
How Profilers Can Help Navigate Type Migration

Ben Greenman*
Matthias Felleisen
Christos Dimoulas

BYU PL Seminar

How Profilers Can Help Navigate Type Migration

How Profilers Can Help Navigate Type Migration

How to avoid runtime costs
using of-the-shelf tools?

How Profilers Can Help Navigate Type Migration

How to avoid runtime costs
using of-the-shelf tools?

costs ~ gradual types

tools ~ statistical profilers

Old Problem, New Idea

Old Problem, New Idea

popl'16: 10x slowdowns are common,
but fast points exist!

How to find??

Old Problem, New Idea

popl'16: 10x slowdowns are common,
but fast points exist!

How to find??

Rational Programmer
method (icfp'21)

Gradual Types + Costs

Gradual Types + Costs

def avg(g):

 return mean(get_column(g, "score"))

def mean(nums):

def get_column(table, col_name):

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Gradual Types + Costs

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

def mean(nums):

def get_column(table, col_name):

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Add types, code still runs

Gradual Types + Costs

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Gradual Types + Costs

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Type soundness needs Runtime checks

Gradual Types + Costs

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Type soundness needs Runtime checks

Costs depend ...

Guarded semantics
deep types

Contract @ boundary

Transient semantics
shallow types

Asserts in typed code

Gradual Types + Costs

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

Type soundness needs Runtime checks

Costs depend ...

deep
check full gradebook

9x

shallow
check book shape, numbers

~1x

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg(recipe_book)

avg(42)

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

avg : Gradebook -> Num

def avg(g):

 return mean(get_column(g, "score"))

avg(quiz_1_grades)

deep
no boundaries!

1x

shallow
more types, more checks

2x

2 modules deep or shallow (pldi'22)

2 modules deep or shallow (pldi'22)

9 points

2 modules deep or shallow (pldi'22)

9 points

9x

Q. where to?

3 modules deep or shallow

27 points

4 modules deep or shallow

81 points

4 modules deep or shallow

81 points
9x

Q. where to?

Can profilers help?

Profilers

Profilers

Statistical Profiler Contract Profiler

Profilers

Statistical Profiler Contract Profiler

Profilers

Statistical Profiler

Total % Self %

Contract Profiler

Profilers

Statistical Profiler

Total % Self %

Contract Profiler

Profilers

Statistical Profiler

Total % Self %

Contract Profiler

Contract %

Deep types
Contract @ boundary

Contract %

Total %

Self %

Shallow types
Asserts in typed code

Contract %

Total %

Self %

The Problem

Q. where to?

Q. how to find a boundary?

Contract % Total % Self %

The Problem

Q. where to?

Q. how to find a boundary?

Contract % Total % Self %

A. Rational Programmer experiment

Rational Programmer

Rational Programmer

Identify strategies, let them compete.

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Shallow
...

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Shallow
...

Type-Aware Deep
1.

2. /

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Shallow
...

Type-Aware Deep
1.

2. /

Type-Aware Shallow
...

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Shallow
...

Type-Aware Deep
1.

2. /

Type-Aware Shallow
...

Lattice[S; D] count #typed, choose Deep or Shallow

Rational Programmer

Identify strategies, let them compete.

Deep ()
 / /

Shallow
...

Type-Aware Deep
1.

2. /

Type-Aware Shallow
...

Lattice[S; D] count #typed, choose Deep or Shallow

null, pldi22 baselines

Rational Programmer

Identify strategies, let them compete.

Rational Programmer

Identify strategies, let them compete.

For all starting points,
Goal = path to a fast config

Rational Programmer

Identify strategies, let them compete.

For all starting points,
Goal = path to a fast config

strict = never slow down
k loose = k slower steps

99x 99x 3x 1x

 3x 99x 1x

Dataset

16 GTP Benchmarks
116 K starting points
1.2 M measurements
5 GB output

10 months on CloudLab

How ofen do the strategies succeed?

How ofen do the strategies succeed?

loose

strict

How ofen do the strategies succeed?

 X = strategies, Y = % scenarios

How ofen do the strategies succeed?

example data

How ofen do the strategies succeed?

strict success

How ofen do the strategies succeed?

strict success

Contract > Statistical [total or self]

How ofen do the strategies succeed?

strict success

Contract > Statistical [total or self]

Total ~= Self

How ofen do the strategies succeed?

strict success

Contract > Statistical [total or self]

Total ~= Self

Deep >> Shallow

How ofen do the strategies succeed?

strict success

Contract > Statistical [total or self]

Total ~= Self

Deep >> Shallow

type-aware, lattice-aware make little diference

How ofen do the strategies succeed?

strict success 1 loose

How ofen do the strategies succeed?

strict success 1 loose 2 loose

How ofen do the strategies succeed?

strict success 1 loose 2 loose 3 loose

How ofen do the strategies succeed?

strict success 1 loose 2 loose 3 loose N loose

How ofen do the strategies succeed?

strict success 1 loose 2 loose 3 loose N loose

Looseness helps a bit,
profilers rarely benefit from a wrong turn

How ofen do the strategies succeed?

strict success 1 loose 2 loose 3 loose N loose strict 3x

How ofen do the strategies succeed?

strict success 1 loose 2 loose 3 loose N loose strict 3x

3x success helps Shallow

Takeaways

Takeaways

contract profiling + deep types*
= best for type migration

shallow types do not help*

Takeaways

contract profiling + deep types*
= best for type migration

shallow types do not help*
Q. hybrid strategies, shallow profilers?

Takeaways

the rational programmer method*
enables rigorous experiments

contract profiling + deep types*
= best for type migration

shallow types do not help*
Q. hybrid strategies, shallow profilers?

Takeaways

the rational programmer method*
enables rigorous experiments

contract profiling + deep types*
= best for type migration

shallow types do not help*
Q. hybrid strategies, shallow profilers?

errors testing?
perf debugging?

https://github.com/bennn/gfd-oopsla-2023

Translation: talk to paper

strict success 1 loose 2 loose 3 loose N loose strict 3x

Deep -> optimistic
type-aware D. -> cost-aware optimistic
Shallow -> conservative
type-aware S. -> cost-aware conservative
lattice[S,D] -> confg-aware
rand -> null
pldi22 -> toggle

Skylines per Benchmark

Hopeful Scenarios

Opt Boundary vs. the others

Type-Aware Boundary vs. the others

Where are the Fast Configs?

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Best-Case Lattice

Takeaways

the rational programmer method*
enables rigorous experiments

contract profiling + deep types*
= best for type migration

shallow types do not help*

