

How Profilers Can Help Navigate Type Migration

How Profilers Can Help Navigate Type Migration

How to avoid **runtime costs**

using **off-the-shelf tools**?

How Profilers Can Help Navigate Type Migration

How to avoid **runtime costs**

using **off-the-shelf tools**?

costs ~ gradual types

tools ~ statistical profilers

Old Problem, New Idea

Old Problem, New Idea

popl'16: 10x slowdowns are common, **but** fast points exist!

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen Northeastern University, Boston, MA

Abstract Programmers have come to embrace dynamically-typed la many cases, the systems start as innocent prototypes. Soon enough, though, they grow into complex, multi-module programs, at which

Old Problem, New Idea

popl'16: 10x slowdowns are common, **but** fast points exist!

Is Sound Gradual Typing Dead?

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen Northeastern University, Boston, MA

ct many cases, the systems start as innocent prototypes. Soon enough, they grow into complex, multi-module programs, at which

Abstract

O How to find??

Rational Programmer method (icfp'21)

avg : Gradebook -> Num def avg(g): return mean(get_column(g, "score")) avg(quiz_1_grades) avg(recipe_book) avg(42)

Type soundness needs Runtime checks

avg : Gradebook -> Num
def avg(g):
 return mean(get_column(g, "score"))

Statistical Profiler

Contract Profiler

Statistical Profiler

Total cpu time observed: 1192ms (out of 1236ms) Number of samples taken: 23 (once every 52ms)

=====			
Idx	Total	Self	Caller Name+src
	ms(pct)	ms(pct)	Callee
=====			
			??? [12]
			evolve [17]
[17]	818(68.6%)	0(0.0%)	evolve main
			evolve [17]
			shuffle-vector [19]
			death-birth [18]
			??? [20]
			match-up* [22]
			shuffle-vector [19]
[24]	152(12.7%)	152(12.7%)	contract-wrapper

Contract Profiler

Contract Profiler

cpu time: 984 real time: 984 gc time: 155 Running time is 18.17% contracts 253/1390 ms

Rational Programmer

Rational Programmer

Identify strategies, let them compete.

Rational Programmer

Identify strategies, let them compete.

Identify strategies, let them compete.

For all starting points, Goal = **path** to a fast config

Identify strategies, let them compete.

For all starting points, Goal = **path** to a fast config

strict = never slow down
k loose = k slower steps

99x	►	99x	≻	3x	►	1x	
3x	≻	99x	≻	1x			

Dataset

- 16 GTP Benchmarks
- 116 K starting points
- **1.2 M** measurements
- 5 GB output
 - 10 months on CloudLab

X = strategies, Y = % scenarios

strict success 1 loose 2 loose 3 loose N loose

* **contract** profiling + **deep** types

= **best** for type migration

* shallow types do not help

* **contract** profiling + **deep** types

= **best** for type migration

* shallow types do not help

Q. hybrid strategies, shallow profilers?

https://github.com/bennn/gfd-oopsla-2023

Translation: talk to paper

Skylines per Benchmark

mbta

suffixtree

Hopeful Scenarios

Table 3. How many scenarios can possibly reach 1x without removing types?

Benchmark	# Scenario	% Hopeful	Benchmark	# Scenario	% Hopeful
morsecode	67	100.00 %	lnm	295	100.00 %
forth	76	36.84 %	suffixtree	718	100.00~%
fsm	62	100.00~%	kcfa	2,031	100.00 %
fsmoo	68	100.00~%	snake	6,559	100.00 %
mbta	72	0.00 %	take5	6,558	0.00 %
zombie	74	35.14%	acquire	19,532	5.45 %
dungeon	242	0.00 %	tetris	18,791	100.00~%
jpeg	230	100.00 %	synth	59,046	100.00 %

Opt Boundary vs. the others

Type-Aware Boundary vs. the others

Where are the Fast Configs?

Table 4. Which levels of the migration lattice have any acceptable configurations?

Benchmark #acceptable		Benchmark #acceptable by lattice level																
morsecode	1	2	4	4	3		Inm	1	9	38	93	138	116	39				
forth	1	2	1	1	0		suffixtree	1	1	0	0	1	4	4				
fsm	1	3	4	7	4		kcfa	1	8	22	33	24	24	29	15			
fsmoo	1	2	4	2	4		snake	1	0	0	0	0	0	0	0	1		
mbta	1	4	4	0	0		take5	1	2	0	0	0	0	0	0	0		
zombie	1	2	3	1	0		acquire	1	8	28	51	45	16	2	0	0	0	
dungeon	1	0	0	0	0	0	tetris	1	12	56	121	169	128	118	133	112	42	
jpeg	1	2	1	1	4	4	synth	1	1	0	0	0	0	0	0	0	0	

mbta 1.23x					
	1.33x	1.08x	1.24x	1.24x	
0.98x	1.24x	1.10x	1.25x	1.11x	1.26x
	0.99x	0.97x	1.24x	1.09x	
		1.0)0x		

Best-Case Lattice
dungeon
1.30x
2.33x 1.21x 4.01x 472.06x 1.47x
2.18x 3.98x 3.97x 492.31x 478.60x 1.56x 2.52x 1.44x 3.61x 498.27x
3.91x 483.09x 1.65x 1.58x 2.53x 3.63x 3.56x 493.17x 497.65x 1.15x
1.55x 3.62x 497.28x 1.13x 1.12x
1.00x

lnm
0.79x
0.96x 0.79x 0.79x 0.79x 0.80x 0.87x 0.96x 0.94x 0.79x 0.92x 0.79x 0.79x 1.05x 0.80x 0.80x 0.77x 0.98x 0.87x 0.86x 0.87x 0.82x 0.93x 0.93x 0.76x 1.09x 1.07x 0.79x 1.03x 0.77x 0.83x 0.97x 1.02x 0.85x 0.96x 0.85x 0.84x 1.00x 0.84x 0.83x 0.83x 0.97x 1.06x 1.05x 1.04x 0.77x 1.04x 0.99x 0.99x 0.83x 0.99x 0.89x 0.82x 0.98x 0.81x 0.81x 1.05x 1.00x 1.01x 1.02x 1.01x 0.81x

1.00x

1.00x

