give an interface for our values

22 / 39

Values Module

module type Values = sig

type t

val app : t -> t -> t

type atom = Var of var

type head =

| Lam of t -> t

| Accu of atom * t list

val head : t -> head

val mkLam : (t -> t) -> t

val mkAccu : atom -> t

end

23 / 39

Tagged Normalization

Natural idea: use type head directly

Can discern Accu from Lam by explicit pattern matching.

Fold and unfold at each application

type t = head

let head v = v

let app t v = match t with

| Lam f -> f v

| Accu(a, args) -> Accu(a, v::args)

let mkLam f = Lam f

let mkAccu a = Accu(a, [])

24 / 39

Tagged Implementation

Grègiore & Leroy, 2002

Extension of the ZAM, which underlies the bytecode interpreter
of OCaml

Small modifications to existing abstract machine

25 / 39

Issues with Tags

Tags accomplish normalization, allowing proof checker to use
reflection, but come with significant overhead.

Additional memory allocation

Need to allocate (and immediately drop) n − 1 closures during
the application of a function to n arguments.

Poorer locality

Compiler has difficulty adding optimizations

26 / 39

Incentive

OCaml has a powerful compiler — we want to use it for reductions.
Much faster than proof search.

Limitations

Cannot compare functions

Programs are always closed terms

27 / 39

Insight

Tagging met our needs by explicitly converting open terms into
type constructors. Arguments could then be added to the term,
and we had a clear evaluation scheme.

We can do even better by treating accumulators as functions.

Build open term by adding arguments to a function
Treat these arguments as fields on an object

28 / 39

OCaml Internals

How? By taking advantage of the OCaml internals

All objects in OCaml represented by 31 bits and one tag.

Integers have tag ‘1’ as their LSB.

1 0 . . . 1

Aids in garbage collection. The tag distinguishes ints from
pointers.

29 / 39

OCaml Internals

Functions are given a unique tag, Tλ.

Tλ C v1 . . . vn

C is a code pointer

vi are arguments. The free variables of C .

Accumulators (Objects) have tag 0

0 C k

C is code pointer to a single instruction

k is memory representation of accumulator

30 / 39

Tagless Representation

Redefine accumulators as:

type t = t -> t

let rec accu atom args = fun v -> accu atom (v::args)

let mkAccu atom = accu atom []

mkAccu gives function expecting one argument, stored in the list
of args.

31 / 39

Tagless Representation

Redefine accumulators as:

type t = t -> t

let rec accu atom args = fun v -> accu atom (v::args)

let mkAccu atom = accu atom []

mkAccu gives function expecting one argument, stored in the list
of args.

Issue: Tag is not zero!

32 / 39

Tagless Representation

Use Obj library to explicity set tag.

let rec accu atom args =

let res = fun v -> accu atom (v::args) in

Obj.set_tag (Obj.repr res) 0;

(res : t)

33 / 39

Tagless Representation

We integrate this definition into a new head function:

type t = t -> t

let app f v = f v

let mkLam f = f

let getAtom o = (Obj.magic (Obj.field o 3)) : atom

let getArgs o = (Obj.magic (Obj.field o 4)) : t list

let rec head (v:t) =

let o = Obj.repr v in

if Obj.tag o = 0 then Accu(getAtom o, getArgs o)

else Lam(v)

34 / 39

Extensions

Sections 2 and 3 of Full Reductions give extensions for the full
symbolic CIC and for Coinductive types

CIC

Sorts, dependent
products, inductive types,
constructors, pattern
matching & fixpoints

Map inductive types and
constructors of CIC to
constructors in OCaml.
New tags for each.

CCIC

Infinite data, streams

Matching forces
evaluation

Cache forced expression

35 / 39

Evaluation

Compared performance against a lazy, syntactic representation
manipulator and an eager implementation of tagged
normalization

Four test proofs:

BDD: Binary decision diagram for pidgeonhole principle
Four colour: Gonthier & Werner’s proof (Microsoft Research,

2005)
Lucas-Lehmer: Check if a Mersenne number is prime
Mini-Rubik: Checks that any position of 2x2x2 Rubik’s cube is

solvable in at most 11 moves
Cooper: Cooper’s quantification elimination on a formula

with 5 variables
RecNoAlloc: 227 recursive calls without memory allocation to

store result.

36 / 39

Evaluation

Standard Reduction: Abstract machine, manipulates syntactic
representations lazily

Bytecode Interpreter: Tagged normalization, call-by-value

Native Compilation: Tagless normalization

Standard Reduction Bytecode Interpreter Native Compilation
BDD 4min 53s (100%) 21.98s (7.5%) 11.36s (3.9%)

Four color not tested 3h 7m (100%) 34m 47s (18.6%)
Lucas-Lehmen 10min 10s (100%) 29.80s (4.9%) 8.47s (1.4%)

Mini-Rubik Out of memory 15.62s (100%) 4.48s (28.7%)
Cooper Not tested 48.20s (100%) 9.38s (19.5%)

RecNoAlloc 2m 27s (100%) 14.32s (9.7%) 1.05s (1.05%)

Run on 64-bit architecture

Greater speedup with less garbage collection

37 / 39

Summary

Used reflection to leverage computational power

Saw trick to utilize source language for efficiently normalizing
open terms

Built off existing, trusted, powerful compiler instead of
developing new techniques. Maintained separation between
proof assistant and compiler.

38 / 39

The End

39 / 39

