From Parametricity to Conservation Laws, via Noether's Theorem

Written by Robert Atkey
bob.atkey@gmail.com

Presented by Ben Carriel \& Ben Greenman 2014-04-07

$$
T E=m g h+\frac{1}{2} m v^{2}
$$

$$
T E=m g h+\frac{1}{2} m v^{2}
$$

$$
T E=P E+K E
$$

\downarrow

$$
\downarrow
$$

$$
\psi
$$

$$
1-
$$

distance $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

distance $=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$

Distance is invariant under translation and change of coordinate representation.
\bullet

Noether's Theorem

Noether's Theorem

* (1915) "Any differentiable symmetry of the action of a physical system has a corresponding conservation law"

Quick Example

$$
\psi
$$

$$
L\left(t, z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}\right)=\frac{1}{2} m\left(\dot{z}_{1}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$$
L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$$
L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$\forall d \in \mathbb{R}^{2}$
$L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
$\forall d \in \mathbb{R}^{2} \quad L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=L\left(t, z_{1}+d, z_{2}+d, \dot{z_{1}}, \dot{z_{2}}\right)$

$$
L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$\forall d \in \mathbb{R}^{2} \quad L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=L\left(t, z_{1}+d, z_{2}+d, \dot{z_{1}}, \dot{z_{2}}\right)$
(Noether's Theorem)

$$
\frac{d}{d t} m\left(\dot{x_{1}}+\dot{x_{2}}\right)=0
$$

$$
L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$\forall d \in \mathbb{R}^{2} \quad L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=L\left(t, z_{1}+d, z_{2}+d, \dot{z_{1}}, \dot{z_{2}}\right)$
(Noether's Theorem)

$$
\frac{d}{d t} m\left(\dot{x_{1}}+\dot{x_{2}}\right)=0
$$

Conservation of Momentum

If the action

$$
\mathcal{S}[q ; a ; b]=\int_{a}^{b} L(t, q, \dot{q}) d t
$$

is invariant under Φ_{ϵ} and Ψ_{ϵ}, then

$$
\frac{d}{d t}\left(\sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_{i}} \psi_{i}+\left(L-\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial L}{\partial \dot{q}_{i}}\right) \phi\right)=0
$$

where $\phi=\left.\frac{\partial \Phi}{\partial \epsilon}\right|_{\epsilon=0}$ and $\psi=\left.\frac{\partial \Psi}{\partial \epsilon}\right|_{\epsilon=0}$

Pretty cool, right?

The

($\lambda \mathrm{x}$: unit . 42 : int $)$

$$
\begin{aligned}
& \pi \cdot \Delta \mathrm{T} 1: \Lambda \mathrm{T} 2: \wedge \mathrm{T} 3 \\
& \lambda \times \mathrm{V}: \mathrm{TM} \times \mathrm{T} 2 \times \mathrm{T} 3 \\
& \text { wiTh } \lambda \mathrm{x}: \mathrm{T1}: \lambda \mathrm{y} \text { : }
\end{aligned}
$$

$\lambda f:($ int $->$ int) ref. $\lambda \mathrm{n}:$ int
$\bar{f}:=(\lambda$ acc $:$ int ref $\cdot \lambda m$ int .
case ($\mathrm{n}=\mathrm{m}$: boot) of
(acc:= (mull !acc m); acc) ; int
(!f (acc := (mil fac m), acc) $(m+1))$: int $)(\operatorname{ref} 1) 1)(\operatorname{ref} \lambda x:$ int $\cdot x))$

Atkey (2014)

Atkey (2014)

* Define a type system for Lagrangian Mechanics.

Atkey (2014)

* Define a type system for Lagrangian Mechanics.
* Derive conservation laws as "free theorems" by parametricity.

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+\dot{z}_{2}{ }^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type:

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type:

Reference:

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

Reference:

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(_, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(_, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1,0\rangle, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}\left(_, \quad\right.$) \longrightarrow type for smooth functions between spaces

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1,0\rangle, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces
$\mathbb{R}^{1}\langle g, f\rangle \longrightarrow$ real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\underline{\mathbb{R}^{1}\langle 1,0\rangle} \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \underline{\mathbb{R}^{1}\langle 1,0\rangle} \times \underline{\mathbb{R}^{1}\langle 1,0\rangle}, \underline{ }\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces
$\mathbb{R}^{1}\langle g, f\rangle \longrightarrow$ real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\mathbb{R}^{1}\langle 1,0\rangle \times \underline{\mathbb{R}^{1}\langle 1, y\rangle} \times \underline{\mathbb{R}^{1}\langle 1, y\rangle} \times \mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1,0\rangle, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces
$\mathbb{R}^{1}\langle g, f\rangle \longrightarrow$ real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1,0\rangle, \ldots\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces
$\mathbb{R}^{1}\langle g, f\rangle \longrightarrow$ real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

