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Abstract4

The literature on migratory typing presents many strategies for mixing typed and untyped code. Two5

strategies, natural and transient , are especially interesting because they guarantee type soundness and6

do not limit the expressiveness of untyped code. Despite these commonalities, however, the strategies7

offer vastly different guarantees and performance tradeoffs. Their complementary strengths suggest the8

need for a combination.9

My work to date has developed novel methods for understanding the semantics and performance of10

migratory typing systems. I propose to leverage this expertise to: (1) design a semantics that supports11

interoperability between natural and transient, (2) implement the semantics, and (3) systematically12

evaluate the performance of the combination.13

1 Migratory Typing: Theory vs. Practice14

A migratory typing system adds static types to an existing dynamically-typed host language [30]. At a15

minimum, the addition requires a static type checker and syntax to accomodate mixed-typed code. If the16

types are intended as claims about the kinds of values that flow through a program at run-time, then the17

addition also requires a method of enforcing types.18

Typed Racket [29] is one example of a migratory typing system. The language accepts type-annotated19

Racket programs, validates the annotations with a type checker, and enforces the annotations with a trans-20

lation of types to higher-order contracts. For example, figure 1 presents a mixed-typed program consisting21

of three modules. The two untyped modules at the top of the figure define a guessing game and a game22

player. The typed module at the bottom gives the player five chances to submit a correct guess.23

The typed driver module assigns a static type to the untyped game and game player. At compile-time,24

the type checker validates the contents of the driver module assuming that the types assigned to these25

untyped functions are correct. At run-time, higher-order contracts dynamically enforce the claims of the26

types. Thanks to the contracts, these types are kept honest. If a different player function were to submit a27

string as a guess, a contract violation would halt the program and direct the programmer to the boundary28

between the typed driver and the untyped player.29

#lang racket

(provide play)

(define (play)

(define n (random 10))

(lambda (guess)

(= guess n)))

#lang racket

(provide stubborn -player)

(define (stubborn -player i)

4)

#lang typed/racket

(require/typed "guess -game.rkt"

[play (-> (Natural -> Boolean))])

(require/typed "stubborn -player.rkt"

[stubborn -player (Natural -> Natural)])

(define check -guess (play))

(for/or ([i : Natural (in -range 5)])

(check -guess (stubborn -player i)))

Fig. 1: A mixed-typed Typed Racket program [15]
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In theory, Typed Racket gives programmers the ability to freely mix typed and untyped modules. Imagine30

a large, untyped codebase; its maintainers may add types to any single module while leaving the rest untyped31

to arrive at a new, runnable program [28, 29]. After the conversion, the new module benefits from static32

type checking, which enables type-driven compiler optimizations.33

In practice, a programmer’s freedom to add types is severly limited by the run-time cost of type enforce-34

ment [27, 15]. Adding types to one module adds a contract boundary to its neighbors. These boundaries35

may add overhead throughout the program. When two modules communicate through a boundary, they36

may experience three kinds of performance overhead. First, there is the overhead of checking every value37

that crosses the boundary. Second, a higher-order boundary must allocate new wrappers to constrain the38

future behavior of any values that cross it. Third, wrapped values suffer from a layer of indirection. These39

overheads can dramatically increase the running time of a program (figure 2). Clearly, keeping types honest40

may impose a huge cost.41

Fig. 2: Worst-case overheads across 20 benchmarks and 3 versions of Typed Racket [15]

1.1 Different Strategies42

Other migratory typing systems do not keep types honest in the same manner as Typed Racket. Some add a43

runtime invariant to reduce the cost of honest types [34, 4, 19, 22]. Still others choose to selectively enforce44

types; a value may be obliged to satisfy a type in some contexts, but not all [33]. With a few exceptions,145

the different strategies fall into four broad categories: natural, concrete, erasure, and transient.46

Typed Racket implements the natural type enforcement strategy [18, 29]. A natural semantics carefully47

guards the boundaries between typed and untyped code by wrapping higher-order values in proxies and by48

eagerly checking/traversing other data. For example, if a natural language expects a list of numbers, then it49

checks every element of an incoming list. If a natural language expects a function, it creates a proxy around50

an incoming function value to protect future inputs and validate future results.51

A concrete system comes with two invariants. First, only statically-typed code can create new values.52

Second, every value has an immutable and precise type label. If a run-time system enforces these invariants,53

then types can be kept honest through inexpensive label checks [19, 34, 4, 22].2 For example, if a typed54

function expects a vector of integers and receives a value from a dynamically-typed context, the function55

can check whether the value’s label is a subtype of the expected type. This operation is much simpler than56

traversing and wrapping the vector.57

1Like types let a programmer toggle between concrete types and erased types [34, 23]. Grace enforces user-supplied type
annotations with tag checks [24]. Pyret enforces type annotations with tag checks for certain types and deep traversals for
others (pyret.org).

