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Reliable Numerical Design for ML via PL

But first    a long introduction to PL
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Typed Untyped

Should your language be typed or untyped?

Why not both?
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function mag(xy: number[])

  return sqrt(xy[0]**2 + xy[1]**2);
Typed function

mag([15, -4])Untyped client

Good!

( Very useful in BIG programs )
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function mag(xy: number[])

  return sqrt(xy[0]**2 + xy[1]**2);
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Not in TypeScript!
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I Build a Language

function mag(xy: number[])

  return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Typed Racket

Enforce types at boundaries
with higher-order contracts

Researchers need to pursue ideals. Nobody else can!
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I Build a Language

Design,   Test,   Deploy,  ....   Major Problem!

12000x slowdown

Huge cost  at boundaries!
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II Measure Performance

Is Sound Gradual Typing Dead?
POPL '16

Sound Gradual Typing is Nominally Alive and Well
OOPSLA '17

Transient Typechecks are (Almost) Free
ECOOP '19

Sound Gradual Typing: Only Mostly Dead
OOPSLA '17
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III Revisit the Design

More than one way to have  sound  gradual types

function mag(xy: number[])

  return sqrt(xy[0]**2 + xy[1]**2);

mag(["hello", "world"])

Q. Any ideas?

Deep checks at boundaries
Shallow checks within typed code
Type Tags on values

Tradeof  between guarantees and performance
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III Revisit the Design

Typed Racket v8.6

Deep or Shallow  types at boundaries
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Researchers need to pursue ideals. Nobody else can!

Must find important questions
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Implementation Measurement

Design User Studies
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Problem: silent failures in numeric code
( float != Real )

Approach: dynamic analysis

RQ. What types do we need
to gradually harden numeric code?




