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PHYSICS































Distance is invariant under translation and 
change of coordinate representation.









Noether's Theorem



Noether's Theorem
n (1915) "Any differentiable symmetry of the action 

of a physical system has a corresponding 
conservation law"



Quick Example
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Conservation of Momentum





Pretty cool, right?



𝜏TYPES

λ f : (int -> int) ref . λ n : int .
   f := (λ acc : int ref . λ m : int .
            case (n = m : bool) of 
              (acc := (mul !acc  m); acc) : int
              (!f (acc := (mul !acc m); acc) (m+1)) : int
           ) (ref 1) 1) (ref λ x : int . x))

π ≜ ΛT1 . ΛT2 . ΛT3 .  
  λ v : T1 × T2 × T3 . 
  v[T1] (λ x : T1 . λ y : T2 . λz : T3 . x)

(λ x : unit . 42 : int)
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Mechanics.



Atkey (2014)

n Define a type system for Lagrangian 
Mechanics.

n Derive conservation laws as "free 
theorems" by parametricity.
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What's the type for (-)?

Type:

Reference:
group of invertible real n×n matrices

translations in n-dimensional space
n-dimensional vectors of real numbers that vary 
with linear transformation g and translation f.

(symmetries in     )
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Why GL(n)?



"Give me a Lagrangian and a group action satisfying 
these constraints, I'll give you a conservation law."

Key point: we need an automorphism (i.e. symmetry)     
to start with

Why GL(n)?



What does this mean?
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Reynolds:
  types are
  relations

Wadler:
  relations are
  free theorems

Atkey:
  free theorems
  are symmetries
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Atkey gives us a 
geometric interpretation

of types
We'll argue: Atkey subsumes Reynolds + Wadler
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n Reynolds: types are sets, parametricity comes 
from the relations between them.

n Basic relation between Reynolds' types is the 
subset relation ( ⊆ ).

n Form a graph where the objects are types and 
the edges order types by ⊆ .

Kinds are reflexive graphs
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Example: bool

True False
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Example: nat

0



Example: nat

0 1 2 3
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Each arrow represents a family of diffeomorphisms
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Atkey: Main Points

n Extend System Fω with type system encoding 
geometric invariances.

n Interpret kinds as reflexive graphs, types as reflexive 
graph morphisms.

n Connect free theorems of Wadler/Reynolds with 
Noether's theorem via symmetries of these reflexive 
graphs.



Atkey: Takeaways
n Types as geometries is a powerful new way of 

manipulating our "syntactic discipline".

n Visual intuition, connections to group theory.

n Physics is only one potential application!



:𝜏



:𝜏
The End