2Dart 2 implements concrete types (dart.dev/dart-2).
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Goal: migratory typing
Problem: performance

design a new language [19, 16, 22] interoperate with a
weaker semantics [23, 34]

build a new
compiler [2] improve an existing

compiler [15, 10]

Fig. 3: Ways to influence the performance of honest migratory types.

An erasure migratory typing system ignores types at run-time [3, 6, 26]. Typed code benefits from58

static type checking, but behaves exactly the same as untyped code. Erased types therefore add zero59

performance overhead, do not enable type-driven optimizations, and provide zero feedback when statically-60

typed code receives an input that contradicts the static types. If a typed function receives a bad argument,61

the application proceeds without hesitation and may compute a result that is in conflict with a static type62

and/or the logic of the program.63

Lastly, a transient migratory typing system partially enforces types via tag checks [33, 32]. In typed64

code, every elimination form and every boundary to untyped code is protected with a tag check. Each tag65

check matches the top-level shape of a value againt the outermost constructor of the expected type. For66

example, the tag check for a list of numbers accepts any list—no matter the contents. In untyped code,67

there are no checks. Transient types protect typed code from simple tag errors such as adding an integer to68

a function, but they fail to protect untyped code from lying types that are not completely checked.69

The existence of different approaches indicates a conflict between the theory and practice of migratory70

typing. Honest types are ideal from a theoretical perspective, but require either sophisticated run-time71

checks or limits on the expressiveness of untyped code; figure 3 maps potential solutions to thise perfor-72

mance challenge. Erased types are the polar opposite, as they require no run-time support and sacrifice all73

guarantees. If researchers can do no better than erasure, then type-sound migratory typing is a dead end. I74

am not yet willing to give up, and I therefore propose to explore a compromise semantics—indicated in the75

right-most part of figure 3—based on a careful theoretical exploration of the design space.76

2 Thesis Question77

Transient types represent an exchange of guarantees for performance; however, they suffer major limitations.78

For one, the transient guarantees are so weak that types can mislead programmers trying to understand a79

faulty program. Second, the transient type enforcement strategy adds overhead to all typed code; by contrast,80

natural types are only expensive when typed and untyped code interact. To illustrate the differences on fully-81

typed programs, figure 4 compares the performance improvement in Typed Racket (natural) over untyped82

to the improvement in a transient Racket prototype.83

Fig. 4: Speedup factor of Typed Racket vs. untyped (solid bars) and a transient Racket vs. untyped (striped
bars) [12]. Taller bars are better; bars below the 1x line indicate slowdowns.
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The above brings us to the central question of my dissertation research:84

Does migratory typing benefit from a combination of honest and lying types?85

I plan to explore a combination of the natural and transient approaches to run-time type enforcement86

within one migratory typing system. In the combined system, each component in a program shall be either:87

dynamically-typed, statically-typed with natural type enforcement, or statically-typed with transient type88

enforcement. Both variants of static typing shall employ the same language of types and the same type89

checker. Honest types must continue to be honest and lying types must continue to be type-sound in the90

weakened sense described in section 3.91

Beyond the dominant question, two derivative questions must be addressed. The first is how to combine92

honest and lying types in a way that preserves their respective guarantees. The second is how to measure93

the performance benefit of the combination. Section 4 outlines criteria and proposes solutions.94

3 Towards a Compromise95

My research to date has focused on (1) understanding the performance challenges for natural [27, 15] and96

(2) analyzing the design space with novel theoretical foundations [12]. These efforts have led up to the above97

thesis question. The performance studies motivate a combination of honest and lying types and suggest98

methods to validate the result. The design-space analysis provides a theoretical model for defining the99

combination and understanding its formal guarantees.100

3.1 Performance Evaluation101

Migratory typing promises the ability to mix typed and untyped code. A performance evaluation for a102

migratory typing system must therefore evaluate mixed-typed programs. My work proposed the first sys-103

tematic evaluation method [27], showed how to compare different implementations of migratory typing [15]104

and adapted the method to programs with millions of ways to mix typed and untyped code [14, 15].105