Lagrangian: $L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+{\dot{z_{2}}}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}$
Type: $\forall y: \mathbf{T}(1)$.

$$
C^{\infty}\left(\mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1, y\rangle \times \mathbb{R}^{1}\langle 1,0\rangle \times \mathbb{R}^{1}\langle 1,0\rangle, \mathbb{R}^{1}\langle 1,0\rangle\right)
$$

Reference:
$\forall y: \mathbf{T}(1) . \longrightarrow$ for all translations \mathbf{y} in one-dimensional space $C^{\infty}(\ldots, \ldots) \longrightarrow$ type for smooth functions between spaces
$\mathbb{R}^{1}\langle g, f\rangle \longrightarrow$ real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

$$
L\left(t, z_{1}, z_{2}, \dot{z}_{1}, \dot{z}_{2}\right)=\frac{1}{2} m\left(\dot{z}_{1}^{2}+\dot{z}_{2}^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$$
L\left(t, z_{1}, z_{2}, \dot{z_{1}}, \dot{z_{2}}\right)=\frac{1}{2} m\left({\dot{z_{1}}}^{2}+\dot{z}_{2}{ }^{2}\right)-\frac{1}{2} k\left(z_{1}-z_{2}\right)^{2}
$$

$$
\left(z_{1}-z_{2}\right)^{2}
$$

What's the type for (-)?

$$
\left(z_{1}-z_{2}\right)^{2}
$$

What's the type for (-)?

$$
\left(z_{1}-z_{2}\right)^{2}
$$

Type:

Reference:

What's the type for (-)?

$$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n)$

Reference:

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n)$

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n)$

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n), t_{1}, t_{2}: \mathbf{T}(n)$.

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n), t_{1}, t_{2}: \mathbf{T}(n)$.

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})
$\mathbf{T}(n) \longrightarrow$ translations in \mathbf{n}-dimensional space

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n), t_{1}, t_{2}: \mathbf{T}(n)$.

$$
C^{\infty}\left(_,-\right)
$$

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})
$\mathbf{T}(n) \longrightarrow$ translations in \mathbf{n}-dimensional space

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n), t_{1}, t_{2}: \mathbf{T}(n)$.

$$
C^{\infty}\left(\mathbb{R}^{n}\left\langle g, t_{1}\right\rangle \times \mathbb{R}^{n}\left\langle g, t_{2}\right\rangle, \mathbb{R}^{n}\left\langle g, t_{1}-t_{2}\right\rangle\right)
$$

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})
$\mathbf{T}(n) \longrightarrow$ translations in \mathbf{n}-dimensional space

What's the type for (-)?
 $$
\left(z_{1}-z_{2}\right)^{2}
$$

Type: $\forall g: \mathbf{G L}(n), t_{1}, t_{2}: \mathbf{T}(n)$.

$$
C^{\infty}\left(\mathbb{R}^{n}\left\langle g, t_{1}\right\rangle \times \mathbb{R}^{n}\left\langle g, t_{2}\right\rangle, \mathbb{R}^{n}\left\langle g, t_{1}-t_{2}\right\rangle\right)
$$

Reference:
$\mathbf{G L}(n) \longrightarrow$ group of invertible real $\mathbf{n} \times \mathbf{n}$ matrices (symmetries in \mathbb{R}^{n})
$\mathbf{T}(n) \longrightarrow$ translations in \mathbf{n}-dimensional space
$\mathbb{R}^{n}\langle g, f\rangle \longrightarrow \mathbf{n}$-dimensional vectors of real numbers that vary with linear transformation \mathbf{g} and translation \mathbf{f}.

Why GL(n)?

Why GL(n)?

Why GL(n)?

Theorem (Noether). Let $L\left(x, u, D_{u}^{1}, \ldots, D_{u}^{n}\right)$, be a Lagrangian for $A \subseteq \mathbb{R}^{n}$, let $\varphi \in \operatorname{Aut}(A)$ be a symmetry of A such that

$$
\varphi(L)+L D^{i}(\xi)=D^{i}\left(B^{i}\right) \quad B^{i} \in A
$$

Then the Euler-Lagrange equations admit a conservation law $\forall i . D^{i}\left(C^{i}\right)=0$.

Why GL(n)?

Theorem (Noether). Let $L\left(x, u, D_{u}^{1}, \ldots, D_{u}^{n}\right)$, be a Lagrangian for $A \subseteq \mathbb{R}^{n}$, let $\varphi \in \operatorname{Aut}(A)$ be a symmetry of A such that

$$
\varphi(L)+L D^{i}(\xi)=D^{i}\left(B^{i}\right) \quad B^{i} \in A
$$

Then the Euler-Lagrange equations admit a conservation law $\forall i . D^{i}\left(C^{i}\right)=0$.
"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."

