Full Reductions at Full Throttle

INRIA Research Group

July 21, 2014

Unification \& Resolution

Unification

- Solving equations of symbolic expressions
- Search for constraints
- Deduce substitutions

Resolution

- Inference rule
- Satisfiability of propositional formula
- Unsatisfiability of first-order logic formula

Usage:

- Search local context, match goal with a local hypothesis
- If found, return a subgoal for each premise

Drawbacks

- Large search space

Drawbacks

- Large search space
- No computational power

Drawbacks

- Large search space
- No computational power
- Even with sufficient information, can get stuck

Drawbacks

- Large search space
- No computational power
- Even with sufficient information, can get stuck
$\forall \sigma:$ State. $\forall v: \mathbb{Z}$. (lookup $\sigma v 1) \rightarrow\langle$ while $3 \leq v$ do skip, $\sigma\rangle \rightsquigarrow \sigma$
- Premises to left of arrow: $v \mapsto 3$
- Goal requires that while loop does not change σ
- Have information to prove $3 \leq 1 \rightsquigarrow$ false, but cannot create and compute proof

An alternative: Proofs as Function

- Represent proof objects as functions
- Step through with context, making deductions throughout

Conversion Rule

Conversion rule for dependently-typed proof assistants like Coq:

$$
\frac{\Gamma \vdash M: A \quad A={ }_{\beta} B}{\Gamma \vdash M: B}
$$

Reflection

- Reflection gives us an implementation of $=\beta$
- Compute decision procedure once, use it to evaluate any A or B

Example

From Certified Programming with Dependent Types, an example of where reflection becomes useful:

Inductive isEven : nat -> Prop :=
| Even_0 : isEven O
| Even_SS : forall n, isEven n \rightarrow isEven (S (S n))

Example

Inductive isEven : nat -> Prop :=
| Even_0 : isEven O
| Even_SS : forall n, isEven n-> isEven (S (S n))

Theorem even_256 : isEven 256. repeat constructor.
Qed.

Example

```
Inductive isEven : nat -> Prop :=
    | Even_0 : isEven O
    | Even_SS : forall n, isEven n -> isEven (S (S n))
```

Theorem even_256 : isEven 256. repeat constructor.
Qed.
print even_256.
even_256 = Even_SS (Even_SS (Even_SS (...

Size of proof term is super-linear with size of input

Second Example

- How to decide $x \leq y$?

Second Example

- How to decide $x \leq y$?
- Can use constructors to build derivation
- Runs in time linear to the input size

Second Example

- How to decide $x \leq y$?
- Can use constructors to build derivation
- Runs in time linear to the input size
- Can use decision procedure

$$
f(x, y) \hat{=} \begin{cases}\text { true } & \text { if } \max (x+1-y, 0)=0 \\ \text { false } & \text { otherwise }\end{cases}
$$

Second Example

- How to decide $x \leq y$?
- Can use constructors to build derivation
- Runs in time linear to the input size
- Can use decision procedure
$f(x, y) \hat{=} \begin{cases}\text { true } & \text { if } \max (x+1-y, 0)=0 \\ \text { false otherwise }\end{cases}$
- Constant time

Reflection

- Reflection uses verified decision procedure to check proofs in linear space or better.

Reflection

- Reflection uses verified decision procedure to check proofs in linear space.
- Need a verified way of normalizing terms

Reflection

- Reflection uses verified decision procedure to check proofs in at worst linear space.
- Need a verified way of normalizing terms
- Problem: Cannot normalize open terms in OCaml

Reflection

- Reflection uses verified decision procedure to check proofs in at worst linear space.
- Need a verified way of normalizing terms
- Problem: Cannot normalize open terms in OCaml
- Open terms represent dependent types or assumptions within proof object
- Proof checker needs to resolve these, but OCaml cannot reduce them

Symbolic Reduction

Syntax for expressing and evaluating potentially open terms. Treat free variables \tilde{x} as accumulators which collect arguments.

Syntax

$$
\begin{aligned}
& \text { Term } \ni t::=x\left|t_{1} t_{2}\right| v \\
& \quad \text { Val } \ni v::=\lambda x . t \mid\left[\tilde{x} \quad v_{1} \ldots v_{n}\right]
\end{aligned}
$$

Reduction Rules

$$
\begin{align*}
(\lambda x . t) v & \rightarrow t\{x \leftarrow v\} \\
{\left[\tilde{x} v_{1} \ldots v_{n}\right] v } & \rightarrow\left[\tilde{x} v_{1} \ldots v_{n} v\right] \tag{s}\\
\Gamma(t) & \rightarrow\left\lceil\left(t^{\prime}\right) \text { if } t \rightarrow t^{\prime}(\text { with } \Gamma::=t[] \mid[] v)\right.
\end{align*}
$$

Symbolic Reduction

- The Symbolic Reduction rules treat functions and open terms similarly.
- But we cannot just represent open terms as functions
- Open terms can take any number of arguments
- OCaml can only compare values at base type. Functions are not comparable.
- Need to be able to manipulate and compare open terms
- Main challenge is finding an efficient representation
- First, we give an interface for our values

Values Module

```
module type Values = sig
    type t
    val app : t -> t -> t
    type atom = Var of var
    type head =
    | Lam of t -> t
    | Accu of atom * t list
    val head : t -> head
    val mkLam : (t -> t) -> t
    val mkAccu : atom -> t
end
```


Tagged Normalization

- Natural idea: use type head directly
- Can discern Accu from Lam by explicit pattern matching.
- Fold and unfold at each application

```
type \(\mathrm{t}=\) head
let head v = v
let app \(\mathrm{t} \mathrm{v}=\) match t with
    | Lam f -> f v
    | Accu(a, args) \(->\) Accu(a, v::args)
let mkLam f = Lam f
let mkAccu \(\mathrm{a}=\operatorname{Accu}(\mathrm{a},[])\)
```


Tagged Implementation

- Grègiore \& Leroy, 2002
- Extension of the ZAM, which underlies the bytecode interpreter of OCaml
- Small modifications to existing abstract machine

Issues with Tags

Tags accomplish normalization, allowing proof checker to use reflection, but come with significant overhead.