3.1.1 Summarizing Performance106

Our method of summarizing the performance in an exponentially-large set is based on a fundamental law of107

software development: all programs that are not “fast enough” are equally worthless.108

Takikawa et al. [27] use this relevance law to summarize the performance of a migratory typing system.109

If a configuration meets a fixed performance requirement, then it is good. Otherwise it is worthless. With110

this binary classification method, the performance of a mixed-typed program can be summarized by the111

proportion of configurations that meet the requirement. Likewise, a sequence of benchmarks may be sum-112

marized with a sequence of proportions. These ratios can help software developers assess the performance113

risk of migratory typing.114

Technically, a configuration is D-deliverable if its running time is no more than Dx slower than the115

baseline performance with no migratory typing.3 Given a positive number D, the proportion of D-deliverable116

configurations is exactly the proportion of good configurations described above.117

To accomodate varying notions of good performance, Takikawa et al. [27] combine the proportions for D118

between 1 and 20 into a plot. The x-axis of such a plot ranges over values of D. The y-axis ranges over the119

number (or percent) of configurations. Figure 5, on the left-hand side, presents an example for a program120

with eight modules. The key takeaway is that the plot answers an important question and does not require121

an exponential amount of space.122

Variations on the D-deliverable metric can answer similar questions about a mixed-typed program. For123

example, the two other plots in figure 5 relax the metric to allow one (middle plot) and two (right plot)124

extra type conversion steps. In this case, one conclusion supported by the right-most plot is that if a 10x125

slowdown is acceptable and the client is willing to add types to at most two extra modules, then 80% of the126

configurations are within range of an acceptable state. Once again the key takeaway is not the particular127

3For example, in Racket, the fully-untyped configuration is an appropriate baseline. In transient Reticulated Python, the
fully-untyped configuration run via Python (not via Reticulated) is an appropriate baseline because it is the starting point for
a developer who wishes to migrate code [14].
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Fig. 5: Counting D-deliverable configurations in the snake benchmark [27]. The x-axis ranges over D values;
the vertical lines mark x = 3 and x = 10. The y-axis counts configurations; the dashed horizontal line marks
60% of all configs. The thick blue line is the number of x-deliverable configurations.

conclusion, but the fact that the method helps answer practical questions about the implementation of128

migratory typing.129

3.1.2 Comparing Implementations130

The D-deliverable metric enables comparisons of different migratory typing systems. If there are two lan-131

guages that can execute the same program, then the language with better performance is the one that132

maximizes the proportion of D-deliverable configurations.133

Greenman et al. [15] use this observation to compare three versions of Racket: v6.2, v6.3, and v6.4.134

Racket v6.3 contains a few improvements inspired by the performance evaluation of Racket v6.2 [27].135

Racket v6.4 contains many more changes: it inlines the contract checks for simple typed functions, vali-136

dates struct predicates with a first-order check, and reduces the memory overhead of contracts in general.137

Figure 6 shows the effect of these changes on one benchmark. The curve for version 6.4 lies above the others,138

meaning the percent of D-deliverable configurations is larger for every value of D along the x axis.139

Fig. 6: Comparing performance across three versions of Typed Racket; the right plot allows one type
conversion step

Similar plots have helped other researchers validate their designs:4 Bauman et al. [2] demonstrate the140

benefits of adding a tracing JIT compiler to Typed Racket; Feltey et al. [10] measure the impact of col-141

lapsible higher-order contracts; and Greenman and Felleisen [12] compare Typed Racket to a prototype142

implementation of transient type checks.143

3.1.3 Scaling the Method144

Greenman and Migeed [14] adapt the method to evaluate the performance of Reticulated Python. In con-145

trast to Typed Racket, Reticulated allows optional type annotations at a fine granularity. Every function146

parameter, function return type, and class field may be optionally annotated. Unfortunately for the exhaus-147

tive method, this freedom means that relatively small programs may have a huge number of configurations;148

counting the proportion of D-deliverable becomes impractical for a class with 20 fields.149

