From Parametricity to Conservation Laws, via Noether's Theorem

Written by Robert Atkey bob.atkey@gmail.com

Presented by Ben Carriel & Ben Greenman 2014-04-07

$$TE = mgh + \frac{1}{2}mv^2$$

$$TE = mgh + \frac{1}{2}mv^2$$

TE = PE + KE

Distance is <u>invariant</u> under translation and change of coordinate representation.

initial angular velocity of about one revolution every couple of seconds

final angular velocity of up to two or three revolutions per second

Noether's Theorem

Noether's Theorem

 (1915) "Any differentiable symmetry of the action of a physical system has a corresponding conservation law"

Quick Example

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

$$\forall d \in \mathbb{R}^2$$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

 $\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = L(t, z_1 + d, z_2 + d, \dot{z_1}, \dot{z_2})$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

 $\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = L(t, z_1 + d, z_2 + d, \dot{z_1}, \dot{z_2})$ (Noether's Theorem) $\frac{d}{dt}m(\dot{x_1} + \dot{x_2}) = 0$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

 $\forall d \in \mathbb{R}^2 \quad L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = L(t, z_1 + d, z_2 + d, \dot{z_1}, \dot{z_2})$ (Noether's Theorem) $\frac{d}{dt}m(\dot{x_1} + \dot{x_2}) = 0$

Conservation of Momentum

If the action

$$\mathcal{S}[q;a;b] = \int_{a}^{b} L(t,q,\dot{q})dt$$

is invariant under Φ_{ε} and Ψ_{ε} , then

$$\frac{d}{dt}\left(\sum_{i=1}^{n}\frac{\partial L}{\partial \dot{q}_{i}}\psi_{i}+\left(L-\sum_{i=1}^{n}\dot{q}_{i}\frac{\partial L}{\partial \dot{q}_{i}}\right)\varphi\right)=0$$

where
$$\phi = \frac{\partial \Phi}{\partial \epsilon}\Big|_{\epsilon=0}$$
 and $\psi = \frac{\partial \Psi}{\partial \epsilon}\Big|_{\epsilon=0}$

Pretty cool, right?

$(\lambda \mathbf{x} : \text{unit} \cdot 42 : \text{int})$

 $\label{eq:constraint} \begin{array}{l} \nu[TL!(\lambda x:T1:\lambda y:'] \\ \lambda f:(int -> int) ref. \lambda n:int. \\ f:=(\lambda acc:int ref. \lambda m:int. \\ case (n = m: bool) of \\ (acc:=(mul !acc m); acc):int \\ (!f (acc:=(mul !acc m); acc) (m+1)):int \\) (ref 1) 1) (ref \lambda x:int. x)) \end{array}$

 $\pi \triangleq \Lambda T1 \cdot \Lambda T2 \cdot \Lambda T3$

 $\lambda \mathbf{v} : T1 \times T2 \times T3$.

Atkey (2014)

Atkey (2014)

Define a type system for Lagrangian Mechanics.

Atkey (2014)

Define a type system for Lagrangian Mechanics.

Derive conservation laws as "free theorems" by parametricity.

Lagrangian:
$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$ Type: Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$ Type:

Reference:

Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$

Type: $\forall y : \mathbf{T}(1)$.

Reference:

Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$ Type: $\forall y : \mathbf{T}(1)$.

Reference:

 $\forall y : \mathbf{T}(1)$. \longrightarrow for all translations y in one-dimensional space

Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$ Type: $\forall y : \mathbf{T}(1)$. $C^{\infty}(_, _)$

Reference:

 $\forall y : \mathbf{T}(1)$. \longrightarrow for all translations y in one-dimensional space

Lagrangian: $L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$ Type: $\forall y : \mathbf{T}(1)$. $C^{\infty}(_, _)$

Reference:

 $\forall y : \mathbf{T}(1)$. \longrightarrow for all translations y in one-dimensional space $C^{\infty}(_, _)$ \longrightarrow type for smooth functions between spaces

Reference:

 $\forall y : \mathbf{T}(1)$. \longrightarrow for all translations y in one-dimensional space $C^{\infty}(_, _)$ \longrightarrow type for smooth functions between spaces

Reference:

Reference:

Reference:

Reference:

Reference:

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

$$L(t, z_1, z_2, \dot{z_1}, \dot{z_2}) = \frac{1}{2}m(\dot{z_1}^2 + \dot{z_2}^2) - \frac{1}{2}k(z_1 - z_2)^2$$

$$(z_1-z_2)^2$$

Reference:

Type: $\forall g : \mathbf{GL}(n)$

Reference:

Type: $\forall g : \mathbf{GL}(n)$

Reference: $GL(n) \longrightarrow$ group of invertible real $n \times n$ matrices

Type: $\forall g : \mathbf{GL}(n)$

Reference:

 $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices} \\ (\text{symmetries in } \mathbb{R}^n)$

Type: $\forall g : \mathbf{GL}(n), t_1, t_2 : \mathbf{T}(n).$

Reference:

 $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices}$ $(\text{symmetries in } \mathbb{R}^n)$

Type: $\forall g : \mathbf{GL}(n), t_1, t_2 : \mathbf{T}(n).$

Reference:

 $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices}$ $(\text{symmetries in } \mathbb{R}^n)$

