
Reliable Numerical Design for ML via PL

Ben Greenman
Ganesh Gopalakrishnan
Taylor Allred
Xinyi Li

(Prof) Ben Greenman
Interests: PL, Gradual Typing, Human Factors

(Prof) Ganesh Gopalakrishnan
Interests: SW Correctness, Formal Methods

Taylor Allred
Interests: PL, Julia Runtime Verification

Xinyi Li
Interests: FP Exceptions, debugging NNs

Reliable Numerical Design for ML via PL

But first a long introduction to PL

Programming Languages

Programming Languages

Elegant Abstractions + Eficient Implementation

Programming Languages

Elegant Abstractions + Eficient Implementation

Programming Languages

Elegant Abstractions + Eficient Implementation

Gradual Typing

Gradual Typing

Gradual Typing

Typed Untyped

Should your language be typed or untyped?

Gradual Typing

Typed Untyped

Should your language be typed or untyped?

Why not both?

Example: TypeScript

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

Good!

(Very useful in BIG programs)

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

mag(["hello", "world"])Untyped client

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

mag(["hello", "world"])Untyped client

Now what?!

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

mag(["hello", "world"])Untyped client

Now what?!

sqrt("hello"**2 + "world"**2)

Example: TypeScript

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

mag(["hello", "world"])Untyped client

Now what?!

sqrt("hello"**2 + "world"**2)

"Type structure is a syntactic discipline
for enforcing levels of abstraction"

"Type structure is a syntactic discipline
for enforcing levels of abstraction"

Not in TypeScript!

RQ. How to bring sound gradual types into practice?

RQ. How to bring sound gradual types into practice?

I

III

II

IV

I Build a Language

I Build a Language

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

I Build a Language

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

I Build a Language

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Typed Racket

Enforce types at boundaries
with higher-order contracts

I Build a Language

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Typed Racket

Enforce types at boundaries
with higher-order contracts

Researchers need to pursue ideals. Nobody else can!

I Build a Language

But research can fail

I Build a Language

I Build a Language

Design, Test, Deploy, Major Problem!

I Build a Language

Design, Test, Deploy, Major Problem!

12000x slowdown

Huge cost at boundaries!

II Measure Performance

II Measure Performance

RQ. Which boundaries are slow
and what can we do about it?

II Measure Performance

RQ. Which boundaries are slow
and what can we do about it?

II Measure Performance

II Measure Performance

Is Sound Gradual Typing Dead?
POPL '16

II Measure Performance

Is Sound Gradual Typing Dead?
POPL '16

Sound Gradual Typing is Nominally Alive and Well
OOPSLA '17

II Measure Performance

Is Sound Gradual Typing Dead?
POPL '16

Sound Gradual Typing is Nominally Alive and Well
OOPSLA '17

Transient Typechecks are (Almost) Free
ECOOP '19

II Measure Performance

Is Sound Gradual Typing Dead?
POPL '16

Sound Gradual Typing is Nominally Alive and Well
OOPSLA '17

Transient Typechecks are (Almost) Free
ECOOP '19

Sound Gradual Typing: Only Mostly Dead
OOPSLA '17

III Revisit the Design

III Revisit the Design

More than one way to have sound gradual types

III Revisit the Design

More than one way to have sound gradual types

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

III Revisit the Design

More than one way to have sound gradual types

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Q. Any ideas?

III Revisit the Design

More than one way to have sound gradual types

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Q. Any ideas?

Deep checks at boundaries
Shallow checks within typed code
Type Tags on values

III Revisit the Design

More than one way to have sound gradual types

function mag(xy: number[])

 return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Q. Any ideas?

Deep checks at boundaries
Shallow checks within typed code
Type Tags on values

Tradeof between guarantees and performance

III Revisit the Design

III Revisit the Design

Typed Racket v8.6

Deep or Shallow types at boundaries

?!

Researchers need to pursue ideals. Nobody else can!

?!

Researchers need to pursue ideals. Nobody else can!

Must find important questions

IV Get Feedback

IV Get Feedback

RQ. How to bring sound gradual types into practice?

RQ. How to bring sound gradual types into practice?

I

III

II

IV

RQ. How to bring sound gradual types into practice?

I

III

II

IV

Implementation Measurement

Design User Studies

Reliable Numerical Design for ML via PL

Problem: silent failures in numeric code
(float != Real)

Problem: silent failures in numeric code
(float != Real)

Approach: dynamic analysis

Problem: silent failures in numeric code
(float != Real)

Approach: dynamic analysis

RQ. What types do we need
to gradually harden numeric code?