4Kuhlenschmidt et al. [16] plot the D-deliverable configurations in Typed Racket alongside a count based on the overhead
of a new language, Grift, relative to Racket. The latter is not the D-deliverable metric because removing all gradual typing
from a Grift program does not produce a Racket program.
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Fig. 7: Thin blue lines plot D-deliverable configurations; thick brown lines plot 95% confidence intervals

The paper demonstrates, however, that a linear number of random samples can approximate the true150

number of good configurations. Intuitively, the result says that the overhead experienced by N developers151

provides useful information for the next one to add types to the same program.152

To approximate the proportion of D-deliverable configurations, first select s configurations uniformly at153

random and count the proportion of D-deliverable configurations in this sample. Repeat for r samples to154

build a set of proportions. Use the set to build a confidence interval, and finally interpret the confidence155

interval to approximate the true proportion of deliverable configurations.156

Greenman and Migeed [14] perform an experiment in which r = 10 is a constant and s = 10 ∗ (F + C)157

is linear in the number of functions F and classes C in a benchmark. For six benchmarks with 12 to 17158

functions and classes each, they generate six 95% confidence intervals. To validate these results, they collect159

the running time of every configuration in which: any function/method may be typed or untyped, and the160

set of fields for any class may be typed or untyped.5 As figure 7 shows, the confidence intervals provide a161

tight bound on the ground truth.162

Greenman et al. [15] validate this sampling method on Typed Racket programs. They use the same163

number of samples and same linear sample size and find that the intervals yield tight approximations.164

3.1.4 Benchmark Suite165

Greenman et al. [15] formally introduce a suite of mixed-typed benchmark programs. These GTP benchmarks166

are available online6 and have been used to validate other changes to Typed Racket [12, 2].167

3.2 Design Space Analysis168

Models of migratory typing systems come in many varieties—often because the models reflect a proof-of-169

concept implementation [3, 21, 20, 1, 7, 17, 5, 34, 19, 33, 29, 8]. These models share the common goal of170

mixing static and dynamic typing, but realize the goal with different formalizations. Unfortunately, the171

diversity makes it difficult to compare properties of models in a scientific manner.172

My work on comparing approaches to migratory typing employs a model that expresses realizations as173

different semantics for a common surface language. The common model enables well-founded comparisons174

of properties such as type soundness and complete monitoring. Additionally, the model facilitates the design175

of new semantics for migratory typing.176

5Reticulated supports the definition of many more configurations in each program; nevertheless, the experiment suffices to
validate the sampling method.

6docs.racket-lang.org/gtp-benchmarks/
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3.2.1 A Spectrum of Type Soundness177

Greenman and Felleisen [12] introduce a model to compare natural, erasure, and transient migratory typing178

as different semantics for a common surface language. The common language is mixed-typed in the style of179

Matthews and Findler [18]; it syntactically combines a statically-typed language with a dynamically-typed180

language via boundary terms. For example, the typed expression ((dyn (Int ⇒ Int) λx0. x0) 2) applies a181

dynamically-typed value to a statically-typed input. The type annotation (Int⇒ Int) helps the static type182

checker validate the application and may affect the behavior of a semantics.183

In this model, the differences between type-enforcement strategies come about as different behaviors for184

boundary terms. The natural semantics strictly enforces types at a dynamic-to-static boundary. Incoming185

higher-order values get wrapped in a proxy to monitor their behavior; other values receive an exhaustive186

check (figure 8, left). At a static-to-dynamic boundary, the natural approach wraps outgoing higher-order187

values to protect against future untyped inputs. Since higher-order values may appear within first-order188

data structures, the latter require a traversal.189

The erasure semantics treats boundary terms as a no-op. Any value may cross any boundary.190

The transient semantics enforces boundary terms with tag checks (figure 8, right); however, it also treats191

elimination forms in typed code as boundaries. A dynamic-to-static boundary checks that the top-level shape192

of an incoming value matches the outermost constructor of the expected type. A static-to-dynamic boundary193

lets any value cross; if typed code satisfies a tag-level soundness guarantee, then such values are certain to194

match the outermost constructor of the expected type. Transient achieves this guarantee by guarding every195

elimination form in typed code with a dynamic-to-static check. Thus if the untyped value 〈−2, 0〉 enters196

typed code via a (Nat×Nat) boundary and typed code projects the first element of the pair expecting a197