 $T(n) \longrightarrow$ translations in n-dimensional space

Type: $\forall g : \mathbf{GL}(n), t_1, t_2 : \mathbf{T}(n).$ $C^{\infty}(\ , \)$

Reference:

 $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices}$ $(\text{symmetries in } \mathbb{R}^n)$

 $T(n) \longrightarrow$ translations in n-dimensional space

Type: $\forall g : \mathbf{GL}(n), t_1, t_2 : \mathbf{T}(n).$ $C^{\infty}(\mathbb{R}^n \langle g, t_1 \rangle \times \mathbb{R}^n \langle g, t_2 \rangle, \mathbb{R}^n \langle g, t_1 - t_2 \rangle)$

Reference:

 $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices}$ $(\text{symmetries in } \mathbb{R}^n)$

 $T(n) \longrightarrow$ translations in n-dimensional space

Type: $\forall g : \mathbf{GL}(n), t_1, t_2 : \mathbf{T}(n).$ $C^{\infty}(\mathbb{R}^n \langle g, t_1 \rangle \times \mathbb{R}^n \langle g, t_2 \rangle, \mathbb{R}^n \langle g, t_1 - t_2 \rangle)$

Reference:

- $GL(n) \longrightarrow \text{group of invertible real } n \times n \text{ matrices}$ $(\text{symmetries in } \mathbb{R}^n)$
 - $T(n) \longrightarrow$ translations in n-dimensional space
- $\mathbb{R}^n\langle g, f \rangle \longrightarrow$ n-dimensional vectors of real numbers that vary with linear transformation g and translation f.

Theorem (Noether). Let $L(x, u, D_u^1, \ldots, D_u^n)$, be a Lagrangian for $A \subseteq \mathbb{R}^n$, let $\varphi \in Aut(A)$ be a symmetry of A such that

$$\varphi(L) + LD^i(\xi) = D^i(B^i) \qquad B^i \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i.D^i(C^i) = 0$.

Theorem (Noether). Let $L(x, u, D_u^1, \ldots, D_u^n)$, be a Lagrangian for $A \subseteq \mathbb{R}^n$, let $\varphi \in Aut(A)$ be a symmetry of A such that

$$\varphi(L) + LD^i(\xi) = D^i(B^i) \qquad B^i \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i.D^i(C^i) = 0$.

"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."

Theorem (Noether). Let $L(x, u, D_u^1, \ldots, D_u^n)$, be a Lagrangian for $A \subseteq \mathbb{R}^n$, let $\varphi \in Aut(A)$ be a symmetry of A such that

$$\varphi(L) + LD^i(\xi) = D^i(B^i) \qquad B^i \in A$$

Then the Euler-Lagrange equations admit a conservation law $\forall i.D^i(C^i) = 0$.

"Give me a Lagrangian and a group action satisfying these constraints, I'll give you a conservation law."

Key point: we need an <u>automorphism</u> (i.e. symmetry) to start with

What does this mean?

Reynolds: types are relations

Wadler: relations are free theorems

Wadler: relations are free theorems

Wadler: relations are free theorems Atkey: free theorems are symmetries

Atkey gives us a geometric interpretation of types

Atkey gives us a geometric interpretation of types

We'll argue: Atkey subsumes Reynolds + Wadler

 Reynolds: types are sets, parametricity comes from the relations between them.

- Reynolds: types are sets, parametricity comes from the relations between them.
- Solution Series Serie

- Reynolds: types are sets, parametricity comes from the relations between them.
- Solution Series Serie
- Solve Form a graph where the objects are types and the edges order types by \subseteq .

Example: bool

Example: bool

Example: bool

Example: nat

Example: nat

Example: nat

Each arrow represents a family of diffeomorphisms

Give me a function

Give me a function

$g: \forall X.X \ list \rightarrow X \ list$

Give me a function

g: orall X. X list ightarrow X list

Then for every function

Give me a function

$g: \forall X.X \ list \rightarrow X \ list$

Then for every function

$$f: {\tt X}
ightarrow {\tt X}$$
 '

Give me a function $g: \forall X.X \ list \to X \ list$ Then for every function $f: X \to X'$

We have the free theorem

Give me a function $g: \forall X.X \ list \to X \ list$ Then for every function $f: X \to X'$

We have the free theorem

$$(map f) \circ g_{X} = g_{X'} \circ (map f)$$

$(map f) \circ g_{\mathbf{X}} = g_{\mathbf{X}'} \circ (map f)$

$(map f) \circ g_{\mathbf{X}} = g_{\mathbf{X}'} \circ (map f)$

X list

Free Theorems $(map \ f) \circ g_{X} = g_{X'} \circ (map \ f)$

Free Theorems $(map \ f) \circ g_X = g_{X'} \circ (map \ f)$

Atkey: Main Points

- Extend System Fω with type system encoding geometric invariances.
- Interpret kinds as reflexive graphs, types as reflexive graph morphisms.
- Connect free theorems of Wadler/Reynolds with Noether's theorem via symmetries of these reflexive graphs.

Atkey: Takeaways

- Types as geometries is a powerful new way of manipulating our "syntactic discipline".
- Visual intuition, connections to group theory.
- Physics is only one potential application!