Why GL(n)?

Theorem (Noether). Let $L\left(x, u, D_{u}^{1}, \ldots, D_{u}^{n}\right)$, be a Lagrangian for $A \subseteq \mathbb{R}^{n}$, let $\underline{\varphi \in \operatorname{Aut}(A)}$ be a symmetry of A such that

$$
\underline{\varphi(L)+L D^{i}(\xi)=D^{i}\left(B^{i}\right)} \quad B^{i} \in A
$$

Then the Euler-Lagrange equations admit a conservation law $\forall i . D^{i}\left(C^{i}\right)=0$.
"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."

Key point: we need an automorphism (i.e. symmetry) to start with

Reynolds:
types are
relations

Reynolds: Wadler:
 types are
 \rightarrow relations

Reynolds:
$\begin{gathered}\text { types are } \\ \text { relations }\end{gathered} \longrightarrow$ $\begin{aligned} & \text { Wadler: } \\ & \text { relations are } \\ & \text { free theorems }\end{aligned}$

Reynolds:
 types are \longrightarrow relations
 Wadler:
 relations are free theorems
 Atkey:
 free theorems are symmetries

Atkey gives us a geometric interpretation of types

Atkey gives us a geometric interpretation
of types

We'll argue: Atkey subsumes Reynolds + Wadler
-

Kinds are reflexive graphs

Kinds are reflexive graphs

Kinds are reflexive graphs

* Reynolds: types are sets, parametricity comes from the relations between them.

Kinds are reflexive graphs

* Reynolds: types are sets, parametricity comes from the relations between them.
* Basic relation between Reynolds' types is the subset relation (\subseteq).

Kinds are reflexive graphs

* Reynolds: types are sets, parametricity comes from the relations between them.
* Basic relation between Reynolds' types is the subset relation (\subseteq).
* Form a graph where the objects are types and the edges order types by \subseteq.

Example: bool

Example: bool

Example: bool

True

False

Example: nat

Example: nat

Example: nat

Example: cartesian space $\left(\mathbb{R}^{1} \ldots \mathbb{R}^{n}\right)$

Example: cartesian space $\left(\mathbb{R}^{1} \ldots \mathbb{R}^{n}\right)$

Example: cartesian space $\left(\mathbb{R}^{1} \ldots \mathbb{R}^{n}\right)$

Example: cartesian space $\left(\mathbb{R}^{1} \ldots \mathbb{R}^{n}\right)$

Each arrow represents a family of diffeomorphisms

Example: cartesian space

Free Theorems

Free Theorems

Give me a function

Free Theorems

Give me a function

$$
g: \forall X . X \text { list } \rightarrow X \text { list }
$$

Free Theorems

Give me a function

$$
g: \forall X . X \text { list } \rightarrow X \text { list }
$$

Then for every function

Free Theorems

Give me a function

$$
g: \forall X . X \text { list } \rightarrow X \text { list }
$$

Then for every function

$$
f: X \rightarrow X^{\prime}
$$

Free Theorems

Give me a function

$$
g: \forall X . X \text { list } \rightarrow X \text { list }
$$

Then for every function

$$
f: X \rightarrow X^{\prime}
$$

We have the free theorem

Free Theorems

Give me a function

$$
g: \forall X . X \text { list } \rightarrow X \text { list }
$$

Then for every function

$$
f: X \rightarrow X^{\prime}
$$

We have the free theorem

$$
(\operatorname{map} f) \circ g_{X}=g_{X}, \circ(\operatorname{map} f)
$$

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X}, \circ(\operatorname{map} f)
$$

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X} \circ \circ(\operatorname{map} f)
$$

X list

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X} \circ \circ(\operatorname{map} f)
$$

$\left.\right|_{g_{X}} ^{X} \downarrow_{\text {list }}$

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X}, \circ(\operatorname{map} f)
$$

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X}, \circ(\operatorname{map} f)
$$

Free Theorems

$$
(\operatorname{map} f) \circ g_{X}=g_{X}, \circ(\operatorname{map} f)
$$

Atkey: Main Points

* Extend System F ω with type system encoding geometric invariances.
* Interpret kinds as reflexive graphs, types as reflexive graph morphisms.
* Connect free theorems of Wadler/Reynolds with Noether's theorem via symmetries of these reflexive graphs.

Atkey: Takeaways

* Types as geometries is a powerful new way of manipulating our "syntactic discipline".
*Visual intuition, connections to group theory.
- Physics is only one potential application!

The End