nonnegative integer, a runtime check halts the program.198

DN : τ×v → e

DN(τ0⇒τ1, v0) = mon τ0⇒τ1 v0
if v0 is a function

DN(τ0×τ1, 〈v0, v1〉) = 〈dyn τ0 v0, dyn τ1 v1〉
DN(Int, i0) = i0
DN(Nat, i0) = i0

if 0 ≤ i0
DN(τ0, v0) = Error

otherwise

SN : τ×v → e

SN(τ0⇒τ1, v0) = mon (τ0⇒τ1) v0
if v0 is a function

SN(τ0×τ1, 〈v0, v1〉) = 〈stat τ0 v0, stat τ1 v1〉
SN(τ0, v0) = v0

otherwise

DT : τ×v → e

DT(τ0⇒τ1, v0) = v0
if v0 is a function

DT(τ0×τ1, v0) = v0
if v0 is a pair

DT(Int, i0) = i0
DT(Nat, i0) = i0

if 0 ≤ i0
DT(τ0, v0) = Error

otherwise

ST : τ×v → e

ST(τ0, v0) = v0

Fig. 8: Boundary checks for natural (left) and transient (right)

These three methods of enforcing type boundaries lead to three different semantics for surface programs.199

One may compare the results of running one program via the three semantics, and one may formulate200

theorems that characterize general differences. The model therefore serves as a tool for design analysis.201

Greenman and Felleisen [12] demonstrate this point by proving three pairs of type soundness theorems for202

the semantics. For typed contexts, these theorems roughly guarantee the following: the natural semantics203

can only yield values that fully match the expected type; the erasure semantics can yield any value; and the204

transient semantics can only yield values with a tag that matches the outermost constructor of the expected205

type. Sibling theorems describe the behavior of untyped code.206

Additionally, the model serves as a tool for language design. One may develop a new semantics by207

proposing a new strategy for checking the boundaries between typed and untyped components. Greenman208

and Felleisen [12] present two such variants of the natural semantics, dubbed co-natural and forgetful, that209

bridge the gap between natural and transient. Co-natural allocates wrappers for all kinds of structured data—210
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not only higher-order values—and thereby reduces the amount of checking at a boundary to a tag check.211

Forgetful extends co-natural; if a wrapped value reaches a boundary, a new wrapper replaces the existing212

one.7 Both co-natural and forgetful provide a type soundness guarantee that resembles type soundness for213

natural. They both fail, however, to detect some type violations that natural detects. Technically, co-natural214

detects more errors than forgetful, which detects more errors than transient [12]. Greenman et al. [13] present215

a variant of transient (Amnesic) that provides more precise blame information when a boundary error occurs.216

3.2.2 A User Study217

Tunnell Wilson et al. [31] use the model of Greenman and Felleisen [12] to create a survey about semantics218

for mixed-typed languages. The survey employs the common surface syntax and three semantics: natural,219

erasure, and transient. Each question presents one program and two or three possible outcomes of running220

the program. Repondents must form an opinion based on two attitudes: (1) do they like/dislike the behavior,221

and (2) do they find it expected/unexpected. The two attitudes form a matrix of four possible answers.222

The authors administered their survey to three populations: software engineers at a major Silicon Valley223

technology company; computer science students at a highly selective, private US university; and Mechanical224

Turk workers with some programming experience. They found a preference for the natural semantics—and225

more generally, for enforcing all claims implied by the types—across all three populations.226

3.2.3 Honest vs. Lying Types227

The different type soundness theorems for natural and transient demonstrate their different guarantees for228

typed code. Clearly, natural-typed code can trust full types and transient-typed code can trust top-level229

type constructors. Type soundness fails, however, to describe their different guarantees for untyped code.230

Suppose that one untyped component E expects a pair of numbers from a typed component; suppose further231

that the typed component provides a pair that it receives from a different untyped component—and that232

the pair contains strings rather than integers.233

E[stat (Int×Int) (dyn (Int×Int) 〈‘hello’, ‘world’〉)]

A natural semantics halts the program when the pair reaches the boundary to typed code. A transient234

semantics lets the pair cross into typed code and out again to the untyped client. Both behaviors are235

permitted by type soundness. After all, soundness for untyped code has nothing to say about the type of a236

result value. But the transient behavior means that untyped code cannot trust a typed API.237

In general, a natural type is honest because it is a valid claim about all future behaviors of a value.238