- Additional memory allocation
- Need to allocate (and immediately drop) $n-1$ closures during the application of a function to n arguments.
- Poorer locality
- Compiler has difficulty adding optimizations

Incentive

OCaml has a powerful compiler - we want to use it for reductions. Much faster than proof search.

Limitations

- Cannot compare functions
- Programs are always closed terms

Insight

- Tagging met our needs by explicitly converting open terms into type constructors. Arguments could then be added to the term, and we had a clear evaluation scheme.
- We can do even better by treating accumulators as functions.
- Build open term by adding arguments to a function
- Treat these arguments as fields on an object

OCaml Internals

How? By taking advantage of the OCaml internals

- All objects in OCaml represented by 31 bits and one tag.
- Integers have tag ' 1 ' as their LSB.

- Aids in garbage collection. The tag distinguishes ints from pointers.

OCaml Internals

Functions are given a unique tag, T_{λ}.

T_{λ}	C	v_{1}	\ldots	v_{n}

- C is a code pointer
- v_{i} are arguments. The free variables of C.

Accumulators (Objects) have tag 0

0	C	k

- C is code pointer to a single instruction
- k is memory representation of accumulator

Tagless Representation

Redefine accumulators as:

$$
\begin{aligned}
& \text { type } t=t->t \\
& \text { let rec accu atom args }=\text { fun } v->\text { accu atom (v::args) } \\
& \text { let mkAccu atom }=\text { accu atom [] }
\end{aligned}
$$

- mkAccu gives function expecting one argument, stored in the list of args.

Tagless Representation

Redefine accumulators as:
type $\mathrm{t}=\mathrm{t} \rightarrow \mathrm{t}$
let rec accu atom args = fun v -> accu atom (v::args)
let mkAccu atom = accu atom []

- mkAccu gives function expecting one argument, stored in the list of args.
- Issue: Tag is not zero!

Tagless Representation

Use Obj library to explicity set tag.
let rec accu atom args =
let res = fun v -> accu atom (v::args) in Obj.set_tag (Obj.repr res) 0; (res : t)

Tagless Representation

We integrate this definition into a new head function:

```
type t = t -> t
let app f v = f v
let mkLam f = f
let getAtom o = (Obj.magic (Obj.field o 3)) : atom
let getArgs o = (Obj.magic (Obj.field o 4)) : t list
let rec head (v:t) =
    let o = Obj.repr v in
    if Obj.tag o = O then Accu(getAtom o, getArgs o)
    else Lam(v)
```


Extensions

Sections 2 and 3 of Full Reductions give extensions for the full symbolic CIC and for Coinductive types

CIC

- Sorts, dependent products, inductive types, constructors, pattern matching \& fixpoints
- Map inductive types and constructors of CIC to constructors in OCaml. New tags for each.

CCIC

- Infinite data, streams
- Matching forces
evaluation
- Cache forced expression

Evaluation

- Compared performance against a lazy, syntactic representation manipulator and an eager implementation of tagged normalization
- Four test proofs:

BDD: Binary decision diagram for pidgeonhole principle
Four colour: Gonthier \& Werner's proof (Microsoft Research, 2005)

Lucas-Lehmer: Check if a Mersenne number is prime Mini-Rubik: Checks that any position of $2 \times 2 \times 2$ Rubik's cube is solvable in at most 11 moves
Cooper: Cooper's quantification elimination on a formula with 5 variables
RecNoAlloc: 2^{27} recursive calls without memory allocation to store result.

Evaluation

Standard Reduction: Abstract machine, manipulates syntactic representations lazily
Bytecode Interpreter: Tagged normalization, call-by-value Native Compilation: Tagless normalization

	Standard Reduction	Bytecode Interpreter	Native Compilation
BDD	$4 \mathrm{~min} 53 \mathrm{~s}(100 \%)$	$21.98 \mathrm{~s}(7.5 \%)$	$11.36 \mathrm{~s}(3.9 \%)$
Four color	not tested	$3 \mathrm{~h} 7 \mathrm{~m}(100 \%)$	$34 \mathrm{~m} 47 \mathrm{~s}(18.6 \%)$
Lucas-Lehmen	$10 \mathrm{~min} 10 \mathrm{~s}(100 \%)$	$29.80 \mathrm{~s}(4.9 \%)$	$8.47 \mathrm{~s}(1.4 \%)$
Mini-Rubik	Out of memory	$15.62 \mathrm{~s}(100 \%)$	$4.48 \mathrm{~s}(28.7 \%)$
Cooper	Not tested	$48.20 \mathrm{~s}(100 \%)$	$9.38 \mathrm{~s}(19.5 \%)$
RecNoAlloc	$2 \mathrm{~m} \mathrm{27s}(100 \%)$	$14.32 \mathrm{~s}(9.7 \%)$	$1.05 \mathrm{~s}(1.05 \%)$

- Run on 64-bit architecture
- Greater speedup with less garbage collection

Summary

- Used reflection to leverage computational power
- Saw trick to utilize source language for efficiently normalizing open terms
- Built off existing, trusted, powerful compiler instead of developing new techniques. Maintained separation between proof assistant and compiler.

The End