If natural accepts a value at a certain type, then it has either fully-checked the value or wrapped it in a239

monitoring proxy. A transient type is valid in one specific context, and lying to the rest of the program. For240

example, the type (Int×Int) above is only enforced in the visible typed component; the rest of the program241

cannot assume that the type is a valid claim about the contents of pairs that flow through the component.242

Greenman et al. [13] formalize these intuitions with a complete monitoring theorem. Complete monitoring243

comes from prior work on higher-order contracts; in brief, a contract system satisfies complete monitoring244

if every channel of communication between components can be monitored by a contract [9]. A mixed-typed245

language satisfies complete monitoring if runtime checks protect all communications across boundaries. If246

so, then a pair value cannot transport a string such as ‘hello’ across a boundary that expects a number.247

The key to proving a complete monitoring theorem is to enrich the syntax of the model with ownership248

annotations. Ownership annotations state which components are responsible for the expressions and values249

in a program. When a value flows across a boundary, its ownership changes depending on the type checks250

that occur. If the checks fully validate the boundary type, the value replaces its previous owners with a new251

one. Otherwise, the value keeps the previous owners and gains a new owner. In this framework, a semantics252

satisfies complete monitoring iff it never lets a value accumulate more than one owner.253

4 Research Challenges254

Three challenges stand between the thesis question and an answer:255

7The forgetful semantics and its type soundness are inspired by forgetful contracts [11].
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1. Combine honest and lying migratory typing in a model; formulate and prove safety properties.256

2. Implement the model for Racket; re-use the Typed Racket type system.257

3. Evaluate the performance of the combined semantics.258

4.1 Challenge 1: Model259

The first challenge is to extend our semantic model of migratory typing to combine honest and lying types260

in one semantics. The current model supports them in parallel developments; the task is to allow interoper-261

ability. The new model must allow the definition of honest-typed code, lying-typed code, and untyped code262

in the surface syntax. All three must be able to share all kinds of values via boundary terms. In particular,263

sharing implies that lying code must accept monitored values from honest code. Honest-typed code may264

need a rewriting pass in the style of transient.265

The primary goal of the model is to state and prove safety properties for each of the three languages266

in the model. Honest types must be trustworthy in any context; they must satisfy a complete monitoring267

theorem and a standard type soundness theorem. Lying types must match the type-tag of values. Untyped268

code must have well-defined behavior.269

A secondary goal of the model is to minimize the amount of run-time checking that is needed to ensure270

safety. Lying-typed code may be able to leverage the properties of honest types to avoid some overhead.271

Honest-typed code may benefit from trusting the constructors of lying-typed values. The challenge is to272

explore the design space, find methods that are likely to give a performance benefit, and (time permitting)273

pursue a full-fledged implementation.274

The model must scale to union types, universal types, and recursive types. That is, these types must275

either be part of the model or else it must be clear how to add them—both for static typing and for run-276

time checks. Greenman and Felleisen [12] describe how to support such types in transient and present an277

implementation that does so, but integration with natural types may pose new challenges.278

4.2 Challenge 2: Implementation279

The second challenge is to validate the model through an implementation. Racket is a natural target for280

such an implementation, because it supports honest migratory typing and partially supports lying migratory281

typing. What remains is to extend the partial support for lying migratory typing and to combine the two282

strategies according to the model. Honest-typed code must continue to use the type-driven optimizer [25]283

and to protect itself against untyped code. Lying-typed code must be able to share type definitions with284

honest-typed code and values with both honest-typed and untyped code. Time-permitting, I may explore285

further extensions.286

4.2.1 Primary Goals287

• Extend the current partial support for lying migratory typing to accomodate all Typed Racket types288

that appear in the functional GTP benchmarks. Each type needs a matching tag-check. Some tag-289

checks are easy to define; for example, the proper tag-check for the Symbol type is the symbol?290

predicate. Other types present a choice: should the check for Listof ensure a proper list? should the291

check for ->* validate arity and keyword arguments? I plan to initially answer “yes” to both questions292

and generally to check all possible first-order properties; at least until there is evidence that these293

checks are too expensive.294

• Avoid the Racket contract library because contract combinators have administrative overhead. Tag-295

checks must be realized with simple Racket code wherever possible to improve run-time performance296

and take advantage of compiler optimizations.297

• Interact safely with Typed Racket. Statically, lying and honest-typed code must be able to share type298

definitions. Dynamically, honest-typed code must protect itself against lying values.299

• Provide relatively fast compilation times for lying-typed Racket. Some overhead relative to honest-300

Typed Racket may arise from the pass that rewrites typed code. Anything more than a 10% slowdown,301

however, must be studied and explained.302
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4.2.2 Secondary Goals303

• Add support for class and object types. These types need a tag check, but there are many question304

about how such checks should explore compatible values. One idea is to mimic the first-order checks305

done by the contract system; the question is whether those checks suffice for soundness.306

• Investigate a static analysis to remove tag checks. Typed Racket employs occurrence typing to prop-307

agate information about type-tests. A tag-check is a simple type test, and the success of one check308

has implications for the rest of the program. For example, if a block of code projects an element of an309

immutable pair twice in a row, then only the first projection requires a tag check.310

• Adapt the Typed Racket optimizer. The current implementation of lying types is incompatible with311

the Typed Racket optimizer. For one, the implementation outputs code that the optimizer cannot312

handle. More significantly, some optimization passes are inappropriate for lying-typed code because313

they rely on honest type information. Lying-typed code may still benefit from simple optimizations,314

however, so it is worthwhile to try reusing the optimizer. For example, it may specialize an application315

of + to expect unboxed numbers.316

4.3 Challenge 3: Evaluation317

The third challenge is to test the hypothesis that a combination of honest and lying types is better than318

either one individually. There are a few ways that a programmer could benefit: changing one module from319

honest to lying may reduce the cost of type boundaries, changing a collection of modules from lying to honest320

may remove many tag checks, and changing a library from honest to lying may improve the performance of321

untyped clients.322

I plan to use the GTP benchmarks in a systematic performance evaluation. It is unclear, however, how323

to conduct such an evaluation. An exhaustive study requires 3N measurements for each program with N324

modules, which is a large amount of data to collect and interpret. I propose two alternatives for now.325

To test a library, the existing method suffices. One can convert the library to be lying-typed and measure326

an honest-typed performance lattice.327

To test the benefits for program authors, who now have three choices for every module, I propose a328

path-based metric based on two assumptions. First, I assume that authors are seeking fully-typed programs.329

Second, I assume that the authors are seeking honest-typed programs. For the evaluation, the question is330

what percentage of paths through the honest-typed performance lattice have no configurations that exceed331

a certain overhead, say 10x, given the option at each step of converting some modules to lying types. The332

idea is that a programmer moves up the lattice by adding type annotations to one module at a time. If, at333

any step, honest types lead to unacceptable overhead, the programmer can switch to lying because both use334

the same static types. Once the programmer has added “enough” types, switching back to honest should335

offer a performance boost (in addition to the stronger guarantees of honest types).336

Both assumptions above threaten the validity of any conclusions drawn from the evaluation. Experience337

with Racket suggests that fully-typed programs are not the norm. Programmers often end up with partially-338

typed programs, especially when they intend to support typed and untyped client programs. It is also339

unclear that honest-typing offers the best performance for fully-typed programs. There are 2N ways of340

mixing honest and lying typing in a fully-typed program; without a full evaluation, one cannot be sure that341

a mixed program out-performs the honest version.342

5 Proposed Schedule343

There are four major tasks ahead: develop a model, build an implementation, evaluate the implementation,344

and write a dissertation. I additionally plan to write a research paper about the model and implementation.345

Work on the model can begin immediately. By the end of this year, it should be clear whether the model346

can support an implementation. Implementation work must begin with a review of the existing lying-typed347

Racket system [12]; I have already started this update, and plan to continue working in parallel with the348

modeling. Evaluations will begin as soon as the implementation can support simple benchmarks. These349

preliminary measurements shall inform the protocol for a final performance evaluation. The evaluation will350
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Sep + implementation .

. | .

Oct + model | .

. | | .

Nov | | .

. | | .

Dec | | .

. | | .

Jan’20 | | .

. + | .

Feb | .

. | + evaluation .

Mar | | .

. | | .

Apr | | .

. + | + paper .

May | | .

. | | + dissertation .

Jun + + | .

. | .

Jul | .

. | .

Aug | .

. + .

Fig. 9: Proposed schedule

take several weeks to finish; as the evaluation is running, I plan to write a research report on the combined351

system. The dissertation will combine this report with my other findings on migratory typing. I plan to352

defend my dissertation during the Fall 2020 semester.353
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